Adsorption Technologies for the Removal of Cytostatics in Water: A Review
Abstract
:1. Introduction
2. Literature Search
3. Cytostatics’ Adsorption
3.1. Carbon Materials
Cytostatic | Matrix | Sorbent | Sorbent Characterization | Operating Conditions | Results | Ref. |
---|---|---|---|---|---|---|
5-FU | Ultrapure water | AC (Ceca) | pHPZC: 5.6, SBET: 1073 m2/g, Vp: 0.57 cm3/g, C: 78.9%, O: 19.6%, ash: 5.6% | Sorbent: 90 mg/L, C5-FU: 1–10 mg/L, pH: not specified, V: 500 mL, Vagit: 88 rpm, T: 30 °C, t: 24 h | qe: 104.3 mg/g | [21] |
AC (Merck) | pHPZC: 11, SBET: 907 m2/g, Vp: 0.43 cm3/g, C: 89%, O: 10%, ash: 4.8% | Sorbent: 40 mg/L, C5-FU: 1–10 mg/L, pH: not specified, V: 500 mL, Vagit: 88 rpm, T: 30 °C, t: 24 h | qe: 74.4 mg/g | |||
AC (Norit) | pHPZC: 6.8, SBET: 1233 m2/g, Vp: 0.49 cm3/g, C: 89%, O: 9.1%, ash: 5.2% | Sorbent: 60 mg/L, C5-FU: 1–10 mg/L, pH: not specified, V: 500 mL, Vagit: 88 rpm, T: 30 °C, t: 24 h | qe: 70.2 mg/g | |||
AC (Wittco) | pHPZC: 6.9, SBET: 999 m2/g, Vp: 0.50 cm3/g, C: 92.6%, O: 4.2%, ash: 0.3% | Sorbent: 90 mg/L, C5-FU: 1–10 mg/L, pH: not specified, V: 500 mL, Vagit: 88 rpm, T: 30 °C, t: 24 h | qe: 46.6 mg/g | |||
CB (BP 2000) | pHPZC: 8.9, SBET: 1401 m2/g, Vp: 3.11 cm3/g, C: 99%, ash: <0.2% | Sorbent: 60 mg/L, C5-FU: 1–10 mg/L, pH: not specified, V: 500 mL, Vagit: 88 rpm, T: 30 °C, t: 24 h | qe: 111.9 mg/g | |||
CB (Vulcan) |
pHPZC: 2.7, SBET: 500 m2/g, Vp: 1.33 cm3/g, C: 100% | Sorbent: 90 mg/L, C5-FU: 1–10 mg/L, pH: not specified, V: 500 mL, Vagit: 88 rpm, T: 30 °C, t: 24 h | qe: 18.7 mg/g | |||
CPT | Urine (synthetic) | Biochar | pHPZC: 7.3 | Sorbent: 10 g/L, Ccyt: 100 µgPt/L, V: 20 mL, pH: 4, t: 24 h | Pt recovery: 24% qe: 0.664 mg Pt/g | [23] |
GAC (Merck) | pHPZC:7.1. | Pt recovery: 45% qe: 1.21 mg Pt/g | ||||
CytR, 5-FU | Ultrapure water and WWTP effluent | Activated lignine (Hok SUPER) | pHPZC: 10, SBET: 300 m2/g, dp: 24 µm | Sorbent: 0.5 g/L, Ccyt: 200 µg/L, pH: 7.8 (phosphate buffer), V: 400 mL, Vagit: 100 rpm, T: 20 °C, t: 21 h | qe 5-FU: 0.7 mg/g, X5-FU: 70% qe CytR: 1 mg/g XCytR: 70% | [24] |
PAC (Norit SAE SUPER) | pHPZC: 9.8, SBET: 1300 m2/g, dp: 15 µm | qe 5-FU: 1.56 mg/g X5-FU: 70% qe CytR: 4.67 mg/g XCytR: 70% | [24] | |||
CYC, IFO | Hospital wastewater | PAC (Norit SAE SUPER) | pHPZC: 9.8, SBET:1300 m2/g, dp: 15 μm | Sorbent: 8 ± 4, 23 ± 7 and 43 ± 14 mg/L; CCYC: 185 ng/L; CIFO = 10 µg/L | XCYC: 41 ± 6% > 73% XIFO: 24 ± 0% > 60% | [29] |
CYC, IFO, 5-FU | Ultrapure water | CNT (Cheap Tubes) | pHPZC: 9.5, SBET: 228 m2/g, l: 10–30 µm, d: 8 nm, C > 95%, Ashes: <1.5% | Sorbent: 0.1–10 g/L, Ccyt: 0.625–150 mg/L, pH: 4–10, CaCl2: 0–0.1 M, V: 10 mL, T: not specified, t: 24 h | qe, CYC: 27.3 mg/g qe, IFO: 18.2 mg/g qe, 5-FU: 11.6 mg/g | [25] |
CYC, IRI, TAM | Ultrapure water | AC (Calgon) | No characterization available | Sorbent: 0.1–100 mg/L, CIRI:10 μg/L, pH: 7.1 (4 mM NaHCO3), t: 4 h | Xcyt > 90% | [22] |
DOX | Ultrapure water | GO | SBET: 32 m2/g, Vp: 0.11 cm2/g, Negative surface charge. | Sorbent: 600 mg/L, CDOX: 350 mg/L, V: 10 mL, pH: 3.4–8.5, T: 15–37 °C, t: 2 h | qe: 1428.6 mg/g | [28] |
IMA | Ultrapure water | Modified CNT | No characterization available | Sorbent: 0.1–10 g/L, CIMA: 0.4–1.8 g/L, V: 5 mL, T: 25 °C, t: 6 h | XIMA: 97% qe: 2920 mg/g | [27] |
3.2. Fe3O4-Based Materials
