Direct Detection of Groundwater Accumulation Zones in Saprock Aquifers in Tectono-Thermal Environments
Abstract
:1. Introduction
2. Methodology
2.1. Physiographic Description of the Study Site
2.2. Geology and Hydrogeology
3. Aquifer Systems in the Study Area
4. Data Acquisition
4.1. Vertical Electrical Sounding
4.2. Borehole Drilling and Pumping Tests
4.3. Lineament Density Map
5. Results and Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giordano, M. Global groundwater? Issues and solutions. Annu. Rev. Environ. Resour. 2009, 34, 153–178. [Google Scholar] [CrossRef]
- Foster, S.; Chilton, J.; Nijsten, G.J.; Richts, A. Groundwater—A global focus on the ‘local resource’. Curr. Opin. Environ. Sustain. 2013, 5, 685–695. [Google Scholar] [CrossRef]
- Kearey, P.; Brooks, M.; Hill, I. An Introduction to Geophysical Exploration; Wiley-Blackwell: Hoboken, NJ, USA, 2002. [Google Scholar]
- Banks, D.; Nørmark, E.; Sørensen, K.I.; Skarphagen, H. Identifying the outflow of a deep thermal groundwater system in fractured crystalline bedrock using isotopic tracers and electrical conductivity. Appl. Geochem. 2008, 23, 1866–1878. [Google Scholar]
- Dewashushi, K.; Israil, M.; Mittal, S. Vertical electrical sounding to delineate fractures for groundwater in hard-rock terrain in the Siwana Ring Complex of Rajasthan, India. Environ. Geol. 2007, 52, 1523–1533. [Google Scholar]
- Biswas, A.; Sharma, S.P. (Eds.) Advances in Modeling and Interpretation in Near Surface Geophysics; Springer International Publishing: New York, NY, USA, 2020. [Google Scholar]
- Díaz-Alcaide, S.; Martínez-Santos, P. Advances in groundwater potential mapping. Hydrogeol. J. 2019, 27, 2307–2324. [Google Scholar] [CrossRef]
- Wyns, R.; Baltassat, J.M.; Lachassagne, P.; Legtchenko, A.; Vairon, J. Application of proton magnetic resonance soundings to groundwater reserves mapping in weathered basement rocks (Brittany, France). Bull. Société Géologique Fr. 2004, 175, 21–34. [Google Scholar] [CrossRef]
- Lachassagne, P.; Wyns, R.; Dewandel, B. The fracture permeability of hard rock aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova 2011, 23, 145–161. [Google Scholar] [CrossRef]
- Prowell, D.C. Cretaceous and Cenozoic tectonism on the Atlantic coastal margin. In The Geology of North America; Sheridan, R.E., Grow, J.A., Eds.; The Atlantic Continental Margin; Geological Society of America: Boulder, CO, USA, 1988; Chapter 29; Volume I-2, pp. 557–564. [Google Scholar]
- Mortimer, L.; Aydin, A.; Simmons, C.; Heinson, G.; Love, A.J. The role of in situ stress in determining hydraulic connectivity in a fractured rock aquifer (Australia). Hydrogeol. J. 2011, 19, 1293–1312. [Google Scholar] [CrossRef]
- Ofterdinger, U.; MacDonald, A.M.; Comte, J.C.; Young, M.E. Groundwater in fractured bedrock environments: Managing catchment and subsurface resources—An introduction. Geol. Soc. Lond. Spec. Publ. 2019, 479, 1–9. [Google Scholar] [CrossRef]
- Singhal BB, S.; Gupta, R.P. Applied Hydrogeology of Fractured Rocks; Kluwer Academic: Dordrecht, The Netherlands, 1999. [Google Scholar]
- Balasubramanian, A. Methods of Grounddwater Exploration; Centre for Advanced Studies in Earth Science, University of Mysore: Nanaimo, BC, Canada, 2007; p. 13. [Google Scholar]
- MacDonald, A.; Bonsor, H.C.; Dochartaigh, B.E.; Taylor, R.G. Quantitative maps of groundwater resources in Africa. Environ. Res. Lett. 2012, 7, 024009. [Google Scholar] [CrossRef]
