Numerical Simulation of Radiatively Driven Convection in a Small Ice-Covered Lake with a Lateral Pressure Gradient
Abstract
:1. Introduction
2. Problem Definition and Computational Aspects
3. Results and Discussion
3.1. Radiatively Driven Convection in the Variant of Zero Lateral Pressure Gradient
3.2. Effect of a Lateral Pressure Gradient
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Farmer, D.M.; Carmack, E. Wind mixing and restratification in a lake near the temperature of maximum density. J. Phys. Oceanogr. 1981, 11, 1516–1533. [Google Scholar] [CrossRef]
- Wüest, A.; Lorke, A. Small-scale hydrodynamics in lakes. Annu. Rev. Fluid Mech. 2003, 35, 373–412. [Google Scholar] [CrossRef]
- Bouffard, D.; Wüest, A. Convection in lakes. Annu. Rev. Fluid Mech. 2019, 51, 189–215. [Google Scholar] [CrossRef]
- Weiss, R.; Carmack, E.; Koropalov, V. Deep-water renewal and biological production in Lake Baikal. Nature 1991, 349, 665–669. [Google Scholar] [CrossRef]
- González-Salgado, D.; Noya, E.G.; Lomba, E. Simulation and theoretical analysis of the origin of the temperature of maximum density of water. Fluid Phase Equilibria 2022, 560, 113515. [Google Scholar] [CrossRef]
- Jonas, T.; Stips, A.; Eugster, W.; Wüest, A. Observations of a quasi shear-free lacustrine convective boundary layer: Stratification and its implications on turbulence. J. Geophys. Res. 2003, 108, 3328. [Google Scholar] [CrossRef]
- Ghane, A.; Boegman, L. Turnover in a small Canadian shield lake. Limnol. Oceanogr. 2021, 66, 3356–3373. [Google Scholar] [CrossRef]
- Farmer, D.M. Penetrative convection in the absence of mean shear. Q. J. R. Meteorol. Soc. 1975, 101, 869–891. [Google Scholar] [CrossRef]
- Jonas, T.; Terzhevik, A.Y.; Mironov, D.V.; Wüest, A. Radiatively driven convection in an ice-covered lake investigated by using temperature microstructure technique. J. Geophys. Res. 2003, 108, 3183. [Google Scholar] [CrossRef]
- Austin, J.A. Observations of radiatively driven convection in a deep lake. Limnol. Oceanogr. 2019, 64, 2152–2160. [Google Scholar] [CrossRef]
- Cannon, D.J.; Troy, C.D.; Liao, Q.; Bootsma, H.A. Ice-Free Radiative Convection Drives Spring Mixing in a Large Lake. GRL 2019, 46, 6811–6820. [Google Scholar] [CrossRef]
- Carmack, E.C.; Weiss, R.F. Convection in Lake Baikal: An Example of Thermobaric Instability; Chu, P.C., Gascard, J.C., Eds.; Elsevier Oceanography Series; Elsevier: Amsterdam, The Netherlands, 1991; Volume 57, pp. 215–228. [Google Scholar] [CrossRef]
- Boehrer, B.; Golmen, L.; Løvik, J.E.; Rahn, K.; Klaveness, D. Thermobaric stratification in very deep Norwegian freshwater lakes. J. Great Lakes Res. 2013, 39, 690–695. [Google Scholar] [CrossRef]
- Carmack, E.; Vagle, S. Thermobaric processes both drive and constrain seasonal ventilation in deep Great Slave Lake, Canada. J. Geophys. Res. Earth Surf. 2021, 126, e2021JF006288. [Google Scholar] [CrossRef]
- Austin, J.; Hill, C.; Fredrickson, J.; Weber, G.; Weiss, K. Characterizing temporal and spatial scales of radiatively driven convection in a deep, ice-free lake. Limnol. Oceanogr. 2022, 67, 2296–2308. [Google Scholar] [CrossRef]
