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Abstract: Our study focuses on the dynamic transient analysis of arched beam bridges over rivers,
which face unique geohazards and challenges, including vibrations and dynamic loads that can
affect structural integrity. The finite element software ANSYS v. 19.3 was employed to assess accel-
eration time histories at various bridge positions. Using MATLAB, we conducted wavelet packet
decomposition to extract insights from the data, specifically isolating river-induced influences. In
this article, the introduction of the wavelet packet rate index (WPERI) is presented as a novel metric
for the detection of cracks in the curved bridge segments over rivers. The WPERI proves reliable
in accounting for the river environment’s impact on structural integrity. Our findings highlight the
sensitivity and precision of the WPERI in accurately detecting cracks and vulnerabilities in these
riverine bridges. By combining WPT, finite element analysis, and signal decomposition, our research
offers insights into tailored crack detection methods for riverine bridges. This study underscores
the potential of WPT as a tool for identifying and characterizing cracks in curved bridge elements
over rivers. The innovative WPERI provides a holistic approach to addressing structural issues,
thus enhancing bridge durability amid changing environmental conditions. It contributes signifi-
cantly to structural engineering and paves the way for the further exploration of river-specific crack
detection techniques.

Keywords: wavelet transform; wavelet packet transform; crack identification; signal analysis; finite
element analysis; river-based bridges

1. Introduction

During the operational lives of structural elements such as beam-type constructions,
expansive bridges, and skyscrapers, the gradual accumulation of localized damage poses
a risk of progressive failure. To address this issue, a four-tiered classification system for
damage identification has been developed. The system involves (i) detecting the presence
of damage, (ii) pinpointing its location, (iii) quantifying the severity of damage, and
(iv) forecasting the remaining structural serviceability [1]. Structural damage often results
in alterations toa structure’s dynamic behavior, which are prominently reflected in changes
in natural frequencies and mode shapes. These variations can be valuable for identifying
damage. Various methods exist for assessing and tracking these changes, each with its
own strengths and weaknesses. Additionally, the application of Fourier transformation
allows the conversion of signals between the time and frequency domains. In summary, as
structures like bridges and skyscrapers age, the gradual accumulation of damage can lead
to progressive failure. A classification system has been developed to systematically identify
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and assess this damage, primarily through changes in a structure’s dynamic behavior,
which can be measured using techniques like Fourier transformation [2,3].

To address this issue, the short-time Fourier transform (STFT) was introduced. STFT
divides a signal into smaller, equallysized segments and creates a two-dimensional repre-
sentation of time and frequency. However, STFT has limitations when it comes to providing
precise information about both time and frequency due to the fixed window size, making it
challenging to balance time and frequency resolution [4]. In contrast, the wavelet transform
(WT) offers a fresh approach to signal analysis, overcoming the constraints of traditional
signal processing methods. Wavelets have the unique ability to conduct localized analyses
of a signal, allowing a focused examination of specific time or space intervals. This charac-
teristic significantly enhances the precision in terms of identifying structural irregularities
within complex domains [5,6]. The use of wavelet analysis introduces a more nuanced
dimension into structural health assessment, providing a powerful tool for detecting and
understanding evolving conditions within intricate structures. In essence, wavelet anal-
ysis overcomes the trade-off between temporal and spectral precision, enabling a more
refined understanding of structural dynamics and the manifestation of damage. The WT
is a potent mathematical tool used for analyzing signals or data simultaneously in the
time and frequency domains. It excels when dealing with signals containing transient
or localized features. Unlike the STFT, which only provides frequency information, the
wavelet transform captures both temporal and frequency details. The key concept involved
in the wavelet transform is breaking down a signal into a set of wavelet functions, or
wavelets, known for their compact and localized waveform nature. These wavelets are
derived from a foundational mother wavelet function through dilation and translation
operations. Dilation controls the wavelet’s scale or frequency, while translation determines
its temporal position [7]. In practice, the wavelet transform divides the original signal into
various scales or resolutions, each representing a distinct spectrum of frequencies. Within
each scale, it calculates a set of wavelet coefficients that reveal how the wavelets contribute
to the signal in that particular scale. These coefficients provide insights into the signal’s
temporal localization and frequency components [8,9].

Wavelet transform (WT) and wavelet packet transform (WPT) are valuable signal
processing techniques with applications in various fields. WT allows signal decomposition
into different scales, offering both high- and low-frequency component analysis using
wavelets. These localized, short-duration waveforms provide a time–frequency trade-off,
enabling the capture of transient features in signals. The continuous wavelet transform
(CWT) operates on a continuous range of scales, while the discrete wavelet transform
(DWT) simplifies the process with discrete scales and translations, commonly used in
tasks like data compression and denoising. On the other hand, WPT extends the DWT
by allowing both high- and low-frequency components to be further subdivided into sub-
bands, resulting in a more detailed signal decomposition. This flexibility and adaptability
make WPT a powerful tool for applications requiring a comprehensive analysis of signal
frequency content, such as speech recognition, image processing, and biomedical signal
analysis. By offering enhanced decomposition and the option to choose specific wavelet
bases for each sub-band, WPT provides a richer representation of signals, particularly
useful for feature extraction tasks. In the realm of the WPT, the process initiates with the
division of the signal into sub-bands, achieved via a dedicated wavelet filter. However,
the WPT diverges from its predecessor, the wavelet transform, by granting the liberty for
multiple sub-bands to coexist at each tier of decomposition. This enrichment results in a
deeper and more intricate decomposition, amplifying the WPT’s capacity to encapsulate
nuanced intricacies and variations within the signal [10,11]. Distinct filters are employed
to split the signal into its various sub-bands, culminating in a tree-like representation
where each node corresponds to a particular sub-band. This branching tree structure,
akin to a network of signal components, providesa comprehensive means of dissecting
and interpreting the signal’s attributes. This recursive process of decomposition can be
pursued until the desired level of signal intricacy is achieved. The merit of the WPT is
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firmly grounded in its ability to present a holistic and in-depth portrayal of a signal. By
accommodating varied scales and frequencies, the WPT meticulously captures multifaceted
information, thereby enriching the signal representation [12].