- Maurice, L.; Taylor, R.G.; Tindimugaya, C.; MacDonald, A.M.; Johnson, P.; Kaponda, A.; Owor, M.; Sanga, H.; Bonsor, H.C.; Darling, W.G.; et al. Characteristics of high-intensity groundwater abstractions from weathered crystalline bedrock aquifers in East Africa. Hydrogeol. J. 2019, 27, 459–474. [Google Scholar] [CrossRef]
- Earon, R.; Dehkordi, S.E.; Olofsson, B. Groundwater Resources Potential in Hard Rock Terrain: A Multivariate Approach. Groundwater 2015, 53, 748–758. [Google Scholar] [CrossRef] [PubMed]
- Wright, E.P. The hydrogeology of crystalline basement aquifers in Africa. In The Hydrogeology of Crystalline Basement Aquifers in Africa; Wright, E.P., Burgess, W.G., Eds.; Geological Society, Special Publications: London, UK, 1992; Volume 66, pp. 1–27. [Google Scholar]
- Goldman, M.; Neubauer, F.M. Groundwater Exploration using Integrated Geophysical Techniques. Surv. Geophys. 1994, 15, 331–361. [Google Scholar] [CrossRef]
- Srivastava, P.K.; Bhattacharya, A.K. Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: A case study from a hard rock terrain. Int. J. Remote Sens. 2006, 27, 4599–4620. [Google Scholar] [CrossRef]
- Pride, S.R. Relationships between seismic and hydrological properties. Hydrogeophysics 2005, 50, 253–290. [Google Scholar]
- Yaramanci, U.; Lange, G.; Knödel, K. Surface NMR within a combined geophysical survey in Haldenslaben (Germany). Geophys. Prospect. 1999, 47, 923–943. [Google Scholar] [CrossRef]
- Zaresefat, M.; Derakhshani, R.; Nikpeyman, V.; GhasemiNejad, A.; Raoof, A. Using artificial intelligence to identify suitable artificial groundwater recharge areas for the Iranshahr basin. Water 2023, 15, 1182. [Google Scholar] [CrossRef]
- Agrawal, P.; Sinha, A.; Kumar, S.; Agarwal, A.; Banerjee, A.; Villuri, V.G.K.; Annavarapu, C.S.R.; Dwivedi, R.; Dera, V.V.R.; Sinha, J.; et al. Exploring artificial intelligence techniques for groundwater quality assessment. Water 2021, 13, 1172. [Google Scholar] [CrossRef]
- Ernstson, K.; Kirsch, R. Geoelectrical methods. In Groundwater Geophysics: A Tool for Hydrogeology; Springer: Berlin/Heldelberg, Germany, 2006; pp. 84–117. [Google Scholar]
- Akpan, A.E.; Ugbaja, A.N.; George, N.J. Integrated geophysical, geochemical and hydrogeological investigation of shallow groundwater resources in parts of the Ikom-Mamfe Embayment and the adjoining areas in Cross River State, Nigeria. Environ. Earth Sci. 2013, 70, 1435–1456. [Google Scholar] [CrossRef]
- Ebong, E.D.; Akpan, A.E.; Emeka, C.N.; Urang, J.G. Groundwater quality assessment using geoelectrical and geochemical approaches: Case study of Abi area, southeastern, Nigeria. Appl. Water Sci. 2017, 7, 2463–2478. [Google Scholar] [CrossRef]
- Akpan, A.E.; Ebong, E.D.; Ekwok, S.E. Assessment of the state of soils, shallow sediments and groundwater salinity in Abi, Cross River State, Nigeria. Environ. Earth Sci. 2015, 73, 8547–8563. [Google Scholar] [CrossRef]
- Nicholson, S.E. The ITCZ and the seasonal cycle over equatorial Africa. Bull. Am. Meteorol. Soc. 2018, 99, 337–348. [Google Scholar] [CrossRef]
- Doherty, O.M.; Riemer, N.; Hameed, S. Role of the convergence zone over West Africa in controlling Saharan mineral dust load and transport in the boreal summer. Tellus B Chem. Phys. Meteorol. 2014, 66, 23191. [Google Scholar] [CrossRef]
