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Abstract: Climate change and urbanization have increased the frequency of floods worldwide,
resulting in substantial casualties and property loss. Accurate flood forecasting can offer governments
early warnings about impending flood disasters, giving them a chance to evacuate and save lives.
Deep learning is used in flood forecasting to improve the timeliness and accuracy of flood water level
predictions. While various deep learning models similar to Long Short-Term Memory (LSTM) have
achieved notable results, they have complex structures with low computational efficiency, and often
lack generalizability and stability. This study applies a spatiotemporal Attention Gated Recurrent
Unit (STA-GRU) model for flood prediction to increase the models’ computing efficiency. Another
salient feature of our methodology is the incorporation of lag time during data preprocessing before
the training of the model. Notably, for 12-h forecasting, the STA-GRU model’s R-squared (R2) value
increased from 0.8125 to 0.9215. Concurrently, the model manifested reduced root mean squared error
(RMSE) and mean absolute error (MAE) metrics. For a more extended 24-h forecasting, the R2 value
of the STA-GRU model improved from 0.6181 to 0.7283, accompanied by diminishing RMSE and
MAE values. Seven typical deep learning models—the LSTM, the Convolutional Neural Networks
LSTM (CNNLSTM), the Convolutional LSTM (ConvLSTM), the spatiotemporal Attention Long Short-
Term Memory (STA-LSTM), the GRU, the Convolutional Neural Networks GRU (CNNGRU), and
the STA-GRU—are compared for water level prediction. Comparative analysis delineated that the
use of the STA-GRU model and the application of the lag time pre-processing method significantly
improved the reliability and accuracy of flood forecasting.

Keywords: flood forecasting; water level prediction; STA-LSTM; STA-GRU

1. Introduction

As urbanization and climate change intersect, the flood risks escalate [1–7]. One
primary reason is the swifter water runoff from surfaces that are impervious to water
absorption [8]. This phenomenon is closely tied to land-use patterns, which play a pivotal
role in flood predictions. The surge in urbanization contributes to the proliferation of these
impervious surfaces, amplifying rainwater runoff. In tandem, factors like the dwindling of
vegetation and forests, shifts in agricultural land management, and modifications to rivers
and wetlands all influence the volume and velocity of water flow. Given these interdepen-
dencies, rendering accurate flood predictions mandates an integrative approach, taking
into account these land-use dynamics alongside other pertinent data [9–11]. These flooding
events are more than mere natural phenomena; they pose grave threats to human safety
and have the potential to cause significant economic damages, especially in regions more
susceptible to inundation [12–14]. Recognizing the gravity of these threats, governments
have heavily invested in early flood warning and forecasting systems [15]. These systems
do more than just signal potential dangers; they are critical assets in both safeguarding
lives and substantially reducing property damage by facilitating the timely implementation
of preventive protection measures such as sandbags [16,17].
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Traditional methods of assessing flood risks, while foundational, are no longer ade-
quate on their own. The paradigm has shifted towards predictive models that can proac-
tively alert communities about impending flood threats [18,19]. An essential feature of these
systems is the provision of varying lead times, which are invaluable for both managing
and preemptively addressing the risks associated with imminent flood events and other
related disasters [20,21].

But how do these systems work, and what makes them so effective? They are metic-
ulously designed to provide insights into the expected scale, onset, locale, and potential
repercussions of a flood event [22–24]. These predictions are not based on guesswork;
they are underpinned by data diligently collected throughout the year from strategically
placed sensors in water basins, inclusive of lakes and rivers, as well as from flood deterrent
structures like dams, dikes, and embankments. Moreover, purpose-built infrastructures for
flood prediction and monitoring play a pivotal role in data collection, emphasizing that the
quality of the dataset is directly proportional to the forecasting model’s efficacy [25,26].

In the realm of flood prediction, three variables stand out in their significance: precipi-
tation, river flow and water levels. The data on rainfall offer insights into its intensity and
duration, which in turn affects the volume of water flowing into the river system [27–29].
Concurrently, the river’s current water level acts as a barometer for its capacity to ac-
commodate incoming water surges. An accurate flood prediction hinges on a nuanced
understanding of the dynamics between these two factors. As soon as the soil’s moisture
levels or the river’s capacity reach critical thresholds, flood risks amplify [30–33]. Through
continuous monitoring and data analysis of both precipitation and river water levels, these
sophisticated forecasting models can identify and highlight patterns indicative of potential
flood events.