The WT delivers a multiresolution analysis, presenting acapacity to identify cracks
across various scales or resolutions. Within the context of arched beams, the introduction
of cracks can introduce high-frequency elements into the signal. Here, the WT thrives
by adeptly capturing these high-frequency features, thereby establishing its efficacy in
the detection and localization of cracks [13,14]. Its intrinsic time–frequency localization
properties serve as a pivotal asset in singling out transient or localized crack attributes,
a crucial step in distinguishing them from other signal constituents. Moreover, the WT’s
unique ability to segment the signal into both approximation and detail coefficients facili-
tates the extraction of crack-related insights from the signal [15,16]. On the other hand, the
WPT extends its advantage by offering more detailed signal decomposition compared to
the WT. Armed with multiple sub-bands at each level, the WPT possesses the prowess to
capture intricate nuances and fluctuations within the signal [17]. This attribute becomes
especially beneficial in the realm of crack identification for arched beams, where the nature
of cracks might exhibit multifaceted patterns and variations. The WPT’s configuration,
resembling a tree-like structure, introduces flexibility into the analysis—each sub-band can
be independently examined [18]. This inherent flexibility gains significance in the realm
of arched beams, where cracks might manifest distinct characteristics and arise at diverse
locations. The meticulous decomposition offered by the WPT facilitates a comprehensive
grasp of the intricacies inherent to crack features, culminating in the precise identification
and assessment of crack severity [19,20]. Table 1 provides a summary of the advantages
and limitations of the WT and WPT methods compared to traditional methods (e.g., classic
analytic method, numerical modeling, etc.).

Table 1. A comparison between the advantages and limitations of this study using traditional methods.

Aspect WT, WPT, WPERI Traditional Methods

Sensitivity to Cracks
WT and WPT exhibit high sensitivity to
subtle cracks and damage thanks to their
ability to capture high-frequency details.

Traditional methods may not detect minor
cracks or early-stage damage as effectively.

Multi-Resolution Analysis
WT and WPT provide a multi-resolution
analysis, allowing both global and localized
assessment of the structural condition.

Traditional methods may offer a limited view
of the structure’s response, lacking detail in
damage localization.

Noise Tolerance
WT and WPT can filter out noise and
highlight relevant signal components,
enhancing the accuracy of damage detection.

Traditional methods may be more susceptible
to the influence of noise in measurements.

Data Interpretability

The wavelet-based methods offer an intuitive
representation of structural responses in the
time–frequency domain, aiding the
interpretation of damage features.

Traditional methods often involve complex
data interpretation.

Computational Efficiency
WT and WPT are computationally efficient,
allowing real-time or near-real-time
damage assessment.

Traditional methods may require extensive
computation and analysis time.

Adaptability

WPT, in particular, offers the flexibility to
adapt to complex structural geometries and
diverse crack patterns, making it suitable for
arched beams.

Traditional methods may struggle to adapt to
unique structural configurations.

Dependence on Data Quality
The effectiveness of WT and WPT can be
influenced by the quality and quantity of
sensor data.

Traditional methods may rely on fewer data
points but be less sensitive to subtle damage.

Calibration and Training
WT and WPT may require calibration and
training using baseline data to effectively
establish damage indicators.

Traditional methods may not need extensive
calibration but lack sensitivity.
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WT and WPT find valuable applications in the analysis of structural elements like
beam-type constructions, particularly in the domains of structural health monitoring,
damage detection, and vibration analysis. When dealing with beam-type structures, such as
those commonly found in construction, these techniques play pivotal roles in understanding
their behavior and integrity. WT, for instance, proves its worth by offering insights into
the dynamic characteristics of beams. It is instrumental in vibration analysis, allowing
the assessment of natural frequencies and mode shapes. Through dynamic loading or
monitoring responses to external forces, WT helps to identify alterations in the vibration
patterns, which can serve as early indicators of structural issues. Furthermore, it excels
in detecting damage, as structural changes often lead to shifts in the dynamic behavior of
beams. By analyzing changes in the frequency response, WT can effectively pinpoint cracks,
deformations, or other structural anomalies. In contrast, WPT, as an extension of WT, takes
structural analysis a step further. Its ability to perform a granular multi-resolution analysis
is particularly beneficial for complex structural systems. WPT meticulously breaks down
the structural response into numerous sub-bands, enabling a more detailed examination of
structural behavior. It excels at localized damage detection, offering pinpoint accuracy in
terms of identifying the specific locations of structural issues. Moreover, WPT’s adaptability
allows the selection of specific wavelet bases for each sub-band, enhancing its accuracy in
damage detection and localization tasks. In summary, WT and WPT are indispensable tools
for evaluating the dynamic characteristics and structural health of beam-type constructions,
offering both general and detailed insights into their behavior and integrity, with WPT
being particularly valuable for complex structural systems and precise damage detection.
The WPT is an advanced mathematical technique that extends the capabilities of the wavelet
transform. It facilitates a detailed, step-by-step decomposition of a signal, allowing in-
depth analysis. One application of WPT is the estimation of the WPERI, which serves as an
indicator of structural damage in simple structures subjected to well-defined input loads.

However, real-world scenarios often pose challenges, particularly in the case of large
structures, where it is not feasible to introduce a known excitation. In such practical situa-
tions, effective damage detection methods should be able to identify structural issues based
on ambient excitation, providing a more robust approach to structural health monitoring.
An innovative dimension can be introduced to the WPERI by crafting a methodology that
transcends the conventional reliance on known input loads for gauging structural damage.
This novel approach revolves around tapping into ambient data to appraise structural
well-being in real-world contexts, particularly in scenarios featuring intricate or large-scale
structures. The crux of this innovation encompasses the following concepts:

Highlighting Ambient Excitation: elevating WPERI to adeptly identify structural
damage under the influence of ambient vibrations and forces, thus eliminating the need for
predetermined excitation sources.

Data-Driven Strategies: Making use of data-driven methodologies such as machine
learning and artificial intelligence to decipher insights from strategically placed sensors.
These techniques adapt to the distinct characteristics of the structure and discern patterns
linked to damage.