- Edet, A.; Worden, R.H. Monitoring of the physical parameters and evaluation of the chemical composition of river and groundwater in Calabar (Southeastern Nigeria). Environ. Monit. Assess. 2009, 157, 243–258. [Google Scholar] [CrossRef] [PubMed]
- Ekanem, A.M.; Akpan, A.E.; George, N.J.; Thomas, J.E. Appraisal of protectivity and corrosivity of surficial hydrogeological units via geo-sounding measurements. Environ. Monit. Assess. 2021, 193, 1–22. [Google Scholar] [CrossRef]
- Ajibade, A.C.; Fitches, W.R. The Nigerian Precambrian and the Pan-African Orogeny. In Precambrian Geology of Nigeria; Oluyide, P.O., Mbonu, W.C., Ogezi, A.E.O., Egbuniwe, I.G., Ajibade, A.C., Umeji, A.C., Eds.; Geological Survey of Nigeria: Lagos, Nigeria, 1988; Volume 1, pp. 43–45. [Google Scholar]
- Hamimi, Z.; Eldosouky, A.M.; Hagag, W.; Kamh, S.Z. Large-scale geological structures of the Egyptian Nubian Shield. Sci. Rep. 2023, 13, 1923. [Google Scholar] [CrossRef]
- Ukaegbu, V.U.; Beka, F.T. Petrochemistry and geotectonic significance of enderbite-charnockit association in the Pan-African Obudu plateau, southeastern Nigeria. J. Min. Geol. 2007, 43, 1–14. [Google Scholar]
- Eseme, E.; Agyingi, C.M.; Foba-Tendo, J. Geochemistry and genesis of brine emanations from Cretaceous strata of the Mamfe Basin, Cameroon. J. Afr. Earth Sci. 2002, 35, 467–476. [Google Scholar] [CrossRef]
- Rahman, M.A.; Ukpong, E.E.S.; Azmatullah, M. Geology of Parts of the Oban Massif Southeastern Nigeria. J. Min. Geol. 1981, 18, 60–65. [Google Scholar]
- Ekwueme, B.N. Rb-Sr age and petrologic features of the Precambrian rocks from Oban Massif southeastern Nigeria. Precambrian Res. 1990, 47, 271–286. [Google Scholar] [CrossRef]
- Ukaegbu, V.U.; Ekwueme, B.N. Petrogenesis and geotectonic setting of the Pan-African basement rocks in Bamenda Massif, Obudu Plateau, southeastern Nigeria: Evidence from trace element geochemistry. Chin. J. Geochem. 2006, 25, 122–131. [Google Scholar] [CrossRef]
- Petters, S.W.; Okereke, C.S.; Nwajide, C.S. Geology of the Mamfe Rift, south eastern Nigeria. In Current Research in African Earth Sciences; Mathesis, G., Shandemerer, J., Eds.; Balkema: Rotterdam, The Netherlands, 1987; pp. 299–302. [Google Scholar]
- Ndip, E.Y.; Agyingyi, C.M.; Nton, M.E.; Oladunjoye, M.A. Review of the geology of Mamfe sedimentary basin, SW Cameroon, Central Africa. J. Oil Gas Petrochem. Sci. 2018, 1, 35–40. [Google Scholar] [CrossRef]
- Ekwueme, B.N. The chemical composition and industrial quality of limestones and marls on the Calabar Flank, southeastern Nigeria. J. Min. Geol. 1985, 22, 51–56. [Google Scholar]
- Reijers, T.J.A.; Petters, S.W. Depositional environments and diagenesis of Albian carbonates on the Calabar Flank, SE Nigeria. J. Pet. Geol. 1987, 10, 283–294. [Google Scholar] [CrossRef]
- Petters, S.W.; Nyong, E.E.; Akpan, E.B.; Essien, N.U. Lithostratigraphic revision for the Calabar Flank, SE Nigeria. In Proceedings of the 31st Anniversary Conference of Nigeria Mining and Geosciences Society, Calabar, Nigeria, 15–17 March 1995; Planets Space. Volume 57, pp. 755–760. [Google Scholar]
- Reyment, R.A. Aspects of the Geology of Nigeria: The Stratigraphy of the Cretaceous and Cenozoic Deposits; University Press: Ibadan, Nigeria, 1965. [Google Scholar]
- Adeleye, D.R.; Fayose, F.A. Stratigraphy of the type section of Awi Formation, Odukpani area, Southern Nigeria. J. Min. Geol. 1978, 15, 33–57. [Google Scholar]