- Kelley, D. Convection in ice-covered lakes: Effects on algal suspension. J. Plankton Res. 1997, 19, 1859–1880. [Google Scholar] [CrossRef]
- Pernica, P.; North, R.L.; Baulch, H.M. In the cold light of day: The potential importance of under-ice convective mixed layers to primary producers. Inland Waters 2017, 7, 138–150. [Google Scholar] [CrossRef]
- Huang, W.; Zhang, Z.; Li, Z.; Lepparanta, M.; Arvola, L.; Song, S.; Huotari, J.; Lin, Z. Under-ice dissolved oxygen and metabolism dynamics in a shallow lake: The critical role of ice and snow. Water Resour. Res. 2021, 57, e2020WR027990. [Google Scholar] [CrossRef]
- Bouffard, D.; Zdorovennova, G.; Bogdanov, S.; Efremova, T.; Lavanchy, S.; Palshin, N.; Terzhevik, A.; Vinnå, L.R.; Volkov, S.; Wüest, A.; et al. Under-ice convection dynamics in a boreal lake. Inland Waters 2019, 9, 142–161. [Google Scholar] [CrossRef]
- Suarez, E.L.; Tiffay, M.-C.; Kalinkina, N.; Tchekryzheva, T.; Sharov, A.; Tekanova, E.; Syarki, M.; Zdorovennov, R.E.; Makarova, E.; Mantzouki, E.; et al. Diurnal variation in the convection-driven vertical distribution of phytoplankton under ice and after ice-off in large Lake Onego (Russia). Inland Waters 2019, 9, 193–204. [Google Scholar] [CrossRef]
- Yang, B.; Wells, M.G.; Li, J.; Young, J. Mixing, stratification, and plankton under lake-ice during winter in a large lake: Implications for spring dissolved oxygen levels. Limnol. Oceanogr. 2020, 65, 2713–2729. [Google Scholar] [CrossRef]
- Mironov, D.; Terzhevik, A.; Kirillin, G.; Jonas, T.; Malm, J.; Farmer, D. Radiatively driven convection in ice-covered lakes: Observations, scaling, and a mixed layer model. J. Geophys. Res. 2002, 107, 1–16. [Google Scholar] [CrossRef]
- Kirillin, G.; Terzhevik, A. Thermal instability in freshwater lakes under ice: Effect of salt gradients or solar radiation? Cold Reg. Sci. Tech. 2011, 65, 184–190. [Google Scholar] [CrossRef]
- Mironov, D.V.; Terzhevik, A.Y. Spring Convection in Ice-Covered Freshwater Lakes. Izv. Atmos. Ocean. Phys. 2000, 36, 627–634. [Google Scholar]
- Mironov, D.V.; Danilov, S.D.; Olbers, D.J. Large-eddy simulation of radiatively-driven convection in ice covered lakes. In Proceedings of the Sixth Workshop on Physical Processes in Natural Waters, Girona, Spain, 27–29 June 2001; Casamitjana, X., Ed.; University of Girona: Girona, Spain, 2001; pp. 71–75. [Google Scholar]
- Ulloa, H.N.; Winters, K.B.; Wüest, A.; Bouffard, D. Differential heating drives downslope flows that accelerate mixed-layer warming in ice-covered waters. Geophys. Res. Lett. 2019, 46, 13872–13882. [Google Scholar] [CrossRef]
- Ramón, C.L.; Ulloa, H.N.; Doda, T.; Winters, K.B.; Bouffard, D. Bathymetry and latitude modify lake warming under ice. Hydrol. Earth Syst. Sci. 2021, 25, 1813–1825. [Google Scholar] [CrossRef]
- Kirillin, G.; Aslamov, I.; Leppäranta, M.; Lindgren, E. Turbulent mixing and heat fluxes under lake ice: The role of seiche oscillations. Hydrol. Earth Syst. Sci. 2018, 22, 6493–6504. [Google Scholar] [CrossRef]