Multi-Sensor Integration: Employing a network of sensors strategically placed to
capture diverse ambient data, including accelerations, strains, and temperature fluctuations.
Integrating data from diverse sensors ensures a comprehensive understanding of the
structure’s condition.

Real-Time Surveillance: Forging a real-time monitoring system that continuously
processes sensor data, dynamically updating the WPERI or a similar metric. This enables
swift detection and response to structural alterations or damage.

Anomaly Detection: Implementing methods for anomaly detection that swiftly identify
deviations from the anticipated structural behavior, thereby acting as early warning signals
for further investigation.
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Versatile Applicability: Ensuring that this innovative approach is adaptable for a broad
spectrum of structures, from rudimentary to complex, making it a versatile asset for myriad
engineering and infrastructure undertakings.

This pioneering perspective on WPERI endows structural health monitoring sys-
tems with the capability to thrive in practical scenarios where controlled excitation might
not be viable. It establishes a powerful tool for the early identification of structural is-
sues, significantly contributing to the security and long-term endurance of a wide array
of structures.

The research at hand capitalizes on the advantageous aspects of both the WPT and
the WT, presenting an insightful approach to crack identification within arched beams.
The inherent strengths of these techniques lie in their ability to encapsulate the distinctive
attributes and features intrinsic to cracks within this specific structural configuration. Con-
currently, the WT’s multifaceted approach of multiresolution analysis and time–frequency
localization introduces a distinct avenue for singling out crack-associated high-frequency
elements and transient attributes. By harnessing the innovative capacities of both the
WPT and WT, the accuracy and effectiveness of crack identification within arched beams
experience a substantial elevation. This synergistic amalgamation of techniques not only
furthers our understanding of crack-related phenomena within the intricate framework of
arched beams but also augments our ability to identify, assess, and ultimately address these
structural anomalies. The primary objective of this study is to explore the application of WT
and WPT as powerful tools for dynamic transient analysis in the context of arched beam
bridges located over rivers. This study aims to leverage these methodologies to detect and
characterize structural damage, particularly cracks, unique to riverine environments. The
central focus is on enhancing the precision and sensitivity of structural health assessment by
introducing the innovative WPERI. On the other hand, the motivation for this paper arises
from the growing need to develop more effective and refined techniques for assessing
the structural integrity of arched beam bridges in river settings. These structures face
distinctive geohazards, such as vibrations and dynamic loads, which demand specialized
analysis methods. The motivation also stems from the potential to make a significant con-
tribution to the field of structural engineering by introducing a novel approach, the WPERI,
which promises enhanced accuracy in terms of detecting and mitigating structural issues.
Furthermore, this study’s motivation lies in addressing the practical challenges associated
with the conventional limitations of methodologies like STFT in terms of identifying struc-
tural vulnerabilities in riverine environments. By synergizing WPT, finite element analysis,
and signal decomposition, this study seeks to establish a foundation for the development
of more robust and tailored crack detection techniques that can ultimately reinforce the
durability of riverine bridges under varying environmental conditions.

2. River-Spanning Bridges

River-spanning bridges are vital components of infrastructure, facilitating efficient
transportation and fostering economic growth [21]. These complex engineering marvels
demand careful design to ensure not only safety and structural integrity but also opera-
tional efficiency. Diverse bridge designs, including arches, suspensions, cable-stays, and
beam/girders, are tailored to the unique demands of each river crossing [22,23]. River
dynamics introduce intricate challenges into the design equation, as factors like weather
conditions and seasonal variations can cause fluctuating water levels and flow rates [24].
The creation of bridges resilient enough to withstand the forces of fast-moving water, po-
tential debris, and even ice during colder months is imperative. Moreover, the ever-present
threat of floods mandates the engineering of flood-resistant structures capable of enduring
hydraulic forces and preventing scour erosion [25,26].

Arched beam bridges that elegantly stretch over rivers epitomize the fusion of engi-
neering prowess with architectural elegance (see Figure 1). This distinctive bridge construc-
tion style seamlessly amalgamates the stability inherent to arches with the load-bearing
proficiency of beams, giving rise to bridges that not only traverse water bodies but also
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stand as enduring symbols of structural efficiency and aesthetic grace [27,28]. The arched
component of these bridges, characterized by its gracefully curved form, assumes a pivotal
role in the distribution of loads [29]. By transforming vertical forces into lateral ones that
are absorbed by abutments or supports at the bridge’s ends, arches ensure unwavering
stability while simultaneously facilitating uninterrupted water flow [30]. Overarching the
arches, beams provide further reinforcement, deftly shouldering the weight of the bridge
deck and distributing it uniformly throughout the entire structure [31,32].
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Arched beam bridges, sometimes simply referred to as arch bridges, are a fascinating
and enduring type of bridge design characterized by their gracefully curved arches. These
arches are the fundamental structural elements that span the distance the bridge needs
to cover. What makes arch bridges remarkable is their natural ability to distribute loads
efficiently. When weight, such as that of vehicles or pedestrians, is applied to the bridge,
the arch shape redirects the forces downward and outward along the curve. This design
feature allows the bridge to efficiently transfer the load to its supports, typically abutments
or piers, resulting in exceptional stability. As a result, arch bridges are often preferred for
spanning rivers, valleys, and gorges, where a long, unobstructed span is essential. These
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bridges can be constructed using a variety of materials, from traditional stone and brick
masonry in historic bridges to modern choices like reinforced concrete or steel. What
sets arch bridges apart is not only their structural prowess but also their aesthetic appeal.
They have a timeless and elegant appearance that has been appreciated for centuries. This
combination of strength and beauty has made arch bridges iconic architectural structures
that often become landmarks. Some of the most famous examples include the Pont du
Gard in France and the Ponte Vecchio in Italy, each of which has its own unique historical
and architectural significance. Building arch bridges, both in the past and the present,
involves tackling engineering challenges related to designing the arch’s curvature and
calculating load-bearing capacities, making them a testament to human ingenuity and
architectural achievement. Arched beam bridges extending over rivers are susceptible
to an array of geohazards, i.e., natural geological processes that carry the potential to
compromise their integrity and safety. Among these, the looming risk of riverbank erosion
emerges as a critical concern, gradually undermining the foundations on which these
bridges stand [33,34].