- Ekwok, S.E.; Akpan, A.E.; Ebong, E.D. Enhancement and modelling of aeromagnetic data of some inland basins, southeastern Nigeria. J. Afr. Earth Sci. 2019, 155, 43–53. [Google Scholar] [CrossRef]
- Morreau, C.; Regnoult, J.M.; Deruelle, B.; Robineau, B. A new tectonic model for the Cameroon Line, Central Africa. Tectonophysics 1987, 139, 317–334. [Google Scholar] [CrossRef]
- Benkhelil, J. Cretaceous deformation, magmatism, and metamorphism in the Lower Benue Trough, Nigeria. Geol. J. 1987, 22, 467–493. [Google Scholar] [CrossRef]
- Burke, K.C.; Dessauvagie TJ, F.; Whiteman, A.W. Geological history of the Benue Valley and adjacent areas. In African Geology; University of Ibadan Press: Ibadan, Nigeria, 1972; pp. 187–206. [Google Scholar]
- Agagu, O.K.; Adighije, C.I. Tectonic and sedimentation framework of the lower Benue Trough, southeastern Nigeria. J. Afr. Earth Sci. 1983, 1, 267–274. [Google Scholar] [CrossRef]
- Ekwok, S.E.; Akpan, A.E.; Achadu OI, M.; Ulem, C.A. Implications of tectonic anomalies from potential field data in some parts of Southeast Nigeria. Environ. Earth Sci. 2022, 81, 1–15. [Google Scholar] [CrossRef]
- Mascle, J.; Blarez, E.; Marinho, M. The shallow structures of the Guinea and Ivory Coast-Ghana transform margins: Their bearing on the Equatorial Atlantic Mesozoic evolution. Tectonophysics 1988, 155, 193–209. [Google Scholar] [CrossRef]
- Fairhead, J.D. Mesozoic plate tectonic reconstructions of the central South Atlantic Ocean: The role of the West and Central African rift system. Tectonophysics 1988, 155, 181–191. [Google Scholar] [CrossRef]
- Okereke, C.S.; Esu, E.O.; Edet, A.E. Determination of potential groundwater sites using geological and geophysical techniques in the Cross River State, southeastern Nigeria. J. Afr. Earth Sci. 1998, 27, 149–163. [Google Scholar] [CrossRef]
- Edet, A.E.; Okereke, C.S. Assessment of hydrogeological conditions in basement aquifers of the Precambrian Oban massif, southeastern Nigeria. J. Appl. Geophys. 1997, 36, 195–204. [Google Scholar] [CrossRef]
- Titus, R.; Beekman, H.; Adams, S.; Strachan, L. The Basement Aquifers of Southern Africa; Report No. TT, 428-09; Water Research Commission: Pretoria, South Africa, 2009. [Google Scholar]
- Owoade, A. The potential for minimising drawdowns in groundwater wells in tropical aquifers. J. Afr. Earth Sci. 1995, 20, 289–293. [Google Scholar] [CrossRef]
- Dewandel, B.; Lachassagne, P.; Wyns, R.; Maréchal, J.C.; Krishnamurthy, N.S. A generalised 3-D geological and hydrogeological conceptual model of granite aquifers controlled by single or multiphase weathering. J. Hydrol. 2006, 330, 260–284. [Google Scholar] [CrossRef]
- Elster, D.; Holman, I.P.; Parker, A.; Ridge, L. An investigation of the basement complex aquifer system in Lofa county, Liberia, for the purpose of siting boreholes. Q. J. Eng. Geol. Hydrogeol. 2014, 47, 159–167. [Google Scholar] [CrossRef]
- Telford, W.M.; Telford, W.M.; Geldart, L.P.; Sheriff, R.E. Applied Geophysics, 2nd ed.; Cambridge University Press: Cambridge, UK, 1990; p. 732. [Google Scholar]
- Zhdanov, M.S.; Keller, G.V. The geoelectrical methods in geophysical exploration. Methods Geochem. Geophys. 1994, 31, 873. [Google Scholar]
- Keller, G.V.; Frischknecht, F.C. Electrical Methods in Geophysical Prospecting; Pergamon Press Inc.: Oxford, UK, 1966. [Google Scholar]