3.3. Biological Adsorbents
Cytostatic | Matrix | Sorbent | Operating Conditions | Results | Ref. |
---|---|---|---|---|---|
BLEO, VIN | Ultrapure water | F. fomentarius, H. fasciculare, P. nidulans, P. ostreatus and T. versicolor | Sorbent: 10 g/L, Ccyt: 5–15 mg/L, t: 4 h, T: 22.5 °C, pHBLEO: 4.5; pHVIN: 3.6 | qe BLEO: 0.1730 mg/g qe VIN: 0.1791 mg/g | [40] |
CPT, CBT, OXA | Urban wastewater | WWTP active sludge | Ccyt: 5 µg/L, Act sludge: 4.2 g/L, pH: 7 | X CPT: 96% X CBT: 70% XOPT: 74% | [41] |
CPT, CBT, OXA | Hospital wastewater | Active sludge (MBR) | Ccyt: 3–250 µg/L, Act. sludge: 12–15 g/L, pH: 7–9 | Xcyt: 28–34% qe: 175 µg Pt/g | [42] |
FLU | Ultrapure water + 20%v MeOH | Chlorella vulgaris (microalgae) | Sorbent: 0.5–4.1 g/L; CFLU: 100 mg/L; pH: 1–8; t: 10–120 min | Dead algae—qe: 12.5 mg/g; Living algae—qe: 26.8 mg/g | [39] |
3.4. Other Sorbents
Cytostatics | Matrix | Sorbent | Operating Conditions | Results | Ref. |
---|---|---|---|---|---|
5-FU | Unknown | Montmorillonite and saponite | Not specified | 5-FU is adsorbed in monolayer onto Lewis acidic centres. | [43] |
CPT | Ultrapure water | Macroporous cryogel | Sorbent: 10 g/L; CCPT: 0.5–2 g/L; V, pH: not specified; t: 48 h | qe: 250 mg/g | [45] |
CPT | Urine (synthetic) | Chitosan | Sorbent: 10 g/L, Ccyt: 100 µgPt/L, V: 20 mL, pH: 4, t: 24 h | Pt recovery: 36% qe: 0.974 mgPt/g | [23] |
Wood ash | Pt recovery: 5% qe: 0.225 mgPt/g | ||||
IMA, 5-FU | Ultrapure water | BiOCl1.3Br0.7 | SBET: 53.9 m2/g, Sorbent:0.2 g/L, pHzpc: 6.35, Ccyt: 15 mg/L, pH: 3–10.5 | X cyt: 100% | [46] |
PTX | Well water, tap water and Ultrapure water | CaFe2O4/MoS2 | Sorbent: 0.8 g/L; CPTX: 5 mg/L; V: 25 mL; pH: 2–9; t: 20 min | qe: 68.96 mg/g | [44] |
4. Hybrid Technologies
Cytostatic | Matrix | Processes | Membrane Characterization | Sorbent Characterization | Operating Conditions | Results | Ref. |
---|---|---|---|---|---|---|---|
5-FU, CYT | WWTP effluent | PAC/LCD + NF | NF50 M10 from Norit X-Flow | PAC: Norit SAE Super; LCD: RWE lignite coke dust | CCYT = 1.0–2.0 μg/L; [PAC] = 10–100 mg/L; [LCD] = 100- 350 mg/L; Flux: 20 L/(m2.h) | NF itself achieved high removals | [47] |
CPCs | Hospital wastewater | MBR | Tubular ultrafiltration membrane: MOLSEPw, Nadir Filtration GmbH. Active area of 1 m2 and a nominal cut-off of 100 kDa | N/A | CPt: 3.24–266 µg/L, g; Q: 7.6 L/h | CPt: 3.24–266 µg/L, g; Q: 7.6 L/h | [50] |
CPCs | Hospital wastewater | MBR + AC | N/A | GAC: Chemviron F200 | CPt: 3.24–266 µg/L, Sorbent: 500 g; Q: 7.6 L/h | XPt, CPC: 82% | [50] |
CPCs | Hospital wastewater | MBR+ UV + AC | N/A | CPt: 3.24–266 µg/L, Sorbent: 500 g; Q: 7.6 L/h, λ: 254 nm, E: 900 W/m2 | XPt, CPC: 74% | [50] | |
CYC | Surface water | NF + GAC | Trisep TS-80 TSF (MWCO: 200 g/mol) Desal HL (MWCO: 150–300 g/mol) | Norit Row Supra 0.8. Bed density: 345 kg/m3 | CCYC: 100 μg/L, 0.2 m/s, flow: 400 L/h, concentration polarization factor: 1.02, 20 ± 1 °C. | XCYC: > 98% | [49] |
DOX, ERL, IMA, IRI, TAM, CYC, IFO, CAP | Tap water | Ozonation + GAC Ozonation + AC UF + RO | N/A | N/A | N/A | Cytostatic drugs were not detected in the studied matrix | [48] |
5. Life Cycle Assessment
6. Overview and Perspectives