With regard to Figures 1 and 2, it can be stated that the riverside bridges hold sig-
nificant importance due to their multifaceted roles in society. They primarily serve as
vital transportation links, connecting communities and enabling the efficient movement
of people, goods, and services across rivers. This enhanced connectivity not only reduces
travel times but also fosters economic growth, trade, and cultural integration. Additionally,
riverside bridges play critical roles in emergency response, environmental preservation,
and urban development, contributing to the overall well-being and resilience of the regions
that they serve. Their strategic planning, construction, and maintenance are fundamental to
realizing these wide-ranging benefits. Controlling cracks in riverside arched beam bridges
is imperative for both structural stability and safety. Firstly, cracks can compromise the
load-bearing capacity of the arches and other bridge components, potentially leading to
structural failure. Ensuring the structural integrity of these bridges is paramount to avoid
accidents, injuries, and fatalities. Moreover, addressing cracks at an early stage through
preventive measures, such as sealing or repairing cracks, can significantly extend the
bridge’s lifespan and reduce the overall maintenance cost. Additionally, controlling cracks
is environmentally beneficial, as it minimizes the risk of pollution from bridge materials
and ensures the continuity of transportation and trade over these essential river crossings.
Ultimately, effective crack control measures are critical for preserving the safety, durability,
and functionality of riverside arched beam bridges.

Leveraging the WT and WPT in the analysis of arched beam bridges offers a host of
distinctive advantages. Both transforms serve as conduits for multi-resolution analysis,
greatly facilitating the identification and understanding of various structural behaviors and
stress distributions. A particular forte lies in their adeptness at event localization, rendering
them invaluable tools for pinpointing critical instances within the dynamics of a bridge.
Furthermore, these transforms play pivotal roles in noise reduction, thereby elevating the
precision of data interpretation. By extracting key features such as natural frequencies and
stress concentrations, a holistic comprehension of the bridge’s overall condition can be
facilitated. However, it is essential to note that the application of WT and WPT also has
limitations. The intricate nature of the transformed outcomes could pose challenges for
those unversed in the intricacies of signal processing.

Accurate analysis hinges on the quality of sensor data, underscoring the criticality
of meticulous data acquisition. Prudent scale selection becomes paramount, as ill-suited
choices may lead to incomplete analyses. Additionally, the computational demands associ-
ated with these techniques can be substantial, potentially influencing real-time monitoring
capabilities. Lastly, the underlying assumptions of linearity and stationarity might not
align seamlessly with the dynamic behaviors exhibited by arched beam bridges. When
addressing the analysis of cracks within arched beam bridges, the application of WT
and WPT is indispensable due to the nuanced intricacies of bridge structures and the
utmost necessity for accurate crack assessment. These transforms, with their multi-scale



Water 2023, 15, 3977 8 of 23

approaches, empower the identification of cracks at varying depths and extents within the
bridge components. Their adaptability to the dynamic behaviors characteristic of arched
beam bridges enables the capture of temporal changes, facilitating early detection and the
implementation of timely preventive measures. In essence, the amalgamation of WT and
WPT introduces an expansive and sophisticated toolkit for the analysis of cracks. This
amalgamation substantially augments the accuracy of assessments, playing a pivotal role
in enhancing the overall safety and durability of arched beam bridges.
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3. Materials and Methods
3.1. Wavelet Packet Energy Rate Index

Wavelet packets encompass an ensemble of customary wavelet functions that are
linearly amalgamated. Inherent in wavelet packets are attributes like orthonormality and
time–frequency localization, which are passed down from their corresponding wavelet
functions. A wavelet packet ψi

j,k(t) is represented by a function with three distinct indices,
namely i, j, and k, and these integers symbolize the modulation, scale, and translation
parameters, respectively [35].

ψi
j,k = 2j/2·ψj(2jt− k), i = 1, 2, 3, . . . (1)
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The wavelet functions ψi can be obtained from the following recursive relationships:

ψ2j =
√

2
∞

∑
k=−∞

h(k)ψi(2t− k) (2)

ψ2j+1(t) =
√

2
∞

∑
k=−∞

g(k)·ψi(2t− k) (3)

The first wavelet is a so-called mother wavelet function and defined as follows:

ψ1 = ψ(t) (4)

The discrete filters h(k) and g(k) encompass the quadrature mirror filters that stand
in conjunction with the scaling function and the foundational wavelet function. An array
of mother wavelets has been documented in the literature, with many being tailored to
meet crucial properties such as invertibility and orthogonality. Throughout research, these
wavelets have been a focal point of discussion, with the Db5 function often emerging as a
recommended choice for the mother wavelet function due to its favorable characteristics
when juxtaposed with other options [35]. In the WT, each level contributes one high-
frequency term and one low-frequency residual from the ultimate level of decomposition.
In contrast, the WPT takes a different approach, achieving a comprehensive decomposition
at every level, consequently allowing enhanced resolution within the high-frequency
spectrum. The inter-relationship between the components of the jth and (j + 1)th levels
adheres to recursive relationships as follows [36]:

f i
j (t) = f 2i−1

j+1 (t) + f 2i
j+1(t) (5)

f 2i−1
j+1 (t) = H f i

j (t) (6)

f 2i
j+1 = G f i

j (t) (7)

where H and G are the filtering–decimation operators related to the discrete filters h(k) and
g(k) in a wayakin that discussed in [35]:

H{0} =
∞

∑
k=−∞

h(k− 2t) (8)

G{0} =
∞

∑
k=−∞

g(k− 2t) (9)

after j level of decomposition, the original signal f (t) can be expressed as described in [36]:

f (t) =
2j

∑
i=1

f i
j (t) (10)

The wavelet packet component signal f i
j (t) can be represented by a linear combination

of wavelet packet functions ψi
j,k(t) as follows [36]:

f i
j (t) =

∞

∑
k=−∞

ci
j,k(t)ψ

i
j,k(t) (11)
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where the wavelet packet coefficients ci
j,k(t) can be obtained from Equation (12). Also,