- Osman, M.M.; El-Qady, G.M.; Abdel Fattah, T.; Rashed, M.; Mohamdeen, M. Enhancement the VES models based on the TEM measurements and the application of static shift corrections.: Case study from Egypt. NRIAG J. Astron. Geophys. 2021, 10, 279–289. [Google Scholar] [CrossRef]
- Gowd, S.S. Electrical resistivity surveys to delineate groundwater potential aquifers in Peddavanka watershed, Anantapur District, Andhra Pradesh, India. Environ. Geol. 2004, 46, 118–131. [Google Scholar] [CrossRef]
- Freeze, R.A.; Cherry, J.A. Groundwater; Prentice-Hall: Upper Saddle River, NJ, USA, 1979; p. 604. [Google Scholar]
- Younger, P.L. Groundwater in the Environment: An Introduction; Blackwell Publishing: Hoboken, NJ, USA, 2007; p. 318. [Google Scholar]
- Solomon, S.; Ghebreab, W. Lineament characterisation and their tectonic significance using Landsat TM data and field studies in the central highlands of Eritrea. J. Afr. Earth Sci. 2006, 46, 371–378. [Google Scholar] [CrossRef]
- Akram, M.S.; Mirza, K.; Zeeshan, M.; Ali, I. Correlation of Tectonics with Geologic Lineaments Interpreted from Remote Sensing Data for Kandiah Valley, Khyber-Pakhtunkhwa, Pakistan. J. Geol. Soc. India 2019, 93, 607–613. [Google Scholar] [CrossRef]
- Elmahdy, S.I.; Mohamed, M.M.; Ali, T.A. Automated detection of lineaments express geological linear features of a tropical region using topographic fabric grain algorithm and the SRTM DEM. Geocarto Int. 2021, 36, 76–95. [Google Scholar] [CrossRef]
- Yassaghi, A. Integration of Landsat imagery interpretation and geomagnetic data on verification of deep-seated transverse fault lineaments in SE Zagrosa, Iran. Int. J. Remote Sens. 2006, 27, 4529–4544. [Google Scholar] [CrossRef]
- Ritz, M.; Robain, H.; Pervago, E.; Albouy, Y.; Camerlynck, C.; Descoitres, M.; Mariko, A. Improvement to resistivity pseudosection modelling by removal of near-surface inhomogeneity effects: Application to a soil system in south Cameroon. Geophys. Prospect. 1999, 47, 85–101. [Google Scholar] [CrossRef]
- Abdulkadir, Y.A.; Fisseha, S. Mapping the spatial variability of subsurface resistivity by using vertical electrical sounding data and geostatistical analysis at Borena Area, Ethiopia. MethodsX 2022, 9, 101792. [Google Scholar] [CrossRef]
- Makrini, S.E.; Boualoul, M.; Mamouch, Y.; El Makrini, H.; Allaoui, A.; Randazzo, G.; Roubil, A.; El Hafyani, M.; Lanza, S.; Muzirafuti, A. Vertical Electrical Sounding (VES) Technique to Map Potential Aquifers of the Guigou Plain (Middle Atlas, Morocco): Hydrogeological Implications. Appl. Sci. 2022, 12, 12829. [Google Scholar] [CrossRef]
- Key, K.; Constable, S. Coast effect distortion of marine magnetotelluric data: Insights from a pilot study offshore northeastern Japan. Phys. Earth Planet. Inter. 2011, 184, 194–207. [Google Scholar] [CrossRef]
- Gaber, A.; Mohamed, A.K.; ElGalladi, A.; Abdelkareem, M.; Beshr, A.M.; Koch, M. Mapping the groundwater potentiality of West Qena Area, Egypt, using integrated remote sensing and hydro-geophysical techniques. Remote Sens. 2020, 12, 1559. [Google Scholar] [CrossRef]
- Zohdy, A.A.R.; Eaton, G.P.; Mabey, D.R. Application of Surface Geophysics to Ground-Water Investigations (No. 02-D1); US Geological Survey Professional Paper; United States Geological Survey: Reston, Virginia, USA, 1974; 600-D. Available online: https://pubs.usgs.gov/twri/twri2-d1/pdf/twri_2-D1_b.pdf (accessed on 7 November 2023).