1.1. The Flood Prediction Models and Lag Time Preprocessing

Long Short-Term Memory (LSTM) is a form of Recurrent Neural Network (RNN) in-
tended to address the long-term dependency issue encountered by RNNs when processing
extensive sequence data [34,35]. In recent years, LSTM has achieved considerable success
across multiple domains, including natural language processing, speech recognition, and
time series prediction [36].

LSTM exhibits significant potential in flood forecasting, a prototypical time series
prediction problem [37–39]. This process requires the handling and understanding of con-
tinuous meteorological and hydrological data (such as precipitation, river water levels, soil
moisture, etc.), forming the basis for future flood prediction. The unique internal structure
of LSTM, capable of processing and memorizing long-term sequential dependencies, makes
it an ideal candidate for solving such problems [40–44].

The application of the LSTM model in flood prediction continues to evolve. Initial
research primarily focused on employing LSTM to model and predict rainfall and river
water levels at individual sites [45]. As deep learning technology advanced, researchers
began exploring more complex models, such as integrating Convolutional Neural Net-
works (CNN) with LSTM, to handle meteorological and hydrological data across multiple
geographical locations, thereby further enhancing the accuracy and timeliness of flood
predictions [46–48].

It is crucial to note that flood prediction is not only a data-driven problem, but also
requires understanding and consideration of various complex influencing factors such
as geography, climate, and human activities (ref. [49]). Currently, hybrid models are
receiving significant attention because they enhance the generalizability, and stability
of single models. Although LSTM, the Convolutional Neural Networks LSTM (CNNL-
STM), the Convolutional LSTM (ConvLSTM) and other deep learning models have shown
tremendous potential in flood prediction, ongoing optimization and improvements of
these models are needed in practice to better address the various challenges inherent in
flood prediction [47,50–53]. Moreover, since the flooding prediction dataset contains not
only time series but also spatial series, with a large amount of data over a long span of
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time, the attention mechanism can assist the model to deal with long-term dependencies
more effectively. The attention mechanism can help the model extract useful information
from the input data more efficiently, thereby improving the accuracy of prediction. The
spatiotemporal Attention LSTM (STA-LSTM) model has been used in flood forecasting and
has achieved good results, as demonstrated in Table 1 [46,49,54].

Table 1. The performance of flood prediction models.

Reference Model Name
Applicable to

Spatiotemporal
Data

Maximum
Prediction
Duration

Model Performance

Liu et al. (2023) [55] RNN No 12 h MSE = 0.936, RMSE = 0.124
Dehghani et al. (2023) [53] CNN Yes 6 h NSE = 0.68∼0.74

Liu et al. (2023) [55] LSTM No 12 h MSE = 0.942, RMSE = 0.109
Dehghani et al. (2023) [53] ConvLSTM Yes 6 h NSE = 0.965∼0.986

Zhang et al. (2022) [46] CNNLSTM Yes 24 h MAE = 3.52, MSE = 85.43
Zhang et al. (2022) [46],
Ding et al. (2020) [49] STA-LSTM Yes 24 h MAE = 2.88, MSE = 63.92, R2 = 0.78∼0.96

Prediction models should not only ensure accuracy but also strive for the highest
possible computational efficiency. Developed in 2014, the Gated Recurrent Unit (GRU) is a
prediction model founded on similar principles as the LSTM model [56]. While GRU and
LSTM research findings share similarities, key distinctions exist between the two models.
GRU, for example, boasts a superior numeration ability, signifying its capacity to effectively
capture and retain essential information over longer sequences [57,58]. This ability is vital
for tasks involving long-term dependencies, where the model must take into account past
information to make precise predictions.

The GRU model incorporates a gating mechanism that enables the model to selectively
update its hidden state based on the input data [59]. In particular, GRU employs an update
gate, combining the roles of LSTM forget and input gates. This combination simplifies the
architecture, and reduces the number of parameters, leading to computational efficiency
and quicker training times. Furthermore, GRU’s streamlined design, merging the cell state
and hidden state, fosters efficient information flow within the model. This architecture
empowers the GRU to capture relevant information and discard unnecessary details,
rendering it particularly suitable for tasks involving sequential data analysis. In the last
two years, both the GRU and the Convolutional Neural Networks GRU (CNNGRU) models
have been explored for their utility in flood prediction. The GRU model has proven to
be more effective for short-term flood forecasts compared to LSTM [57]. While the CNN-
GRU model has shown promise in flood prediction, enhancements in its performance for
long-term forecasting are still necessary [60,61].

In hydrology, the lag time is the catchment response time between the rainfall and
the runoff response [62]. With the increase in urban land taking over the previously rural
land, infiltration rates can decrease and have adverse effects on flood risk for people living
in the vicinity of a flood zone. Accurate modeling of flood events contribute to improved
watershed management and mitigation of potential flood hazards [63,64].