- Deeper adsorbent characterization before and after the adsorption tests: these can aid in understanding the mechanisms involved and how to improve the efficiency of the process, offering a deeper insight into the effects of the chemical and textural properties of the sorbents on pollutant removal;
- Influence of the water matrix: applying the adsorption process in real environmental matrices;
- Relevant cytostatic concentrations: working in the ng/L–µg/L range, which is the concentration range in which these pollutants are generally found;
- Continuous experiments: using fixed-bed adsorption columns that allow continuous flow simulation, perform analyses of the dynamic behavior with breakthrough curves and residence times, as well as the scale-up potential of the technology [66];
- Adsorbent regeneration strategies: these are key to assess the real lifetime of the adsorbents. Furthermore, some hybrid processes such as the combination of adsorption and a subsequent advanced oxidation process might help mineralize the pollutants, aiding the move towards a cleaner technology.
Material/Process | Process Scalability | Material Regeneration | Material Availability | Process Sustainability |
---|---|---|---|---|
Carbon materials | + | + | + | + |
Magnetic adsorbents | * | + | * | + |
Biological adsorbents | o | − | + | o |
Other adsorbents | o | o | * | o |
Hybrid processes | * | + | * | + |
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
AC | Activated carbon |
AOPs | Advanced oxidation processes |
BLEO | Bleomycin |
CAP | Capecitabine |
CB | Carbon black |
CBT | Carboplatin |
CNT | Carbon nanotube |
CPCs | Cancerostatic platinum compounds |
CPT | Cisplatin |
CYC | Cyclophosphamide |
Cyt | Cytostatic |
CytR | Cytarabine |
DAU | Daunorubicin |
DOX | Doxorubicin |
EPI | Epirubicin |
ERL | Erlotinib |
FLU | Flutamide |
5-FU | 5-fluorouracil |
GAC | Granular activated carbon |
GEM | Gemcitabine |
GO | Graphene oxide |
IARC | International Agency for Research on Cancer |
IFO | Ifosfamide |
IMA | Imatinib |
IRI | Irinotecan |
LCA | Life cycle assessment |
LCD | Lignite coke dust |
LCST | Lower critical solution temperature |
MBR | Membrane bioreactor |
MWCO | Molecular weight cut off |
NF | Nanofiltration |
NP | Nanoparticles |
OXA | Oxaliplatin |
PAC | Powdered activated carbon |
PAMAM-CS | Polyamidoamine/chitosan |
PTX | Paclitaxel |
RO | Reverse osmosis |
TAM | Tamoxifen |
UF | Ultrafiltration |
VIN | Vincristine |
WWTP | Wastewater treatment plant |
References
- Rizzo, L.; Malato, S.; Antakyali, D.; Beretsou, V.G.; Dolic, M.B.; Gernjak, W.; Heath, E.; Ivancev-Tumbas, I.; Karaolia, P.; Ribeiro, A.R.L.; et al. Consolidated vs new advanced treatment methods for the removal of contaminants of emerging concern from urban wastewater. Sci. Total Environ. 2019, 655, 986–1008. [Google Scholar] [CrossRef]
- Weiderpass, E.; Stewart, B.W. World Cancer Report: Cancer Research for Cancer Prevention; World Health Organization: Geneva, Switzerland, 2020. [Google Scholar]
- Sketris, I.S.; Metge, C.J.; Ross, J.L.; MacCara, M.E.; Comeau, D.G.; Kephart, G.C.; Blackburn, J.L. The use of the world health organisation anatomical therapeutic chemical/defined daily dose methodology in Canada. Drug Inf. J. 2004, 38, 15–27. [Google Scholar] [CrossRef]
- IARC. List of Classifications. Volumes 1–123. 2018. Available online: https://monographs.iarc.who.int/list-of-classifications. (accessed on 13 August 2023).