- Kiili, M.; Pulkkanen, M.; Salonen, K. Distribution and development of under-ice phytoplankton in 90-m deep water column of Lake Päijänne (Finland) during spring convection. Aquat. Ecol. 2009, 43, 707–713. [Google Scholar] [CrossRef]
- Vehmaa, A.; Salonen, K. Development of phytoplankton in Lake Pääjärvi (Finland) during under-ice convective mixing period. Aquat. Ecol. 2009, 43, 693–705. [Google Scholar] [CrossRef]
- Jansen, J.; MacIntyre, S.; Barrett, D.C.; Chin, Y.-P.; Cortés, A.; Forrest, A.L.; Hrycik, A.R.; Martin, R.; McMeans, B.C.; Rautio, M.; et al. Winter limnology: How do hydrodynamics and biogeochemistry shape ecosystems under ice? J. Geophys. Res. Biogeosci. 2021, 126, e2020JG006237. [Google Scholar] [CrossRef]
- Wüest, A.; Pasche, N.; Ibelings, B.; Sharma, S.; Filatov, N. Life under ice in Lake Onego (Russia)—An interdisciplinary winter limnology study. Inland Waters 2019, 9, 125–129. [Google Scholar] [CrossRef]
- Bogdanov, S.; Zdorovennova, G.; Volkov, S.; Zdorovennov, R.; Palshin, N.; Efremova, T.; Terzhevik, A.; Bouffard, D. Structure and dynamics of convective mixing in Lake Onego under ice-covered conditions. Inland Waters 2019, 9, 177–192. [Google Scholar] [CrossRef]
- Bogdanov, S.; Maksimov, I.; Zdorovennov, R.; Palshin, N.; Zdorovennova, G.; Smirnovsky, A.; Smirnov, S.; Efremova, T.; Terzhevik, A. Anisotropic Turbulence in the Radiatively Driven Convective Layer in a Small Shallow Ice-Covered Lake: An Observational Study. Bound.-Layer Meteorol. 2023, 187, 295–310. [Google Scholar] [CrossRef]
- Martinat, G.; Xu, Y.; Grosch, C.E.; Tejada-Martínez, A.E. LES of turbulent surface shear stress and pressure-gradient-driven flow on shallow continental shelves. Ocean Dyn. 2011, 61, 1369–1390. [Google Scholar] [CrossRef]
- Crosman, E.T.; Horel, J.D. Idealized Large-Eddy Simulations of Sea and Lake Breezes: Sensitivity to Lake Diameter, Heat Flux and Stability. Bound.-Lay. Meteorol. 2012, 144, 309–328. [Google Scholar] [CrossRef]
- Santo, M.A.; Toffolon, M.; Zanier, G.; Giovannini, L.; Armenio, V. Large eddy simulation (LES) of wind-driven circulation in a peri-alpine lake: Detection of turbulent structures and implications of a complex surrounding orography. J. Geophys. Res. Oceans 2017, 122, 4704–4722. [Google Scholar] [CrossRef]
- Zhang, Y.; Huang, Q.; Ma, Y.; Luo, J.; Wang, C.; Li, Z.; Chou, Y. Large eddy simulation of boundary-layer turbulence over the heterogeneous surface in the source region of the Yellow River. Atmos. Chem. Phys. 2021, 21, 15949–15968. [Google Scholar] [CrossRef]
- Grace, A.P.; Stastna, M.; Lamb, K.G.; Scott, K.A. Numerical simulations of the three-dimensionalization of a shear flow in radiatively forced cold water below the density maximum. Phys. Rev. Fluids 2022, 7, 023501. [Google Scholar] [CrossRef]
- Smirnov, S.; Smirnovsky, A.; Zdorovennova, G.; Zdorovennov, R.; Palshin, N.; Novikova, I.; Terzhevik, A.; Bogdanov, S. Water Temperature Evolution Driven by Solar Radiation in an Ice-Covered Lake: A Numerical Study and Observational Data. Water 2022, 14, 4078. [Google Scholar] [CrossRef]