The lag time is defined as the delay between the time a rainfall event over a watershed
begins until runoff reaches its maximum peak [65,66]. The lag time of a catchment indicates
the speed at which the river will react to increased precipitation and can be influenced by
several parameters. These are slope, length and roughness of flow path, size of the basin,
soil type and land use [67]. The estimation of lag time can be determined both empirically
using formulas and by use of hydrological data [68]. This method utilizes data from an
upstream precipitation station and a downstream flow monitoring site. The lag time of the
stream is ascertained from the time difference between the peak precipitation and the peak
runoff. Various studies have proposed the use of both hydrological data and empirical
equations and have achieved success [69].

Furthermore, in the field of flood forecasting, the integration of spatiotemporal data
is commonly adopted to enhance prediction accuracy. Within this context, the temporal
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delay between upstream and downstream hydrological stations emerges as a critical factor.
This delay is attributed to a combination of factors, including the river’s natural flow rate,
channel morphology and length, topographic gradients, and human interventions [70,71].
In the preprocessing of spatiotemporal data, we can determine the specific delay between
the upstream and downstream by examining historical data, focusing on the time differ-
ence between peak values observed at each upstream station and the target downstream
station [66,72,73]. The lag time of a catchment plays a significant role in stream flow model
performance. With the addition of lag time to the stream flow-driven applications, the
accuracy of the models’ travel time accuracy will improve significantly [67].

1.2. Contribution

When employing deep learning methods, gradient vanishing is a common issue,
which can be even worse when dealing with long sequence data. It leads to minute weight
updates, thus causing the network to learn very slowly, or even fail to learn. LSTM and
GRU models may serve as a good choice to attenuate such an issue. While the STA-
LSTM model has been successfully employed in flood forecasting and yielded satisfactory
results, such a model demands large computational efforts to perform the training and is
often time-consuming.

Based on the above observation, our research augmented time series prediction with
spatial information to improve forecasting capabilities. To overcome challenges in handling
spatiotemporal datasets, the data are preprocessed before training, in which stage the
lag time between rainfall volumes and the target station is determined, and the lag time
between each hydrological station and the target station is determined. To better extract the
features of data that contain both temporal and spatial information, the attention mecha-
nism is used to deal with long-term dependencies effectively. Then based on the STA-LSTM
model, the spatiotemporal Attention GRU (STA-GRU) model is constructed to reduce the
model complexity and improve the computational efficiency. Flood forecasting models
with high computational efficiency are capable of providing more timely warnings, thereby
facilitating the faster implementation of emergency measures and mitigating the impact
of disasters. Compared with the STA-LSTM, STA-GRU has similar mechanisms in data
processing but a much simpler model architecture, and therefore comparable performance
can be achieved while less computational effort is needed. Finally, the performance of seven
models is compared, that is, Convolutional Neural Networks LSTM (CNN-LSTM), Convo-
lutional LSTM (Conv-LSTM), spatiotemporal Attention LSTM (STA-LSTM), Convolutional
Neural Networks GRU (CNN-GRU), and spatiotemporal Attention GRU (STA-GRU). These
hybrid models synergize the unique strengths of their individual components, aiming to
intricately capture the spatiotemporal dynamics inherent in flood prediction.

2. Materials and Methods

Originating from Orangeville, the Credit River winds its way through the landscapes of
southern Ontario, Canada, meandering through towns such as Brampton, before gracefully
merging with Lake Ontario in Mississauga. Complementing the river’s natural allure,
the surrounding areas boast multi-functional parks and verdant open spaces, inviting
enthusiasts for activities ranging from fishing and hiking to immersive wildlife observation.
However, with all its serene beauty, the Credit River is not without its perils. In times of
torrential rain or during the spring melt, its tranquil waters can surge, posing flood threats.
As a cautionary note, those residing or venturing near its banks are advised to be vigilant,
heeding local weather updates and flood advisories.

Located in Mississauga, Credit River’s station 02HB029 plays a pivotal role in flood
forecasting for this bustling metropolitan area. Given that the Credit River courses directly
through the heart of downtown Mississauga, accurately predicting the discharge in the
southern part of the river is vital for safeguarding both lives and property. Although
the real-time rainfall monitoring network in the Credit River watershed is limited, one
precipitation monitor is situated near station 02HB025. With an aim to strike a balance
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between simplicity and precision in the flood forecasting system, we have incorporated the
data from this precipitation monitor into the purview of our manuscript. Ideally, a flawless
early flood forecasting system would harmonize the objectives of governmental bodies,
affected residents, and the insurance sector, facilitating a shared understanding of flood
loss implications. Considering the escalating trend of insured catastrophic losses annually,
it is imperative that a highly accurate early flood forecasting system is available.

