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Abstract: Investigations into runoff change and its influencing factors hold immense significance
for promoting sustainable development, efficient water resource utilization, and the improvement
of the ecological environment. To reduce methodological uncertainties, this study employed six
attribution analysis methods, including two statistical approaches, a Budyko equation sensitivity
coefficient method, and three hydrology models, to differentiate the contributions of climate change
and human activities to the runoff change in the Xiliugou basin. The results indicated an abrupt
change point in 2006, and the annual runoff series from 1960 to 2020 demonstrated a significant
declining trend. All the six methods revealed that human activities were the major influencing
factor. The average contribution rate of climate change was noted to be 24.2%, while that of human
activities was 75.8% among the six methods used for this study. The prominent human activities in
the Xiliugou basin revolve around soil and water conservation measures. The research findings hold
great significance for the comprehensive understanding of runoff formation and its response to the
changing environment in the Xiliugou basin. Additionally, these results can provide a foundation for
decision-making for water resource management and ecological protection.

Keywords: climate change; human activities; runoff; uncertainty; Xiliugou basin

1. Introduction

The hydrologic cycle system closely links the earth’s hydrosphere, atmosphere, bio-
sphere, and lithosphere, forming a mutually coupled subsystem. This system provides an
important link between atmospheric, terrestrial, and ecological water [1,2]. Both climatic
factors and human activities exert influences on the hydrological cycle within basins [3–5].
Climate change inherently induces alterations in hydrological characteristics across various
spatial scales, including in basins and at the regional and global levels. For example, an
increase in the global temperature results in an increased evapotranspiration rate and
consequently modifies precipitation and hydrological characteristics, and the occurrence
and severity of hydrological extreme events, such as floods and droughts, are influenced by
their frequency and intensity. These changes affect the total amount of water resources and
their redistribution on the spatiotemporal scale [6–8]. Human-induced land use alterations,
including the construction of water conservancy projects, deforestation, urbanization, and
the restoration of vegetation, have a substantial influence on hydrological processes and
the spatiotemporal distribution of water resources within river basins. These modifications
make a substantial contribution to the sustainable development of the socio-economy and
the ecological environment [9,10].
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A river’s flow plays a crucial role in maintaining the hydrological balance within a
basin, making it highly significant for improving the local ecological environment and
fostering economic growth on a larger scale [11]. The accurate evaluation of the individual
effects of climate change and human activities on runoff fluctuations provides essential
guidance for efficient watershed water resource management, making a substantial con-
tribution to the achievement of sustainable development goals. Hence, it is crucial to
regard climate change and human activities as distinct factors that exert influence and to
utilize long-term runoff data to quantify and attribute runoff variability for both factors at
different time scales [3]. Climate factors, including precipitation, temperature, and potential
evapotranspiration, can be easily quantified by simulating a precipitation runoff model
with a strong physical mechanism. However, human activity factors indicate an extremely
complex mechanism due to their inherent randomness and arbitrariness. Furthermore,
aligning the spatiotemporal scale of these activities with the runoff process is challeng-
ing, and even the influence of human activities on runoff usually lacks a well-defined
physical mechanism.

There are three main approaches to unraveling the impacts of climate change and
human activities on the complex processes that regulate runoff. The first one involves a
statistical approach based on observed hydrometeorological data [12–18]. This method is
straightforward but lacks a physical basis, and it requires highly accurate, long-term statis-
tical data, thus limiting its application. The second one is a sensitivity coefficient method
based on the Budyko hydrothermal coupling equilibrium equation [19–23]. This method
offers a certain physical mechanism, a simple calculation process, and straightforward
parameter calculation. Nevertheless, it is important to note that these methodologies are
limited in their applicability solely to multi-year and annual scales, and they thereby can
potentially fail to comprehensively quantify the effects of various human activities and the
underlying surface modifications on the hydrological dynamics of a given basin. The last
approach involves the hydrologic model method [24–27]. This model demonstrates a strong
physical mechanism, effectively explaining and attributing runoff change, and it can simu-
late and restore runoff changes at different time scales from days to years. However, the
model structure is relatively complex and may involve a large number of parameters with
associated uncertainties. The complex interplay between the underlying surface conditions
and climate factors within a basin is intricate and multifaceted, demanding high-quality
data, especially for distributed hydrological models. It is important to note that the specific
impacts of climate and human activities, as determined by various attribution analysis
methods, may exhibit inconsistencies, even within the same basin. These discrepancies
highlight the uncertainties associated with the chosen methodology [28].