- Gouveia, T.I.A.; Silva, A.M.T.; Ribeiro, A.R.; Alves, A.; Santos, M.S.F. Liquid-liquid extraction as a simple tool to quickly quantify fourteen cytostatics in urban wastewaters and access their impact in aquatic biota. Sci. Total Environ. 2020, 740, 139995. [Google Scholar] [CrossRef] [PubMed]
- Gouveia, T.I.A.; Alves, A.; Santos, M.S.F. New insights on cytostatic drug risk assessment in aquatic environments based on measured concentrations in surface waters. Environ. Int. 2019, 133, 105236. [Google Scholar] [CrossRef] [PubMed]
- Azuma, T.; Ishiuchi, H.; Inoyama, T.; Teranishi, Y.; Yamaoka, M.; Sato, T.; Mino, Y. Occurrence and fate of selected anticancer, antimicrobial, and psychotropic pharmaceuticals in an urban river in a subcatchment of the Yodo River basin, Japan. Environ. Sci. Pollut. Res. 2015, 22, 18676–18686. [Google Scholar] [CrossRef] [PubMed]
- Buerge, I.J.; Buser, H.-R.; Poiger, T.; Müller, M.D. Occurrence and Fate of the Cytostatic Drugs Cyclophosphamide and Ifosfamide in Wastewater and Surface Waters. Environ. Sci. Technol. 2006, 40, 7242–7250. [Google Scholar] [CrossRef]
- Llewellyn, N.; Lloyd, P.; Jürgens, M.D.; Johnson, A.C. Determination of cyclophosphamide and ifosfamide in sewage effluent by stable isotope-dilution liquid chromatography–tandem mass spectrometry. J. Chromatogr. A 2011, 1218, 8519–8528. [Google Scholar] [CrossRef]
- Rabii, F.W.; Segura, P.A.; Fayad, P.B.; Sauvé, S. Determination of six chemotherapeutic agents in municipal wastewater using online solid-phase extraction coupled to liquid chromatography-tandem mass spectrometry. Sci. Total Environ. 2014, 487, 792–800. [Google Scholar] [CrossRef]
- Comber, S.; Gardner, M.; Sörme, P.; Leverett, D.; Ellor, B. Active pharmaceutical ingredients entering the aquatic environment from wastewater treatment works: A cause for concern? Sci. Total Environ. 2018, 613–614, 538–547. [Google Scholar] [CrossRef]
- Zhou, J.L.; Zhang, Z.L.; Banks, E.; Grover, D.; Jiang, J.Q. Pharmaceutical residues in wastewater treatment works effluents and their impact on receiving river water. J. Hazard. Mater. 2009, 166, 655–661. [Google Scholar] [CrossRef]
- Roberts, P.H.; Thomas, K.V. The occurrence of selected pharmaceuticals in wastewater effluent and surface waters of the lower Tyne catchment. Sci. Total Environ. 2006, 356, 143–153. [Google Scholar] [CrossRef] [PubMed]
- Usawanuwat, J.; Boontanon, N.; Boontanon, S.K. Analysis of three anticancer drugs (5-fluorouracil, cyclophosphamide and hydroxyurea) in water samples by HPLC-MS/MS. Int. J. Adv. Agric. Environ. Eng. 2014, 1, 72–76. [Google Scholar] [CrossRef]
- Garcia-Costa, A.L.; Alves, A.; Madeira, L.M.; Santos, M.S.F. Oxidation processes for cytostatic drugs elimination in aqueous phase: A critical review. J. Environ. Chem. Eng. 2020, 9, 104709. [Google Scholar] [CrossRef]
- Alvarez-Torrellas, S.; Ribeiro, R.S.; Gomes, H.T.; Ovejero, G.; Garcia, J. Removal of antibiotic compounds by adsorption using glycerol-based carbon materials. Chem. Eng. J. 2016, 296, 277–288. [Google Scholar] [CrossRef]
- Imessaoudene, A.; Cheikh, S.; Bollinger, J.-C.; Belkhiri, L.; Tiri, A.; Bouzaza, A.; El Jery, A.; Assadi, A.; Amrane, A.; Mouni, L. Zeolite Waste Characterization and Use as Low-Cost, Ecofriendly, and Sustainable Material for Malachite Green and Methylene Blue Dyes Removal: Box–Behnken Design, Kinetics, and Thermodynamics. Appl. Sci. 2022, 12, 7587. [Google Scholar]
- Han, D.; López-Mesas, M.; Luaces, M.; Enamorado, Y.; Sanadar, M.; Melchior, A.; Valiente, M. Comparative study on removal of platinum cytostatic drugs at trace level by cysteine, diethylenetriamino functionalized Si-gels and polyethyleneimine functionalized sponge: Adsorption performance and mechanisms. Sci. Total Environ. 2023, 891, 164385. [Google Scholar] [CrossRef] [PubMed]
- Kadir, N.N.A.; Shahadat, M.; Ismail, S. Formulation study for softening of hard water using surfactant modified bentonite adsorbent coating. Appl. Clay Sci. 2017, 137, 168–175. [Google Scholar] [CrossRef]