Figure 1 shows that stations 02HB025, 02HB018, 02HB001, 02HB013, and 02HB031 are
strategically located in the headwaters of the Credit River Watershed. These are positioned
upstream of the vital station 02HB029, which is nestled in the flood-sensitive regions of
downtown Mississauga, close to the basin of the Credit River watershed. Rainfall station
25 is located near station 02HB025, while rainfall station 18 is situated close to water station
02HB018. Both of them are upstream of the vital station 02HB029.

Figure 1. The network of real-time hydrometric monitoring stations in the Credit River Water.

Our hydrological prediction models have exhibited exceptional performance on spa-
tiotemporal data, prompting our endeavor to further enhance their capabilities. Recogniz-
ing the notable success of the STA-LSTM in flood prediction using this type of data, the
research attempted to further bolster the model’s generalization capability and computa-
tional speed. To gain a comprehensive understanding, we have embarked on a comparison
of STA-LSTM performance against other models, namely LSTM, CNN-LSTM, ConvL-
STM, GRU, CNNGRU, and STA-GRU, specifically in the realm of flood forecasting with
spatiotemporal data. The rationale behind spatially coupling LSTM and GRU-based mod-
els lies in their superior proficiency in handling spatiotemporal series data sequences,
particularly when contrasted with their traditional counterparts.
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Taking into account the urbanization levels and the expanse of the Credit River
watershed, the catchment’s response time generally oscillates between three and eight
hours. This variance is contingent upon the nature and duration of the rainfall event,
ranging from abrupt yet intense summer thunderstorms to more prolonged rainfalls paired
with snowmelt during spring. Flood warnings for the Credit River watershed cater to
diverse users and objectives. Among these are the mobilization of operational teams and
emergency responders, alerting the public about the specifics of the impending event,
and, in severe instances, initiating evacuation and emergency protocols. In light of these
requirements, our models were trained and tested for both 12-h and 24-h forecast scenarios,
with subsequent evaluations of their accuracy.

2.1. The Correlation of Water Level, Discharge and Precipitation

The variables under consideration present a distinct positive correlation, as illustrated
in Figure 2. The correlation coefficients, ranging from 0 to 1, further underline this observa-
tion. Such a trend indicates a deep-seated interconnectedness and mutual influence among
the watershed stations, suggesting that changes or events in one station might resonate
in others. This interrelation is not merely an interesting observation but holds practical
implications. Precisely due to this pronounced correlation, utilizing these data as test or
benchmark datasets for evaluating model performance gains increased weight. A model
that can accurately predict under such conditions of high interrelatedness is likely to be
robust and reliable.
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Figure 2. Matrix plot of correlation between the precipitation, water level and discharge.

2.2. The Water Level Lag Time between Each Station

The lag time between the upstream rainfall station and the target water station is
ascertained by plotting the lag time graphs for nine different flood events. The average lag
time between the rainfall events and runoff responses is used in this study. Similarly, the
lag time between the upstream water level station and the target water level station is also
determined. Additionally, the distances between the upstream water level station and the
target water level station are measured, as shown in Table 2.
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Table 2. The Lag time between each upstream water station and station 29.

Station No. Average Lag Time (h) Euclidean Distance (km)

02HB025 5 13.9
02HB018 7 27.6
02HB001 8 37.9
02HB031 9 41.9
02HB013 12 44.7

As the Euclidean distance increases, the lag time also tends to increase. Such a data
preprocessing approach aims to ensure optimal correlation between each upstream station
and the target station 02HB029, enhancing the predictive model’s performance.

2.3. Theoretical Background of the Models and Performance Metrics

In deep learning research for flood forecasting, common models like LSTM, GRU,
CNNLSTM, ConvLSTM, and CNNGRU have been widely adopted. These models inte-
grate temporal characteristics with convolutional features to process spatiotemporal data.
LSTM and GRU emphasize capturing long-term sequence patterns, while CNNLSTM and
CNNGRU combine the feature extraction capabilities of convolutional neural networks
with the temporal modeling strengths of recurrent networks. In contrast, the STA-LSTM
and STA-GRU models, which are more intricate in structure and specifically designed to
capture spatiotemporal relationships, have not yet been extensively utilized. To cater to our
spatiotemporal dataset, we have made adaptive modifications to these existing STA-LSTM
and STA-GRU models, enhancing their efficacy in flood prediction.