- Mlangi, T.M.; Mulibo, G.D. Delineation of shallow stratigraphy and aquifer formation at Kahe Basin, Tanzania: Implication for potential aquiferous formation. J. Geosci. Environ. Prot. 2018, 6, 78–98. [Google Scholar] [CrossRef]
- Meju, M.A. Joint inversion of TEM and distorted MT soundings: Some effective practical considerations. Geophysics 1996, 61, 56–65. [Google Scholar] [CrossRef]
- Gallardo, L.A.; Meju, M.A. Characterization of heterogeneous near-surface materials by joint 2D inversion of dc resistivity and seismic data. Geophys. Res. Lett. 2003, 30, 1658. [Google Scholar] [CrossRef]
- Sasaki, Y.; Meju, M.A. Three-dimensional joint inversion for magnetotelluric resistivity and static shift distributions in complex media. J. Geophys. Res. Solid Earth 2006, 111. [Google Scholar] [CrossRef]
- Cerri, R.I.; Reis, F.A.; Gramani, M.F.; Giordano, L.C.; Zaine, J.E. Landslides Zonation Hazard: Relation between geological structures and landslides occurrence in hilly tropical regions of Brazil. An. Acad. Bras. Ciências 2017, 89, 2609–2623. [Google Scholar] [CrossRef] [PubMed]
- Ejiga, E.G.; Ismail NE, H.; Yusoff, I. Implementing Digital Edge Enhancers on Improved High-Resolution Aeromagnetic Signals for Structural-Depth Analysis around the Middle Benue Trough, Nigeria. Minerals 2021, 11, 1247. [Google Scholar] [CrossRef]
- Song, Y.; Ren, J.; Stepashko, A.A.; Li, J. Post-rift geodynamics of the Songliao Basin, NE China: Origin and significance of T11 (Coniacian) unconformity. Tectonophysics 2014, 634, 1–18. [Google Scholar] [CrossRef]
- Song, G.; Wang, H.; Gan, H.; Sun, Z.; Liu, X.; Xu, M.; Ren, J.; Sun, M.; Sun, D. Paleogene tectonic evolution controls on sequence stratigraphic patterns in the central part of deepwater area of Qiongdongnan Basin, northern South China Sea. J. Earth Sci. 2014, 25, 275–288. [Google Scholar] [CrossRef]
- Birdsell, D.T.; Rajaram, H.; Dempsey, D.; Viswanathan, H.S. Hydraulic fracturing fluid migration in the subsurface: A review and expanded modeling results. Water Resour. Res. 2015, 51, 7159–7188. [Google Scholar] [CrossRef]
- Verma, R.K.; Bandyopadhyay, T.K. Use of the resistivity method in geological mapping—Case histories from Raniganj Coalfield, India. Geophys. Prospect. 1983, 31, 490–507. [Google Scholar] [CrossRef]
- Stein, R.S.; King, G.C.; Rundle, J.B. The growth of geological structures by repeated earthquakes 2. Field examples of continental dip-slip faults. J. Geophys. Res. Solid Earth 1988, 93, 13319–13331. [Google Scholar] [CrossRef]
- Schultz, R.A.; Fossen, H. Terminology for structural discontinuities. AAPG Bull. 2008, 92, 853–867. [Google Scholar] [CrossRef]
- Sibson, R.H.; Robert, F.; Poulsen, K.H. High-angle reverse faults, fluid-pressure cycling, and mesothermal gold-quartz deposits. Geology 1988, 16, 551–555. [Google Scholar] [CrossRef]
- Suzuki, K.; Toda, S.; Kusunoki, K.; Fujimitsu, Y.; Mogi, T.; Jomori, A. Case studies of electrical and electromagnetic methods applied to mapping active faults beneath the thick Quaternary. In Developments in Geotechnical Engineering; Elsevier: Amsterdam, The Netherlands, 2000; Volume 84, pp. 29–45. [Google Scholar]