- Smirnovsky, A.A.; Smirnov, S.I.; Bogdanov, S.R.; Palshin, N.I.; Zdorovennov, R.E.; Zdorovennova, G.E. Numerical Simulation of Turbulent Mixing in a Shallow Lake for Periods of Under-Ice Convection. Water Resour. 2023, 50, 622–632. [Google Scholar] [CrossRef]
- Chang, Y.; Scotti, A. Characteristic scales during the onset of radiatively driven convection: Linear analysis and simulations. J. Fluid Mech. 2023, 973, A14. [Google Scholar] [CrossRef]
- Noto, D.; Ulloa, H.; Yanagisawa, T.; Tasaka, Y. Stratified horizontal convection. J. Fluid Mech. 2023, 970, A21. [Google Scholar] [CrossRef]
- Smirnov, S.; Smirnovsky, A.; Bogdanov, S. The Emergence and Identification of Large-Scale Coherent Structures in Free Convective Flows of the Rayleigh-Bénard Type. Fluids 2021, 6, 431. [Google Scholar] [CrossRef]
- Lumley, J.L. Computational modeling of turbulent flows. Adv. Appl. Mech. 1978, 18, 123–176. [Google Scholar] [CrossRef]
- Choi, K.-S.; Lumley, J.L. The return to isotropy of homogeneous turbulence. J. Fluid Mech. 2001, 436, 59–84. [Google Scholar] [CrossRef]
- Penna, N.; Coscarella, F.; D’Ippolito, A.; Gaudio, R. Anisotropy in the Free Stream Region of Turbulent Flows through Emergent Rigid Vegetation on Rough Beds. Water 2020, 12, 2464. [Google Scholar] [CrossRef]
- Simonsen, A.J.; Krogstad, P.-A. Turbulent stress invariant analysis: Clarification of existing terminology. Phys. Fluids 2005, 17, 088103. [Google Scholar] [CrossRef]
- Cortés, A.; MacIntyre, S. Mixing processes in small arctic lakes during spring. Limnol. Oceanogr. 2020, 65, 260–288. [Google Scholar] [CrossRef]
- Salonen, K.; Pulkkanen, M.; Salmi, P.; Griffiths, R.W. Interannual variability of circulation under spring ice in a boreal lake. Limnol. Oceanogr. 2014, 56, 2121–2132. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Smirnov, S.; Smirnovsky, A.; Zdorovennova, G.; Zdorovennov, R.; Efremova, T.; Palshin, N.; Bogdanov, S. Numerical Simulation of Radiatively Driven Convection in a Small Ice-Covered Lake with a Lateral Pressure Gradient. Water 2023, 15, 3953. https://doi.org/10.3390/w15223953
Smirnov S, Smirnovsky A, Zdorovennova G, Zdorovennov R, Efremova T, Palshin N, Bogdanov S. Numerical Simulation of Radiatively Driven Convection in a Small Ice-Covered Lake with a Lateral Pressure Gradient. Water. 2023; 15(22):3953. https://doi.org/10.3390/w15223953
Chicago/Turabian StyleSmirnov, Sergei, Alexander Smirnovsky, Galina Zdorovennova, Roman Zdorovennov, Tatiana Efremova, Nikolay Palshin, and Sergey Bogdanov. 2023. "Numerical Simulation of Radiatively Driven Convection in a Small Ice-Covered Lake with a Lateral Pressure Gradient" Water 15, no. 22: 3953. https://doi.org/10.3390/w15223953
APA StyleSmirnov, S., Smirnovsky, A., Zdorovennova, G., Zdorovennov, R., Efremova, T., Palshin, N., & Bogdanov, S. (2023). Numerical Simulation of Radiatively Driven Convection in a Small Ice-Covered Lake with a Lateral Pressure Gradient. Water, 15(22), 3953. https://doi.org/10.3390/w15223953