2.3.1. STA-LSTM Model

The STA-LSTM model is tailored for spatiotemporal analyses. It is adept at processing
datasets that intertwine time and spatial elements. While maintaining the foundational
LSTM elements such as the forget, input, and output gates shown in Figure 3, the STA-
LSTM integrates advanced structures like convolutional layers or attention mechanisms to
discern spatial patterns more effectively as Figure 4.

LSTM Cell

tanh

tanh

Forget state Input state Output state

Figure 3. LSTM cell structure.

LSTM 
Layer

LSTM 
Layer

Main LSTM Network

Spatial Attention Temporal Attention

tanhFC Layer Concatenate

FC Layer

Softmax ReLU

Softmax

leakyReLU

FC Layer

Figure 4. STA-LSTM model structure.
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The main output of the STA-LSTM model is given as

h′t = βt · ht (1)

z =
t

∑
i=1

h′i (2)

y = leakyReLU(Wt · z) (3)

where βt is the result of the temporal attention part, z represents the summation of h1 to ht,
y shows the output of the model, and Wt is the weight. The Leaky ReLU [74] activation
function is used before output.

In the Temporal Attention (TA) part, the equations are provided as follows:

H = concate(h1 . . . ht) (4)

{β1, . . . , βt} = softmax(ReLU(WTA · H)) (5)

where H as the concatenation of hidden states h1 to ht, and WTA is the weight. The softmax
activation function is defined as softmax(x)i =

exi

∑n
j=1 exj and ReLU activation function is

defined as ReLU = max(0, x).
In the Spatial Attention (SA) part, the given equations are

St = tanh(WSA · xt) (6)

αt = softmax(St) (7)

where WSA is the weight, and αt represents the result after applying the softmax operation.
The softmax activation function and tanh activation function are utilized in the result range
of (−1, 1). The resulting St will lie in the range between −1 and 1.

For the LSTM cell, the equations are provided as

x′t = αt � xt (8)

ct = σ[W f · (x′t, ht−1)]� ct−1 + σ[Wi · (x′t, ht−1)]

� tanh[Wg · (x′t, ht−1)] (9)

ht = σ[Wo · (x′t, ht−1)]� tanh(ct) (10)

where xt means input matrix, x′t represents the xt is modulated, �means the Hadamard
product, ct means cell state (long memory), and ht means hidden state (short memory).

2.3.2. STA-GRU Model

The STA-GRU model is meticulously crafted for spatiotemporal data processing too.
Suited for complex datasets with overlapping spatial and temporal attributes. It retains
the fundamental GRU mechanisms, notably the reset and update gates, ensuring effective
sequence dependency tracking. Moreover, to augment its spatial pattern comprehension,
STA-GRU may integrate sophisticated elements like FC layers or attention frameworks,
as shown in Figure 5.

Additionally, methods such as Grid Search and Random Search were employed for the
optimization of the model’s hyperparameters, to further enhance the model’s performance
and reliability. In the STA-GRU model, a GRU cell is used in place of the LSTM cell from
STA-LSTM. The structure of the GRU cell is illustrated below as Figure 6.

The GRU cell is provided as follows:

ut = σ(Wu · [x′t, ht−1]) (11)

rt = σ(Wr · [x′t, ht−1]) (12)

ht = (1− ut)� ht−1 + ut � tanh(W · [x′t, rt � ht−1]) (13)

where the result of the update gate is ut, the result of the reset gate is rt, and Wu, Wr and W
are the weights of the update gate, reset gate and cell state, respectively. Then the input
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data for each GRU cell comprises a 1× 14 vector. This vector comprises water level and
discharge for stations 01, 13, 18, 25, 29, 31 and precipitation at stations 18 and 25 values.

GRU 
Layer

GRU 
Layer

Main GRU Network

Spatial Attention Temporal Attention

tanhFC Layer Concatenate

FC Layer

Softmax ReLU

Softmax

leakyReLU

FC Layer

Figure 5. STA-GRU model structure.

GRU Cell

tanh

1-

Reset gate Update gate

Figure 6. GRU cell structure.

2.4. Performance Metrics

Evaluating the performance of flood prediction models involves a crucial decision in se-
lecting the appropriate metrics. The combination of Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and R-square provides a comprehensive model assessment [75].

1. RMSE emphasizes large errors by squaring the differences, making the model sensitive
to significant deviations in predicting flood quantities, thus ensuring robustness and
accuracy. The formula of RMSE is given as

RMSE =

√
1
n

n

∑
i=1

(Oi − Pi)2 (14)

where Oi is the observation value, Pi is the prediction value, and n is the number of
observations/predictions.