- Chauveheid, E.; Scholdis, S. Removal of pharmaceuticals by a surface water treatment plant. Water Sci. Technol. Water Supply 2019, 19, 1793–1801. [Google Scholar] [CrossRef]
- Macedo, E.; Santos, M.S.F.; Maldonado-Hodar, F.J.; Alves, A.; Madeira, L.M. Insights on Carbonaceous Materials Tailoring for Effective Removal of the Anticancer Drug 5-Fluorouracil from Contaminated Waters. Ind. Eng. Chem. Res. 2018, 57, 3932–3940. [Google Scholar] [CrossRef]
- Chen, Z.; Park, G.; Herckes, P.; Westerhoff, P. Physicochemical treatment of three chemotherapy drugs: Irinotecan, tamoxifen, and cyclophosphamide. J. Adv. Oxid. Technol. 2008, 11, 254–260. [Google Scholar] [CrossRef]
- Folens, K.; Abebe, A.; Tang, J.; Ronsse, F.; Du Laing, G. Biosorption of residual cisplatin, carboplatin and oxaliplatin antineoplastic drugs in urine after chemotherapy treatment. Environ. Chem. 2018, 15, 506–512. [Google Scholar] [CrossRef]
- Kovalova, L.; Knappe, D.R.U.; Lehnberg, K.; Kazner, C.; Hollender, J. Removal of highly polar micropollutants from wastewater by powdered activated carbon. Environ. Sci. Pollut. Res. 2013, 20, 3607–3615. [Google Scholar] [CrossRef] [PubMed]
- Tonski, M.; Dolzonek, J.; Paszkiewicz, M.; Wojslawski, J.; Stepnowski, P.; Bialk-Bielinska, A. Preliminary evaluation of the application of carbon nanotubes as potential adsorbents for the elimination of selected anticancer drugs from water matrices. Chemosphere 2018, 201, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Toński, M.; Paszkiewicz, M.; Dołżonek, J.; Flejszar, M.; Bielicka-Giełdoń, A.; Stepnowski, P.; Białk-Bielińska, A. Regeneration and reuse of the carbon nanotubes for the adsorption of selected anticancer drugs from water matrices. Colloids Surf. A Physicochem. Eng. Asp. 2021, 618, 126355. [Google Scholar] [CrossRef]
- Masouleh, M.P.; Dehaghi, S.M.; Moghimi, A. Elimination and Recycling of Imatinib by Ethoxylated Multi-Walled Carbon Nanotubes from Aqueous Solutions. Orient. J. Chem. 2015, 31, 1107–1112. [Google Scholar] [CrossRef]
- Wu, S.L.; Zhao, X.D.; Li, Y.H.; Du, Q.J.; Sun, J.K.; Wang, Y.H.; Wang, X.; Xia, Y.Z.; Wang, Z.H.; Xia, L.H. Adsorption Properties of Doxorubicin Hydrochloride onto Graphene Oxide: Equilibrium, Kinetic and Thermodynamic Studies. Materials 2013, 6, 2026–2042. [Google Scholar] [CrossRef] [PubMed]
- Kovalova, L.; Siegrist, H.; von Gunten, U.; Eugster, J.; Hagenbuch, M.; Wittmer, A.; Moser, R.; McArdell, C.S. Elimination of Micropollutants during Post-Treatment of Hospital Wastewater with Powdered Activated Carbon, Ozone, and UV. Environ. Sci. Technol. 2013, 47, 7899–7908. [Google Scholar] [CrossRef]
- Munoz, M.; Nieto-Sandoval, J.; Alvarez-Torrellas, S.; Sanz-Santos, E.; Calderon, B.; de Pedro, Z.M.; Larriba, M.; Fullana, A.; Garcia, J.; Casas, J.A. Carbon-encapsulated iron nanoparticles as reusable adsorbents for micropollutants removal from water. Sep. Purif. Technol. 2021, 257, 7. [Google Scholar] [CrossRef]
- Munoz, M.; Dominguez, P.; de Pedro, Z.M.; Casas, J.A.; Rodriguez, J.J. Naturally-occurring iron minerals as inexpensive catalysts for CWPO. Appl. Catal. B Environ. 2017, 203, 166–173. [Google Scholar] [CrossRef]
- Kusyak, A.; Kusyak, N.; Storozhuk, L.; Petranovska, A.; Gorbyk, P.; Korniichuk, N.; Yanovych, I. Study of the adsorption activity of Fe3O4 synthesized by the solvothermal method in relation to doxorubicin. Appl. Nanosci. 2020, 10, 4923–4930. [Google Scholar] [CrossRef]
- Tuan, H.T.; Yurmazova, T.A.; Vaitulevich, E.A. Magnetite with modified surface for water treatment. Bull. Tomsk Polytech. Univ.-Geo Assets Eng. 2019, 330, 163–172. [Google Scholar] [CrossRef]
- Weng, X.L.; Ma, L.; Guo, M.Y.; Su, Y.Y.; Dharmarajan, R.; Chen, Z.L. Removal of doxorubicin hydrochloride using Fe3O4 nanoparticles synthesized by euphorbia cochinchinensis extract. Chem. Eng. J. 2018, 353, 482–489. [Google Scholar] [CrossRef]