Equation (13) ensures that the wavelet packet functions are orthogonal.

ci
j,k(t) =

∞∫
−∞

f (t)ψi
j,k(t)·dt (12)

ψm
j,k(t)·ψ

n
j,k(t) = 0 if m 6= n (13)

In this study, the wavelet packet energy index is proposed to identify the locations
and severity of damage. To take that step, the signal energy Ef at j level is first defined as
described in [37]:

E f j
=

∞∫
−∞

f 2(t)dt =
2j

∑
m=1

2j

∑
n=1

∞∫
−∞

f m
j (t) f n

j (t)·dt (14)

substituting Equation (11) into Equation (14) and using the orthogonal condition Equation (13)
yields the method used in [37]:

E f j
=

2j

∑
i=1

E f i
j

(15)

where the wavelet packet component energy E f i
j

can be the energy stored in the

component signal f i
j (t), which is presented as described in [37]:

E f j
=

∞∫
−∞

f i
j (t)

2dt (16)

The component signal f i
j (t) is a superposition of wavelet functions ψi

j,k(t) of the
same scale as j but translated into the time domain (−∞ < k < ∞). This means that the
component energy E f i

j
is the energy stored in a frequency band determined via the wavelet

functions ψi
j,k(t). Equation (15) illustrates that the total signal energy can be decomposed

into a summation of wavelet packet component energies that correspond to different
frequency bands. So, the wavelet packet energy rate index (WPERI) is believed to indicate
the structural damage. The rate of signal wavelet packet energy ∆(E fi

) at j level is defined
as described in [37]:

∆(E f j
) =

2j

∑
i=1

∣∣∣∣(E f i
j
)

b
− (E f i

j
)

a

∣∣∣∣
(E f i

j
)

a

(17)

where (E f i
j
)

a
is the component signal energy E f j

i level without damage, and (E f i
j
)

b
is the

component signal energy El’ with some damage. It is postulated that structural damage
would affect the wavelet packet component energies and subsequently alter this dam-
age indicator. It is desirable to select the WPERI that is sensitive to the changes in the
signal characteristics.

3.2. Damage Identification Procedures

Outlined below is a procedure for damage identification hinging on the novel wavelet
packet rate index (WPERI). This methodology operates under two key assumptions:
(1) the availability of dependable structural models for both the undamaged and damaged
configurations, and (2) the application of the same impulse load at a designated location
across both scenarios. Initial stages involve the processing of vibration signals collected
from sensors (the sensors represent the primary recording instruments strategically placed
within the arch beams to assess deformations in the bridge structure), a process that involves
the utilization of the wavelet packet transform (WPT). To ascertain the most suitable level
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of wavelet packet decomposition, a trial-and-error sensitivity analysis was undertaken that
utilized both the intact and compromised structural models. Subsequently, the calculation
of wavelet packet energy rates was conducted upon the signals [35,38]. If n stands for the
total number of all sensors distributed in the structure, a total of n-WPERIs can be obtained
after performing the wavelet packet decomposition. As the mean values and the standard
deviations of the WPERIs are expressed as µWPERI and σWPERI , the one-side (1−α) upper
confidence limit for the WPERI can be governed via the equation used in [39–42]:

ULα
WPERI = µWPERI + Zα(

δWPERI√
n

) (18)

In this context, Zα represents the value within the standard normal distribution charac-
terized by a mean of zero and a variance of one, such that its cumulative probability equals
100(1−α). This establishment serves as a critical benchmark, akin to a threshold, to gauge
potential anomalies in the wavelet packet rate index (WPERI), signifying a prospective
damage indicator [43]. A notable advantage of this damage identification approach lies
in its foundation upon the statistical attributes of the damage indicator observed through
sensors [44,45]. Any indicator that surpasses this predefined threshold triggers a damage
alarm, effectively creating a resilient mechanism even when multiple instances of damage
are in play [46]. Remarkably, the proposed method remains effective regardless of the pres-
ence of numerous damages. The locations of sensors showcasing WPERI values surpassing
the threshold provide crucial insights into the precise areas where potential damage may
have occurred [47].

The identification procedure for evaluating crack behavior in the curved segments of
arched beam bridges over river spans is a comprehensive process. It commences with the
collection of pertinent data, which can stem from a variety of sources, including structural
measurements, sensor data, or results obtained via finite element analysis (FEA) simula-
tions in ANSYS. Ensuring the integrity of the data is crucial, and, therefore, preprocessing
becomes the next critical step. During this phase, the collected data undergo rigorous
cleaning and conditioning to eliminate any noise, outliers, or undesired artifacts. This data
preparation stage is essential to ensure that the subsequent analysis is based on reliable
and accurate information. To delve deeper into the structural behavior and assess the
presence of cracks, an excitation signal is defined. This signal serves as a representative
input to simulate various dynamic loading or environmental conditions that impact the
bridge’s response. It could mimic traffic loads, wind forces, or seismic events, depending
on the specific analysis objectives. The MATLAB environment is employed for the WT
analysis, a technique that decomposes the preprocessed data into different scales and
time–frequency components. This decomposition provides valuable insights into how the
bridge’s response evolves over time. Selecting an appropriate wavelet basis and the scale pa-
rameters tailored to the unique characteristics of the bridge’s response is vital for obtaining
meaningful results.

For a more detailed assessment, the WPT, an extension of WT, was employed. WPT
further decomposes the data into sub-bands and nodes, offering enhanced time–frequency
resolution. This higher granularity is particularly advantageous when scrutinizing complex
structural behaviors like crack propagation. Following the WT or WPT analysis, the
identified features or patterns were examined to pinpoint indicators of crack behavior.
These indicators included shifts in frequency, variations in signal amplitude, or changes
in the signal’s time–frequency distribution. Detecting these patterns aided us in locating
and evaluating the presence and severity of cracks within the bridge’s curved segments.
For a comprehensive understanding of the structural implications of identified cracks,
the findings were integrated back into ANSYS if FEA simulations were utilized. This
integration enabled the evaluation of how the identified cracks impact structural elements
such as stress concentrations or alterations in vibration characteristics. The results were
rigorously validated by comparing them to known crack locations or benchmark data.
The interpretation of these findings was crucial to assess the significance of the identified
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crack behavior in the context of the bridge’s safety and structural integrity. Ultimately, the
entire assessment procedure, including methodologies, parameters, and results, were
meticulously documented. Recommendations for necessary repairs, maintenance, or
further investigations based on the crack behavior assessment were provided, aiding
us in undertaking informed decision-making regarding the safety and upkeep of arched
beam bridges spanning rivers.