2. MAE assigns equal weight to each error, aiding in evaluating the model’s aver-
age predictive precision in general scenarios. The MAE can be represented by the
following equation

MAE =
∑n

i=1 |Oi − Pi|
n

(15)

3. R-square offers a measure of how well the model explains the variability in flood flow,
where higher R-square values indicate better capability to account for observed fluctu-
ations, enhancing the model’s interpretability and reliability. R-square is defined by

R2 = 1− ∑n
i=1(Oi − Pi)

2

∑n
i=1(Oi − Õi)2

(16)

where Õi is the average of the observation value.
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Considering these three metrics collectively, they provide a wealth of information from
different angles—RMSE and MAE focus on error magnitude and mean accuracy, while
R-square emphasizes model explanatory power—resulting in a well-rounded evaluation
that helps accurately gauge and refine the performance of flood prediction models.

3. Results and Discussion
3.1. Description of Validation Case

During the model training, the test data comprise 20% of the total data, while the
training data constitute 80% of the total data and the validation data make up 10% of the
training data. The batch size is set to 128, the learning rate is from 0.001 to 0.0001 and the
number of epochs is 200. The training time for the STA-GRU model averages about 3 s per
epoch, in contrast to the STA-LSTM model, which takes roughly 5 s per epoch. This result
unequivocally demonstrates a notable enhancement in computational efficiency when
employing GRU models. As shown in Figure 7, a loss trajectory was employed to scrutinize
the effects of two data processing strategies on the performances of different models. The
graphs distinctly illustrate that before the ‘lag time’ preprocessing, the training loss curve
of the STA-GRU model has better numerical stability than the STA-LSTM model, and the
validation loss curve of the STA-GRU model has greater accuracy and fitting. Moreover,
after undergoing ‘lag time’ preprocessing, both the training loss and validation loss curves
exhibit superior performance in comparison to data not subjected to this preprocessing.
Both training loss and validation loss are pivotal metrics in evaluating the proficiency of
machine learning models, with lower loss values indicating enhanced predictive accuracy
and generalization capabilities.

(a) (b)

(c) (d)

(e) (f)

Figure 7. Cont.
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(g) (h)

(i) (j)

(k) (l)

(m) (n)

Figure 7. Performance of the LSTM, GRU, CNNLSTM, CNNGRU, ConvLSTM, STA-LSTM, and STA-
GRU models during training and validation error. (a,c,e,g,i,k,m) Before lag time; (b,d,f,h,j,l,n) After
lag time.

The ‘lag time’ preprocessing might have captured spatiotemporal dependencies or
other salient features within the data, enabling the model to learn the data’s inherent
structures and patterns more effectively. In contrast, data not subjected to this preprocessing
may lack these essential cues, leading to challenges in model fitting and consequently
manifesting higher loss values during both training and validation phases. In summation,
‘lag time’ preprocessing evidently furnishes the model with a richer and more accurate data
representation, thereby bolstering its fitting and generalization prowess.
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3.2. Discussion of Results

In this study, we have employed a range of advanced sequential models for the
task of time series forecasting. These models include LSTM, GRU, CNNLSTM, CNNGRU,
ConvLSTM, STA-LSTM, and STA-GRU, and their performance metrics have been evaluated
across various prediction time intervals, encompassing Root Mean Squared Error (RMSE),
Mean Absolute Error (MAE), and the coefficient of determination (R-square).

In light of the collated results, a discernible trend emerges irrespective of whether
the data undergo lag time preprocessing. As the prediction time interval lengthens, both
RMSE and MAE values manifest a progressive increase, whereas the R-square values
exhibit a decline. This pattern accentuates that, over extended prediction time horizons, the
predictive efficacy of models tends to wane, leading to a broadening of prediction errors.

From a holistic perspective, as seen Table 3, the STA-GRU model and STA-LSTM
model consistently excel in longer-term forecasts, with the majority of their R2 values
comfortably surpassing the 0.8 benchmark. For initial performance, STA-LSTM, ConvLSTM,
and STA-GRU emerge as front runners for the 6-h forecast, all boasting an impressive
R2 value of 0.93–0.94. This suggests that these models capture the immediate temporal
dependencies in the data with remarkable precision. Then at the 12-h midpoint, the STA-
GRU, STA-LSTM, and ConvLSTM continue to dominate with commendable R2 values of
0.81, 0.81, and 0.80, respectively. This accentuates their stability in medium-term forecasting.
Extending the forecast to 24 h, STA-GRU maintains its supremacy with an R2 of 0.62—the
highest value of the evaluated models. On the other end of the spectrum, CNNLSTM lags,
registering the lowest R2 of 0.54. This positions the STA-GRU model as a relatively stable
long-term forecaster.