- Arvand, M.; Masouleh, A.N. Magnetic solid-phase extraction of imatinib and doxorubicin as cytostatic drugs by Fe3O4/graphene oxide nanocomposite. J. Iran Chem. Soc. 2017, 14, 1673–1682. [Google Scholar] [CrossRef]
- Ghoochian, M.; Panahi, H.A.; Sobhanardakani, S.; Taghavi, L.; Hassani, A.H. Synthesis and application of Fe3O4/SiO2/thermosensitive/PAMAM-CS nanoparticles as a novel adsorbent for removal of tamoxifen from water samples. Microchem. J. 2019, 145, 1231–1240. [Google Scholar] [CrossRef]
- Fomina, M.; Gadd, G.M. Biosorption: Current perspectives on concept, definition and application. Bioresour. Technol. 2014, 160, 3–14. [Google Scholar] [CrossRef]
- Chojnacka, K. Biosorption and bioaccumulation—The prospects for practical applications. Environ. Int. 2010, 36, 299–307. [Google Scholar] [CrossRef]
- Habibzadeh, M.; Chaibakhsh, N.; Naeemi, A.S. Optimized treatment of wastewater containing cytotoxic drugs by living and dead biomass of the freshwater microalga, Chlorella vulgaris. Ecol. Eng. 2018, 111, 85–93. [Google Scholar] [CrossRef]
- Jureczko, M.; Przystaś, W. Removal of two cytostatic drugs: Bleomycin and vincristine by white-rot fungi—A sorption study. J. Environ. Health Sci. Eng. 2021, 19, 651–662. [Google Scholar] [CrossRef]
- Lenz, K.; Hann, S.; Koellensperger, G.; Stefanka, Z.; Stingeder, G.; Weissenbacher, N.; Mahnik, S.N.; Fuerhacker, M. Presence of cancerostatic platinum compounds in hospital wastewater and possible elimination by adsorption to activated sludge. Sci. Total Environ. 2005, 345, 141–152. [Google Scholar] [CrossRef]
- Lenz, K.; Koellensperger, G.; Hann, S.; Weissenbacher, N.; Mahnik, S.N.; Fuerhacker, M. Fate of cancerostatic platinum compounds in biological wastewater treatment of hospital effluents. Chemosphere 2007, 69, 1765–1774. [Google Scholar] [CrossRef]
- Akalin, E.; Akyuz, S.; Akyuz, T. Adsorption and interaction of 5-fluorouracil with montmorillonite and saponite by FT-IR spectroscopy. J. Mol. Struct. 2007, 834, 477–481. [Google Scholar] [CrossRef]
- Aghagoli, M.J.; Beyki, M.H.; Shemirani, F. Fabrication of CaFe2O4/MoS2 hybrid and its application for adsorption of paclitaxel chemotherapy medication in injection vial and water samples. J. Iran Chem. Soc. 2018, 15, 499–510. [Google Scholar] [CrossRef]
- Farias, T.; Hajizadeh, S.; Ye, L. Cryogels with high cisplatin adsorption capacity: Towards removal of cytotoxic drugs from wastewater. Sep. Purif. Technol. 2020, 235, 8. [Google Scholar] [CrossRef]
- Wilczewska, P.; Ona, A.E.N.; Bielicka-Giełdoń, A.; Malankowska, A.; Tabaka, K.; Ryl, J.; Pniewski, F.; Siedlecka, E.M. Application of BiOClnBrm photocatalyst to cytostatic drugs removal from water; mechanism and toxicity assessment. Sep. Purif. Technol. 2021, 254, 117601. [Google Scholar] [CrossRef]
- Kazner, C.; Lehnberg, K.; Kovalova, L.; Wintgens, T.; Melin, T.; Hollender, J.; Dott, W. Removal of endocrine disruptors and cytostatics from effluent by nanofiltration in combination with adsorption on powdered activated carbon. Water Sci. Technol. 2008, 58, 1699–1706. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, A.; Zonja, B.; Mastroianni, N.; Negreira, N.; de Alda, M.L.; Perez, S.; Barcelo, D.; Gil, A.; Valcarcel, Y. Drugs of abuse, cytostatic drugs and iodinated contrast media in tap water from the Madrid region (central Spain):A case study to analyse their occurrence and human health risk characterization. Environ. Int. 2016, 86, 107–118. [Google Scholar] [CrossRef] [PubMed]
- Verliefde, A.R.D.; Heijman, S.G.; Cornelissen, E.R.; Amy, G.; Van der Bruggen, B.; van Dijk, J.C. Influence of electrostatic interactions on the rejection with NF and assessment of the removal efficiency during NF/GAC treatment of pharmaceutically active compounds in surface water. Water Res. 2007, 41, 3227–3240. [Google Scholar] [CrossRef] [PubMed]