3.3. Modeling of the Arced Beam

In this study, an arced beam configuration measuring 8 m in length and 5 m in
height, supported with a simple support mechanism, was meticulously modeled. The rep-
resentation of this setup is shown in Figure 3. The material properties encompassed
a mass density of 7850 kg/m3 and a modulus of elasticity of 2.11 × 1011 Pa. Addi-
tionally, the beam’s cross-sectional area and moment of inertia were set at 0.05 m2 and
1.66 × 10−4 m4, respectively. For the application of an impulse load, exemplified by a
triangular load, a force-time history was introduced to the beam at distances of 2, 3, 5,
and 6 m from the left support. Employing transient dynamic analysis in ANSYS, accelera-
tion and displacement time histories were computed. Subsequently, the acquired signals
from each loading sequence underwent distinct wavelet packet decomposition, followed
by cumulative integration of the outcomes. To gauge the efficacy of the proposed crack
identification approach, an intact model was established alongside six damaged models,
encompassing varying crack locations and magnitudes. The intensity of each crack was
quantified by reducing the stiffness of the corresponding element, as detailed in Table 2.
This comprehensive assessment served as a robust testbed for evaluating the capacity of
the proposed method across different damage scenarios.
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Table 2. Characteristics of local and intensity cracks in all simulated specimens.

Specimen Location of Cracks Number of Elements Intensity of Cracks

1 Safe - -

2 C (20, 21) 10%

3 C (20, 21) 50%

4 A, C (9, 10)–(20, 21) 50%–25%

5 A, B, C (9, 10)–(16, 17)–(20, 21) 10%–50%–25%

4. Results

The main principle of this study is based on that introduced by Han et al. [48]. The
model was used to simulate a crack behavior (with consideration of the reduction in
the stiffness of the components) in curved segments of arched beam bridges spanning
rivers using optimized wavelet and wavelet packet transform techniques. In this regard,
the dynamic loading was assessed based on the river flow’s impact on structure and
modeled using ANSYS finite element software. Also, for WPERI simulation, the MATLAB
programming language was utilized. In Figure 4, the acceleration of the time history data
offers a comprehensive view of how the models respond over time. The focus is particularly
directed towards a specific point located 3.5 m away from the left support, where the load
was initially applied 2 m from the same support. This choice of observation point allows a
detailed analysis of the dynamic behavior of the models, specifically in relation to potential
cracks. Interestingly, when comparing the acceleration time histories across the different
models, noticeable disparities become apparent. These differences in acceleration patterns
serve as indicators of the structural changes introduced by cracks. It should be noted that
in the numerical model, damage is simulated through a process that involves reducing the
stiffness of the various components within the structure. This means that the simulated
damage is not explicitly modeled as cracks using ANSYS or any other specialized crack
modeling technique. Instead of creating crack-like features in the model, the approach
taken here involves diminishing the structural stiffness of the components to mimic the
effects of damage. This can be a practical way to assess how the structure responds
to changes in stiffness, which may result from damage, without explicitly simulating
the presence of cracks via finite element analysis software like ANSYS. It is a valuable
approach for understanding how structural behavior is affected by reduced stiffness, which
can be a precursor to more extensive damage in other scenarios. Moving forward, after
processing the signals and decomposing them into wavelet packet components, the WPERI
is calculated using Equation (17). The process involves analyzing the energy distribution
across different scales and locations within the signal. This index encapsulates valuable
information about the presence and intensity of cracks. Its values are plotted in Figures 5–7.
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Table 3 provides the estimated energy component regarding Efj shift in the frequency
of the harmonic function using the WT, WPT, and WPERI models. In an ideal scenario,
these highly responsive component energies present themselves as promising candidates
for unveiling signal characteristics. Hence, the introduction of the WPERI is suggested as a
means to signify structural damage. Examining these figures, a distinct pattern emerges.
The highest values of the WPERI are observed at the exact locations where the cracks are
simulated. This alignment between high index values and crack locations underscores
the methodology’s ability to accurately identify and pinpoint cracks within the struc-
ture. Meanwhile, in regions without cracks, the index values remain considerably lower.
Furthermore, the methodology’s sensitivity to crack intensity becomes evident. As the
intensity of the simulated crack increases, there is a non-linear rise in the corresponding
WPERI values. This demonstrates that the methodology can not only detect the presence
of cracks but also gauge their severity. Utilizing Equation (18) with a chosen confidence
level (α = 0.02) results in values that help to establish a threshold for crack identification.
These values are illustrated in Figures 8–13, indicating the point at which the index value
crosses the threshold and signifies the presence of a crack. This threshold provides a
reliable criterion for declaring the presence of structural damage. Collectively, the visual
representations in Figures 8–13 illustrate the methodology’s robustness in terms of crack
identification. The index values remain consistently at zero for undamaged regions, ensur-
ing a clear differentiation between the healthy and damaged portions of the structure. In
Figure 9, for instance, the distinct emergence of the wavelet packet rate index between nodes
20 and 21 (corresponding to element C in model 3) reinforces the methodology’s precision
in localizing cracks. In conclusion, this comprehensive methodology combines wavelet
analysis, energy distribution, and statistical thresholds to effectively detect and locate
cracks in the structural system. Its ability to discern subtle changes in behavior due to
cracks, sensitivity to crack intensity, and robustness in terms of differentiating between
healthy and damaged regions make it a powerful tool for assessing the structural integrity
and health of arched beam bridges.
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Table 3. The energy of components at the third level where WT, WPT, and WPERI undergo assessment
to determine a shift (Efj) in the frequency of the harmonic function.