Table 3. The proposed models’ performance statistics before the lag time.

Hourly Algorithm RMSE MAE R2

6 LSTM 0.0623 0.0309 0.9001
6 GRU 0.0589 0.0278 0.9107
6 CNNLSTM 0.0620 0.0292 0.9012
6 CNNGRU 0.0573 0.0275 0.9158
6 ConvLSTM 0.0513 0.0243 0.9323
6 STA-LSTM 0.0503 0.0229 0.9385
6 STA-GRU 0.0464 0.0228 0.9445

12 LSTM 0.0939 0.0435 0.7734
12 GRU 0.0911 0.0431 0.7865
12 CNNLSTM 0.0954 0.0481 0.7660
12 CNNGRU 0.0931 0.0433 0.7780
12 ConvLSTM 0.0864 0.0408 0.8080
12 STA-LSTM 0.0833 0.0407 0.8106
12 STA-GRU 0.0832 0.0405 0.8125

24 LSTM 0.1332 0.0757 0.5461
24 GRU 0.1255 0.0658 0.5971
24 CNNLSTM 0.1322 0.0673 0.5528
24 CNNGRU 0.1262 0.0652 0.5925
24 ConvLSTM 0.1241 0.0641 0.6061
24 STA-LSTM 0.1227 0.0631 0.6143
24 STA-GRU 0.1220 0.0625 0.6181

Moreover, the most pronounced dip in performance is observed in the models between
the 12th and 24th-h forecasts—a decline of 0.2. This might hint at challenges the models
face in accommodating certain temporal shifts or cyclic patterns beyond the 6-hour mark.
As we progress through the forecast horizon, certain models witness a steeper attrition in
performance. Case in point, the CNNLSTM’s R2 value plummets from 0.90 (at 6 h) to 0.55
(at 24 h)—a descent markedly steeper than the STA-GRU’s slide from 0.93 to 0.61. Typically,
a slower decline in a model’s R2 over the forecast period is emblematic of its generalization
prowess and stability. Gauging from the data at hand, STA-GRU and STA-LSTM emerge as
frontrunners in this regard. In addition, The foundational GRU and LSTM models show
perceptible performance disparities compared to their advanced counterparts like STA-
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GRU and STA-LSTM. This indicates the tangible benefits brought about by sophisticated
features such as spatial attention.

In flood prediction models, based on our spatiotemporal dataset, accounting for the
lag time between upstream hydrological and precipitation stations and downstream target
stations is crucial to further enhance the model’s long-term predictive accuracy. This stems
from the intrinsic spatiotemporal dynamics of hydrological processes, wherein a clear time
lag exists between precipitation events and subsequent river level elevations. By accounting
for this lag time between upstream and downstream stations, the model can achieve a more
precise data alignment, bolster the capture of causal relationships, factor in the influences
of terrain and soil conditions, and encapsulate the dynamic characteristics of flood events.
Furthermore, the inclusion of lag time furnishes the model with enhanced spatiotemporal
sequence features, facilitating a deeper contextual understanding and thereby significantly
enhancing prediction accuracy, as shown in Table 4. Therefore, after undergoing lag time
preprocessing, it is evident that as the prediction horizon extends from 6 h to 12 h, and
further to 24 h, the R-value of each predictive model decreases by approximately 0.1 less
than that of models without lag time preprocessing.

Table 4. The proposed models’ performance statistics after the lag time.

Hourly Algorithm RMSE MAE R2

6 LSTM 0.0456 0.0243 0.9466
6 GRU 0.0520 0.0290 0.9304
6 CNNLSTM 0.0482 0.0299 0.9402
6 CNNGRU 0.0499 0.0272 0.9359
6 ConvLSTM 0.0405 0.0213 0.9578
6 STA-LSTM 0.0399 0.0203 0.9590
6 STA-GRU 0.0382 0.0199 0.9646

12 LSTM 0.0644 0.0353 0.8935
12 GRU 0.0643 0.0351 0.8936
12 CNNLSTM 0.0677 0.0372 0.8821
12 CNNGRU 0.0652 0.0324 0.8907
12 ConvLSTM 0.0631 0.0332 0.8974
12 STA-LSTM 0.0553 0.0318 0.9214
12 STA-GRU 0.0526 0.0291 0.9288