- Lenz, K.; Mahnik, S.N.; Weissenbacher, N.; Mader, R.M.; Krenn, P.; Hann, S.; Koellensperger, G.; Uhl, M.; Knasmuller, S.; Ferk, F.; et al. Monitoring, removal and risk assessment of cytostatic drugs in hospital wastewater. Water Sci. Technol. 2007, 56, 141–149. [Google Scholar] [CrossRef]
- Joseph, B.; Kaetzl, K.; Hensgen, F.; Schäfer, B.; Wachendorf, M. Sustainability assessment of activated carbon from residual biomass used for micropollutant removal at a full-scale wastewater treatment plant. Environ. Res. Lett. 2020, 15, 064023. [Google Scholar] [CrossRef]
- Thompson, K.A.; Shimabuku, K.K.; Kearns, J.P.; Knappe, D.R.U.; Summers, R.S.; Cook, S.M. Environmental Comparison of Biochar and Activated Carbon for Tertiary Wastewater Treatment. Environ. Sci. Technol. 2016, 50, 11253–11262. [Google Scholar] [CrossRef]
- Bonton, A.; Bouchard, C.; Barbeau, B.; Jedrzejak, S. Comparative life cycle assessment of water treatment plants. Desalination 2012, 284, 42–54. [Google Scholar] [CrossRef]
- Jeswani, H.K.; Gujba, H.; Brown, N.W.; Roberts, E.P.L.; Azapagic, A. Removal of organic compounds from water: Life cycle environmental impacts and economic costs of the Arvia process compared to granulated activated carbon. J. Clean. Prod. 2015, 89, 203–213. [Google Scholar] [CrossRef]
- Arena, N.; Lee, J.; Clift, R. Life Cycle Assessment of activated carbon production from coconut shells. J. Clean. Prod. 2016, 125, 68–77. [Google Scholar] [CrossRef]
- Gu, H.; Bergman, R.; Anderson, N.; Alanya Rosenbaum, S. Life cycle assessment of activated carbon from woody biomass. Wood Fiber Sci. 2018, 50, 229–243. [Google Scholar] [CrossRef]
- Kim, M.H.; Jeong, I.T.; Park, S.B.; Kim, J.W. Analysis of environmental impact of activated carbon production from wood waste. Environ. Eng. Res. 2019, 24, 117–126. [Google Scholar] [CrossRef]
- Liao, M.; Kelley, S.; Yao, Y. Generating Energy and Greenhouse Gas Inventory Data of Activated Carbon Production Using Machine Learning and Kinetic Based Process Simulation. ACS Sustain. Chem. Eng. 2020, 8, 1252–1261. [Google Scholar] [CrossRef]
- Dias, J.M.; Alvim-Ferraz, M.C.M.; Almeida, M.F.; Rivera-Utrilla, J.; Sánchez-Polo, M. Waste materials for activated carbon preparation and its use in aqueous-phase treatment: A review. J. Environ. Manag. 2007, 85, 833–846. [Google Scholar] [CrossRef]
- Igos, E.; Mailler, R.; Guillossou, R.; Rocher, V.; Gasperi, J. Life cycle assessment of powder and micro-grain activated carbon in a fluidized bed to remove micropollutants from wastewater and their comparison with ozonation. J. Clean. Prod. 2021, 287, 125067. [Google Scholar] [CrossRef]
- Zepon Tarpani, R.R.; Azapagic, A. Life cycle environmental impacts of advanced wastewater treatment techniques for removal of pharmaceuticals and personal care products (PPCPs). J. Environ. Manag. 2018, 215, 258–272. [Google Scholar] [CrossRef]
- Mailler, R.; Gasperi, J.; Coquet, Y.; Buleté, A.; Vulliet, E.; Deshayes, S.; Zedek, S.; Mirande-Bret, C.; Eudes, V.; Bressy, A.; et al. Removal of a wide range of emerging pollutants from wastewater treatment plant discharges by micro-grain activated carbon in fluidized bed as tertiary treatment at large pilot scale. Sci. Total Environ. 2016, 542, 983–996. [Google Scholar] [CrossRef]
- Pesqueira, J.F.J.R.; Pereira, M.F.R.; Silva, A.M.T. Environmental impact assessment of advanced urban wastewater treatment technologies for the removal of priority substances and contaminants of emerging concern: A review. J. Clean. Prod. 2020, 261, 121078. [Google Scholar] [CrossRef]
- Mohammadi, A.; Sandberg, M.; Venkatesh, G.; Eskandari, S.; Dalgaard, T.; Joseph, S.; Granström, K. Environmental analysis of producing biochar and energy recovery from pulp and paper mill biosludge. J. Ind. Technol. 2019, 23, 1039–1051. [Google Scholar] [CrossRef]