Model Function Efj (5–10 s) Change (%)

WT

f(t) 10.00 0.18

f1
3(t) 6.329 0.16

f2
3(t) 5.294 0.16

f3
3(t) 3.078 0.15

f4
3(t) 0.009 0.00

WPT

f(t) 10.00 0.18

f1
3(t) 5.903 0.16

f2
3(t) 4.214 0.15

f3
3(t) 1.176 0.04

f4
3(t) 0.018 0.00

f5
3(t) 0.008 0.00

f6
3(t) 0.004 0.00

WPERI

f(t) 10.00 0.18

f1
3(t) 3.627 0.16

f2
3(t) 1.082 0.04

f3
3(t) 0.014 0.00

f4
3(t) 0.006 0.00

f5
3(t) 0.001 0.00

f6
3(t) 0.0003 0.00
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The utilization of the WPERI serves as a vital and sophisticated approach in the field of
structural health assessment, particularly for detecting and characterizing potential cracks
within complex systems like arched beam bridges. The WPERI holds significant advantages
related to its ability to capture intricate changes in signal behavior, allowing for the precise
identification of damage locations and intensities. Unlike traditional methods that solely
rely on individual signal parameters or statistical thresholds, the WPERI integrates wavelet
analysis and energy distribution across multiple scales and locations within a signal. This
holistic approach provides a comprehensive perspective on the dynamic response of the
structure, enabling the detection of subtle variations induced by cracks. The WPERI effec-
tively translates these nuanced changes into a quantifiable index, facilitating an objective
evaluation of structural health.

By employing a threshold derived from statistical properties, the methodology estab-
lishes a clear demarcation between normal and abnormal conditions, making it a robust
tool for early crack detection and accurate assessment. Ultimately, the implementation of
WPERI enhances the reliability of structural health monitoring, offering a proactive strategy
for maintaining the integrity and safety of arched beam bridges and other intricate systems.
Table 4 provides first two natural frequencies (Hz) for different damage scenarios. These
scenarios are identified in Figure 3.

Table 4. The initial pair of resonance frequencies (in Hertz) across various damage situations.

Scenarios A B C D1 D7

First mode 32.052 31.405 32.094 31.880 31.654

Second mode 153.58 153.33 153.14 153.45 153.09

Regarding model verification, the applied WT and WPT were verified using the results
of the experimental study presented by Abu-Hamdeh et al. [49]. A minimal crack location
was identified by analyzing the mode shapes affected by the crack, and [49] treated the
uncracked beams as an experimental task. Aluminum specimens were prepared, and
their material properties were characterized as follows: the modulus of elasticity (E) was
measured as 70 GPa, and the mass density (ρ) was determined to be 2700 kg/m3.Various
crack positions and sizes were investigated using wire-cut machining. An assembled fixture,
which included a substantial base plate for securing the specimen, was employed. The
overall experimental arrangement is depicted in Figure 4. A result of the model verification
is illustrated in Table 5. Also, Figures 5–13 provide information regarding modeling with
WT, WPT, and WPERI.
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Table 5. The verification model calculated for the different depths and positions of a 16mm crack.

Position (mm) Depth (mm) Amplitude (mm)
Verification Frequency (Hz)

Abu-Hamdeh et al. [49] This Model

100

1.6 39.217 14.78 14.78
3.2 39.265 14.77 14.77
4.8 39.344 14.76 14.76
11.2 40.071 14.64 14.75
12.8 40.278 14.61 14.60
14.6 40.351 14.60 14.60
16.0 41.529 14.41 14.40

120

1.6 39.214 14.78 14.78
3.2 39.253 14.78 14.78
4.8 39.315 14.77 14.77
11.2 39.903 14.68 14.70
12.8 40.065 14.66 14.65
14.6 40.126 14.65 14.65
16.0 41.075 14.52 14.50

160

1.6 39.207 14.78 14.78
3.2 39.230 14.78 14.78
4.8 39.266 14.78 14.78
11.2 39.605 14.74 14.74
12.8 39.697 14.73 14.74
14.6 39.735 14.73 14.73
16.0 40.281 14.67 14.70

200

1.6 39.204 14.78 14.78
3.2 39.213 14.78 14.78
4.8 39.230 14.78 14.78
11.2 39.382 14.77 14.77
12.8 39.423 14.77 14.77
14.6 39.439 14.77 14.77
16.0 39.684 14.75 14.77

5. Discussion

The task of identifying cracks within arced beams presents a formidable challenge,
demanding adept modeling techniques. Within this comprehensive discourse, the manifold
advantages and considerations inherent in employing the wavelet packet transform (WPT)
and the wavelet transform (WT) for the intricate endeavor of crack identification within
arched beams are explored. Initially, the WPT stands out for its intricate modeling capacity,
offering a superior approach to crack identification when compared to the WT. Through
the intricate process of decomposing the signal into multiple sub-bands at each hierarchical
level, the WPT unfolds a panoramic canvas for the analysis of crack-induced characteristics.
In this realm, the WPT’s prowess comes to the fore, deftly unmasking intricate intricacies
and variations that simpler models may inadvertently overlook. This granular dissection
bestowed by the WPT resonates as a powerful instrument for capturing even the most
intricate crack features, culminating in an accurate portrayal of both the pattern and severity
of cracks. A boon for modeling arced beams, this heightened capability proves particularly
instrumental where cracks manifest as complex and irregular patterns.