- Rammlmair, D. Hard pan formation on mining residuals. In Uranium in the Aquatic Environment; Springer: Berlin/Heidelberg, Germany, 2002; pp. 173–182. [Google Scholar]
- Nicchio, M.A.; Balsamo, F.; Nogueira FC, C.; Aldega, L.; Pontes CC, C.; Bezerra, F.H.; de Souza, J.A.B. The effect of fault-induced compaction on petrophysical properties of deformation bands in poorly lithified sandstones. J. Struct. Geol. 2023, 166, 104758. [Google Scholar] [CrossRef]
- Cardona, A.; Finkbeiner, T.; Santamarina, J.C. Natural rock fractures: From aperture to fluid flow. Rock Mech. Rock Eng. 2021, 54, 5827–5844. [Google Scholar] [CrossRef]
- Yolcubal, I.; Brusseau, M.L.; Artiola, J.F.; Wierenga, P.; Wilson, L.G. Environmental physical properties and processes. In Environmental Monitoring and Characterization; Artiola, J., Pepper, I.L., Brusseau, M.L., Eds.; Academic Press: Cambridge, MA, USA, 2004; pp. 207–239. [Google Scholar]
- Steelman, C.M.; Kennedy, C.S.; Capes, D.C.; Parker, B.L. Electrical resistivity dynamics beneath a fractured sedimentary bedrock riverbed in response to temperature and groundwater–surface water exchange. Hydrol. Earth Syst. Sci. 2017, 21, 3105–3123. [Google Scholar] [CrossRef]
- Zhu, J.; Currens, J.C.; Dinger, J.S. Challenges of using electrical resistivity method to locate karst conduits—A field case in the Inner Bluegrass Region, Kentucky. J. Appl. Geophys. 2011, 75, 523–530. [Google Scholar] [CrossRef]
- Cheng, Q.; Chen, X.; Tao, M.; Binley, A. Characterization of karst structures using quasi-3D electrical resistivity tomography. Environ. Earth Sci. 2019, 78, 1–12. [Google Scholar] [CrossRef]
- Zou, L.; Håkansson, U.; Cvetkovic, V. Yield-power-law fluid propagation in water-saturated fracture networks with application to rock grouting. Tunn. Undergr. Space Technol. 2020, 95, 103170. [Google Scholar] [CrossRef]
- Zhang, W.C.; He, L.; Li, H.J.; Meng, Y.L.; Yang, F.B. Genesis and distribution of secondary porosity in the deep horizon of Gaoliu area, Nanpu Sag. Pet. Explor. Dev. 2008, 35, 308–312. [Google Scholar] [CrossRef]
- Day-Lewis, F.D.; Johnson, C.D.; Singha, K.; Lane, J.W.J. Best Practices in Electrical Resistivity Imaging: Data Collection and Processing, and Application to Data from Corinna, Maine; EPA Report: Boston, MA, USA, 2008. [Google Scholar]
- Foti, S.; Comina, C.; Boiero, D.; Socco, L.V. Non-uniqueness in surface-wave inversion and consequences on seismic site response analyses. Soil Dyn. Earthq. Eng. 2009, 29, 982–993. [Google Scholar] [CrossRef]
- Tso CH, M.; Kuras, O.; Wilkinson, P.B.; Uhlemann, S.; Chambers, J.E.; Meldrum, P.I.; Graham, J.; Sherlock, E.F.; Binley, A. Improved characterisation and modelling of measurement errors in electrical resistivity tomography (ERT) surveys. J. Appl. Geophys. 2017, 146, 103–119. [Google Scholar] [CrossRef]
- Güdük, N.; De La Varga, M.; Kaukolinna, J.; Wellmann, F. Model-based probabilistic inversion using magnetic data: A case study on the Kevitsa deposit. Geosciences 2021, 11, 150. [Google Scholar] [CrossRef]