24 LSTM 0.1165 0.0600 0.6525
24 GRU 0.1150 0.0607 0.6637
24 CNNLSTM 0.1178 0.0575 0.6453
24 CNNGRU 0.1154 0.0569 0.6592
24 ConvLSTM 0.1134 0.0550 0.6713
24 STA-LSTM 0.1052 0.0548 0.7164
24 STA-GRU 0.1039 0.0534 0.7232

Upon comparing the performance metrics of various flood prediction models with
and without lag time preprocessing, it becomes evident that preprocessing substantially
bolsters the efficacy of all models. Our initial findings, prior to the implementation of
lag time preprocessing, indicated that our predictive model exhibited RMSE and MAE
values comparable to those reported by Liu et al. (2023) , Dehghani et al. (2023), and
Ding et al. (2020) [49,53,55]. However, a salient discovery of this study is the significant
enhancement in prediction accuracy and model performance observed after applying lag
time preprocessing to spatiotemporal data, even when operating under identical fore-
cast durations. Furthermore, in a bid to augment computational efficiency and extend
the prediction horizon to 24 h, our developed STA-GRU model demonstrated superior
performance compared to existing models documented in the literature. These findings
not only affirm the pivotal role of lag time preprocessing in improving the precision of
spatiotemporal data predictions but also highlight the potential of the STA-GRU model in
flood forecasts.

In our research, we employed a bar chart to juxtapose the effects of two data processing
methodologies on the R2 values of our models. In Figure 8, the orange bars represent data
subjected to a ‘lag time’ preprocessing, while the blue bars symbolize data that were not
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processed in this manner. The R2, or the coefficient of determination, is a statistical metric
used to quantify the goodness of fit of a regression model, with its value ranging between
0 and 1. A value closer to 1 indicates superior predictive prowess of the model. As the
prediction timeline extended, the R2 values derived from the ‘lag time’ preprocessed data
consistently surpassed those from the non-preprocessed data, with this disparity widening
over time. This suggests that ‘lag time’ preprocessing not only enhances the overall
goodness of fit of the model but also accentuates its advantages in long-term forecasting
scenarios. This offers robust theoretical support for future data preprocessing endeavors,
signifying that in certain applications, ‘lag time’ preprocessing could be a pivotal step,
especially when extended forecasting is requisite.

In summary, the STA-GRU model exhibited superior performance over other models in
each predictive time frame on data without “lag time” preprocessing. However, following
the “lag time” preprocessing of the data, the STA-GRU model not only sustained its
comparative advantage but also achieved a higher performance with reduced forecast error
statistics. This demonstrates the STA-GRU model’s outstanding adaptability and efficiency
when dealing with spatiotemporal data collected from a network of real-time hydrometric
stations for rapid response flood early warning applications.
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Figure 8. Comparing the R-square of each model before and after handling lag time.

4. Conclusions

The realm of flood forecasting has greatly benefited from the integration of deep learning
techniques, which have emerged as transformative tools for enhancing prediction accuracy.
In this context, our study examined the performance of several deep learning models
to improve flood forecasting. These models included Long Short-Term Memory (LSTM)
and its spatial derivatives such as CNNLSTM, ConvLSTM, and STA-LSTM, as well as
the Gated Recurrent Unit (GRU) and its associated models like CNNGRU and STA-GRU.
These models were methodically compared, analyzing their capacities to process complex
hydrological data and forecast floods. Given the geographic and climatic influences on
floods, a comprehensive approach to data analysis and modeling is essential. By harnessing
spatial information and integrating it with time series data, we determined a more holistic
flood prediction model. Among our key results, it is found that models incorporating
the spatiotemporal attention mechanism, like the STA-LSTM and STA-GRU, exhibit an
enhanced ability to manage long-term dependencies. Particularly, the STA-GRU model
improves computational efficiency while maintaining prediction performance at a level not
lower than that of the STA-LSTM model. Elevating computational efficiency is crucial in
the context of flood forecasting, as it allows the predictive system to rapidly process and
analyze extensive datasets, thereby enabling swift responses and real-time surveillance
of flood incidents. This not only contributes to the prompt issuance of warnings but also
facilitates the contemporaneous updating of the predictive models, enhancing the accuracy
of the alerts. Furthermore, when the datasets are preprocessed with lag time, the R2 value
of the STA-GRU model increases from 0.6181 to 0.7232, RMSE decreases from 0.1220 to
0.1039, and MAE reduces from 0.0625 to 0.0534. These results indicate that the prediction
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performance of the STA-GRU model is enhanced. The STA-GRU model and STA-LSTM
model prioritize significant data and offer more accurate flood predictions, capturing
intricate spatiotemporal patterns and making them potential frontrunners in the quest to
advance flood forecasting systems.
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