Contrastingly, the WT offers a streamlined modeling avenue that remains steadfast
in providing valuable insights into the realm of crack identification within arced beams.
Rooted in the concept of multiresolution analysis, the WT excels in promptly uncovering
high-frequency constituents tied to cracks. Such prowess takes center stage in the context
of arced beams, where the presence of cracks frequently injects high-frequency elements
into the signal. Fueled by its time–frequency localization attributes, the WT empowers the
discernment of transient or localized features attributed to cracks, thereby facilitating their
differentiation from other signal elements. The WT’s hallmark simplicity and efficiency
render it an astute selection for crack identification modeling, especially when confronted
with constraints such as computational resources or temporal limitations. However, em-
ploying WPT and WT for crack identification modeling within arced beams necessitates
thoughtful consideration of the trade-offs. While the WPT’s detailed decomposition aug-
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ments modeling finesse, it simultaneously ushers in computational intricacies, potentially
demanding more substantial computational resources and elongating modeling duration.
This consideration holds significance in scenarios where the optimization of computational
efficiency is imperative. In essence, the choice between WPT and WT for crack identifica-
tion modeling in arced beams entails a nuanced evaluation of intricacies, resources, and
temporal demands to ascertain the most fitting approach for the specific modeling context.

In light of these results, the choice between WPT and WT for crack identification
modeling becomes a matter of context and priorities. The detailed modeling prowess of the
WPT becomes a clear advantage when precision in the detection of intricate crack features
is crucial. This is particularly relevant when dealing with arced beams, where cracks can
adopt complex patterns that demand meticulous analysis. Conversely, the WT’s efficiency
and ability to promptly identify high-frequency components make it a pragmatic choice
when timely assessments are necessary. The trade-off lies in computational demands; while
the WPT’s thorough decomposition requires more resources, the WT’s simpler approach
could be more suited to situations where resource optimization is key. Ultimately, these
results underscore the versatility of the WPT and WT as tools for crack identification
within arced beams. The ability to tailor the modeling approach based on the specific
characteristics of the structure, available resources, and the urgency of the assessment offers
a strategic advantage. By judiciously leveraging the strengths of both methods, engineers
and researchers can make informed decisions that strike a balance between precision and
efficiency, thereby enhancing the accuracy and effectiveness of crack identification strategies
in arced beam structures.

As depicted in Figures 6–13, multiple positions were identified for the investigation of
crack history and WPERI values within the structural body, as illustrated in Figure 3. These
histograms serve to enhance our understanding of the behavior of cracks in the curved
segments of arched beam bridges spanning rivers.

On the other hand, it is worth noting that the wavelet transform (WT) offers a more
straightforward approach to crack identification, albeit potentially at the cost of captur-
ing the nuanced intricacies and variations that the wavelet packet transform (WPT) can
reveal. Deciding on the most suitable modeling technique requires careful consideration
of specific application requirements, available computational resources, and the desired
level of detail in crack detection. When implementing these models within MATLAB, the
process involves a series of crucial steps to prepare the signal obtained from the arched
beam. The initial phase focuses on enhancing the signal quality by eliminating noise
and artifacts. In this regard, MATLAB offers a comprehensive suite of signal processing
functions, including filtering, noise removal, and data normalization, all of which prove
to be invaluable. Following the preprocessing stage, the wavelet analysis techniques are
applied. For WT implementation, MATLAB’s Wavelet Toolbox provides functions like
‘cwt’ for continuous wavelet transform or ‘wavedec’ for discrete wavelet decomposition.
These functions meticulously break down the signal into different scales or levels, resulting
in approximation and detail coefficients that encapsulate distinct frequency components.
Conversely, when applying the WPT, the ‘wptree’ function constructs a wavelet packet tree.
This process results ina more granular decomposition into numerous sub-bands at each
level, providing an even more detailed and localized view of the signal’s characteristics.
Therefore, the choice between WT and WPT is contingent upon the specific needs of the
analysis, where WT may be favored for a more straightforward overview, and WPT can be
advantageous when fine-grained detail is required.

It should be noted that both the T and WPT are versatile signal processing techniques
that are inherently 1D in nature. They are primarily designed for analyzing and decompos-
ing one-dimensional signals, such as time series data, audio signals, or 1D images. These
transforms provide a powerful tool for understanding the time–frequency characteristics
of such signals. However, in practical applications, it is not uncommon to extend these
techniques to two-dimensional signals, such as images. This is achieved by applying the 1D
WT or WPT independently to the rows and columns of the 2D data. This process is known
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as the separable 2D wavelet transform. The extension to 2D allows the analysis of spatial
frequency content in images, which is valuable in image processing, compression, and
feature extraction. By applying the 1D wavelet transforms in both dimensions, it is possible
to capture both horizontal and vertical variations in the data. This approach can reveal
details in images, detect edges, and provide a multi-resolution representation that is useful
in various computer vision tasks. In summary, while WT and WPT are inherently 1D, they
can be extended to effectively analyze 2D data by separately applying the 1D transform to
the rows and columns. This extension is valuable for image analysis and processing.

6. Conclusions

In conclusion, the wavelet transform (WT) has proven itself as an invaluable tool in
the field of crack identification, adeptly capturing subtle structural changes arising from
damage. Its proficiency in crack detection and localization has solidified its reputation
as a dependable metric for assessing localized deterioration in structures. The newly
introduced WT-based energy rate index, developed through a streamlined three-step
computational process, presents a promising solution for such assessments. Looking ahead,
the potential applications of this conclusion are vast. The proposed damage identification
procedure stands out for its user-friendly implementation and time-efficient characteristics,
making it particularly suitable for real-time use when reference data arereadily available.
Furthermore, the wavelet packet energy rate index (WPERI) exhibits a non-linear response
that correlates with increasing crack severity, indicating its sensitivity to variations in
damage intensity. It is worth noting, however, that careful selection of the scale and
decomposition level remains crucial in wavelet packet analysis to maintain optimal crack
identification effectiveness, especially when operating below a scale of four. Of particular
interest is the WPERI’s ability to detect an increased number of cracks, showcasing its
effectiveness in scenarios involving multiple instances of damage. These collective findings
underscore the pivotal role of the WT and the innovative WPERI index in advancing
crack identification methodologies, providing a practical and reliable means of assessing
structural health, particularly in the context of arced beams. Looking forward, the combined
potential of WT and WPERI holds great promise in terms of enhancing our understanding
of structural integrity and promoting effective damage management practices in complex
configurations. Future research may explore the integration of machine learning algorithms
to further refine and automate the crack identification process, ultimately contributing to
safer and more resilient structural designs and maintenance procedures.
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