- Colombo, D.; Turkoglu, E.; Li, W.; Rovetta, D. Coupled physics-deep learning inversion. Comput. Geosci. 2021, 157, 104917. [Google Scholar] [CrossRef]
S/No. | Name of Community | Local Government Area | Local Geology | AB/2 (m) at Breaking Point(s) | Number of Points that Break-off | Apparent Resistivities at Breaking Point(s) (Ωm) | Transmissivity (m3/day) | ||
---|---|---|---|---|---|---|---|---|---|
Minimum | Maximum | Minimum | Maximum | ||||||
1 | Akamkpa | Akamkpa | Basement | 60.0 | 60.0 | 1 | 155.3 | - | 6.17 |
2 | Kukare | Obanliku | Basement | 50.0 | 50.0 | 1 | 120.57 | - | 6.24 |
3 | Amana | Obanliku | Basement | 20.0 | 20.0 | 1 | 96.59 | - | 8.99 |
4 | Amunga | Obanliku | Basement | 60.0 | 60.0 | 1 | 210.05 | - | 5.99 |
5 | Bayaga | Obanliku | Basement | 100.0 | aaaagok | 1 | 405.35 | - | 8.52 |
6 | Sankwala | Obanliku | Basement | 30.0 | 30.0 | 1 | 205.12 | - | 5.99 |
7 | Mbenege | Obudu | Basement | 100.0 | 150.0 | 1 | 115.72 | - | 15.20 |
8 | Bendigie | Obanliku | Basement | 80.0 | 100.0 | 2 | 529.98 | 531.88 | 7.51 |
9 | Okorshie | Obudu | Basement | 60.0 | 80.0 | 2 | 120.00 | 625.00 | 32.12 |
10 | Obudu | Obudu | Basement | 30.0 | 150.0 | >2 | 332.00 | 457.00 | 38.21 |
11 | Ekori | Yakurr | Metasedimentary | 40.0 | 250.0 | >2 | 87.96 | 132.54 | 52.21 |
12 | Ijima | Yakurr | Metasedimentary | 150.0 | 250.0 | >2 | 126.26 | 183.60 | 54.29 |
13 | Ekureku | Abi | Metasedimentary | 15–20 | 100–150 | >2 | 588.59–978.39 | 1827.45–2487.15 | 45.37 |
14 | Abachor | Yala | Metasedimentary | 30.0 | 250.0 | >2 | 110.20 | 162.06 | 51.04 |
15 | Wula | Boki | Basement | 50–60 | 150.0 | >2 | 330.32–628.08 | 182.63 | 43.12 |
16 | Utugwang | Obudu | Basement | 100.0 | 200.0 | >2 | 127.61 | 492.95 | 41.20 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akpan, A.E.; Ekwok, S.E.; Ben, U.C.; Ebong, E.D.; Thomas, J.E.; Ekanem, A.M.; George, N.J.; Abdelrahman, K.; Fnais, M.S.; Eldosouky, A.M.; et al. Direct Detection of Groundwater Accumulation Zones in Saprock Aquifers in Tectono-Thermal Environments. Water 2023, 15, 3946. https://doi.org/10.3390/w15223946
Akpan AE, Ekwok SE, Ben UC, Ebong ED, Thomas JE, Ekanem AM, George NJ, Abdelrahman K, Fnais MS, Eldosouky AM, et al. Direct Detection of Groundwater Accumulation Zones in Saprock Aquifers in Tectono-Thermal Environments. Water. 2023; 15(22):3946. https://doi.org/10.3390/w15223946
Chicago/Turabian StyleAkpan, Anthony E., Stephen E. Ekwok, Ubong C. Ben, Ebong D. Ebong, Jewel E. Thomas, Aniekan M. Ekanem, Nyakno J. George, Kamal Abdelrahman, Mohammed S. Fnais, Ahmed M. Eldosouky, and et al. 2023. "Direct Detection of Groundwater Accumulation Zones in Saprock Aquifers in Tectono-Thermal Environments" Water 15, no. 22: 3946. https://doi.org/10.3390/w15223946
APA StyleAkpan, A. E., Ekwok, S. E., Ben, U. C., Ebong, E. D., Thomas, J. E., Ekanem, A. M., George, N. J., Abdelrahman, K., Fnais, M. S., Eldosouky, A. M., Andráš, P., & Alarifi, S. S. (2023). Direct Detection of Groundwater Accumulation Zones in Saprock Aquifers in Tectono-Thermal Environments. Water, 15(22), 3946. https://doi.org/10.3390/w15223946