- Kozyatnyk, I.; Yacout, D.; Caneghem, J.; Jansson, S. Comparative environmental assessment of end-of-life carbonaceous water treatment adsorbents. Bioresour. Technol. 2020, 302, 122866. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Abreu, A.B.; Álvarez-Torrellas, S.; Águeda, V.I.; Larriba, M.; Delgado, J.A.; Calvo, P.A.; García, J. New insights from modelling and estimation of mass transfer parameters in fixed-bed adsorption of Bisphenol A onto carbon materials. J. Contam. Hydrol. 2020, 228, 103566. [Google Scholar] [CrossRef] [PubMed]
- Mailler, R.; Gasperi, J.; Coquet, Y.; Deshayes, S.; Zedek, S.; Cren-Olivé, C.; Cartiser, N.; Eudes, V.; Bressy, A.; Caupos, E.; et al. Study of a large scale powdered activated carbon pilot: Removals of a wide range of emerging and priority micropollutants from wastewater treatment plant effluents. Water Res. 2015, 72, 315–330. [Google Scholar] [CrossRef] [PubMed]
- Pui, W.K.; Yusoff, R.; Aroua, M.K. A review on activated carbon adsorption for volatile organic compounds (VOCs). Rev. Chem. Eng. 2019, 35, 649–668. [Google Scholar] [CrossRef]
- Masudi, A.; Harimisa, G.E.; Ghafar, N.A.; Jusoh, N.W.C. Magnetite-based catalysts for wastewater treatment. Environ. Sci. Pollut. Res. 2020, 27, 4664–4682. [Google Scholar] [CrossRef]
- Silva, A.; Delerue-Matos, C.; Figueiredo, S.A.; Freitas, O.M. The Use of Algae and Fungi for Removal of Pharmaceuticals by Bioremediation and Biosorption Processes: A Review. Water 2019, 11, 1555. [Google Scholar] [CrossRef]
- Wang, J.; Chen, C. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 2009, 27, 195–226. [Google Scholar] [CrossRef]
- Han, H.; Rafiq, M.K.; Zhou, T.; Xu, R.; Mašek, O.; Li, X. A critical review of clay-based composites with enhanced adsorption performance for metal and organic pollutants. J. Hazard. Mater. 2019, 369, 780–796. [Google Scholar] [CrossRef]
- Wang, J.; Zhuang, S. Removal of various pollutants from water and wastewater by modified chitosan adsorbents. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2331–2386. [Google Scholar] [CrossRef]
Cytostatic | Matrix | Sorbent | Sorbent Characterization | Operating Conditions | Results | Ref. |
---|---|---|---|---|---|---|
DOX | Ultrapure water | Fe3O4/SiO2 | SBET: 130.5 m2/g | No information available | qe: 18.8 mg/g | [33] |
DOX | Ultrapure water and WWTP effluent | Fe3O4 nanoparticles | SBET: 95.8 m2/g, dp: 10–30 nm | Sorbent: 0.5 g/L, CDOX: 20 mg/L, V: 20 mL, T: 30 °C, pH: 3–9, t: 48 h | qe: 32 mg/g XDOX, WWTP effluent: 73.6% XDOX, ultrapure water: 80.2% | [34] |
DOX | 0.9% NaCl solution | Fe3O4 nanoparticles | SBET: 9.57 m2/g, dp: 21.6 nm | CDOX: 10–20 mg/L, pH: 7, t: 45–90 min | qe: 17.5 mg/g XDOX: 80% | [32] |
DOX, IMA | Well water and WWTP effluent | Fe3O4/GO | No characterization available | Sorbent: 160 mg/L, CDOX: 4 mg/L, CIMA: 4 mg/L, V: 250 mL, pH: 2–10, t: 15 min | qe: 56.4 mg/g | [35] |
TAM | Ultrapure water, tap water and pharmaceutical manufacturing WW | Fe3O4/SiO2/PAMAM-CS | pHPZC: 6.0 dp: 60 nm | Sorbent: 3–20 g/L, CTAM: 20 mg/L, V: 1.5 mL, T: 25 °C, pH: 4–9, t: 45 min | qe: 20.5 mg/g XTAM, ultrapure water: 99.7% XTAM, Pharmaceutical wastewater 99.3% | [36] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Costa, A.L.; Gouveia, T.I.A.; Alves, A.; Santos, M.S.F. Adsorption Technologies for the Removal of Cytostatics in Water: A Review. Water 2023, 15, 4005. https://doi.org/10.3390/w15224005
Garcia-Costa AL, Gouveia TIA, Alves A, Santos MSF. Adsorption Technologies for the Removal of Cytostatics in Water: A Review. Water. 2023; 15(22):4005. https://doi.org/10.3390/w15224005
Chicago/Turabian StyleGarcia-Costa, Alicia L., Teresa I. A. Gouveia, Arminda Alves, and Mónica S. F. Santos. 2023. "Adsorption Technologies for the Removal of Cytostatics in Water: A Review" Water 15, no. 22: 4005. https://doi.org/10.3390/w15224005
APA StyleGarcia-Costa, A. L., Gouveia, T. I. A., Alves, A., & Santos, M. S. F. (2023). Adsorption Technologies for the Removal of Cytostatics in Water: A Review. Water, 15(22), 4005. https://doi.org/10.3390/w15224005