The Yellow River basin in China stands out as one of the foremost regions grappling
with acute water scarcity and significant soil erosion. In recent decades, significant changes
have occurred in the hydrological system of this basin, largely due to the combined influ-
ence of climate change and human activities [29,30]. To tackle the urgent issues related
to soil and water erosion in the Yellow River basin, a wide range of diligent measures for
soil and water conservation have been comprehensively implemented. These measures
encompass an extensive scope of ecological restoration initiatives alongside the implemen-
tation of landscape engineering interventions. For instance, measures like constructing
terraces, implementing water diversion projects, and developing reservoirs have been
undertaken [29,31,32].

The Xiliugou basin is located within the Ten Kongduis basin, which is situated in
the upstream region of the Yellow River basin. It is an ecologically fragile area with
an interlacing distribution of sandstone, desert, and floodplain. The region exhibits a
significant spatial heterogeneity on a regional scale and is highly sensitive to human
disturbance and climate change. The Xiliugou basin experiences a limited availability of
water resources. With the development of mineral resources, industrial growth, urban
sprawl, and increased groundwater exploitation, the problem of water resource scarcity
has intensified. However, limited comprehensive investigations have been conducted on
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the factors influencing changes in runoff across the Xiliugou basin. Therefore, the main
objective of our study is to thoroughly examine the drivers of runoff change in this basin.
By employing various methodologies, our aim is to discern the distinct impacts of climate
change and human activities on the observed patterns of runoff. This research endeavor is
of significant importance, as it can provide valuable insights for informed decision-making
in areas such as land use planning, water resource management, and the promotion of
sustainable development within the Xiliugou basin.

For the purpose of our investigation, the Xiliugou basin was chosen as the focal area. In
our research, we employed the nonparametric Mann–Kendall (MK) test to identify possible
abrupt change points in the runoff patterns covering the period from 1960 to 2020. To
enhance the investigation, the study period was divided into two separate periods, namely
the baseline period and the impact period, considering the identified abrupt change points.
Following this division, six separation methods were employed in our research. These
approaches encompassed two statistical methods, namely the sensitivity coefficient method
utilizing the Budyko equation and the utilization of three hydrology models. The primary
aim of employing these methods was to effectively distinguish and quantify the respective
contributions of climate variations and human activities to the observed runoff changes.
The objectives of this study are as follows: (1) to identify abrupt change points in runoff
within the Xiliugou basin; (2) to utilize different methodologies to discern the impacts of
climate change and human activities on runoff; and (3) to analyze the discrepancies in the
effects of climate change and human activities on runoff changes resulting from the use of
different methods and summarize the main factors causing runoff change.

2. Materials and Methods
2.1. Study Region

Situated within the Ten Kongduis basin in Ordos and positioned on the right bank of
the Yellow River, the Xiliugou basin occupies a central location, with its specific coordinates
being E109◦24′~110◦00′ and N39◦47′~40◦30′ (Figure 1). The control area above Longtouguai
hydrological station is 1157 km2, and the altitude varies from 1044 to 1551 m. The Xiliugou
basin experiences a semi-arid continental climate, characterized by lengthy cold winters
and brief hot summers. The average annual temperature within the basin is approximately
6 ◦C, the average annual wind speed is 3.7 m·s−1, the annual rainfall is 240–360 mm, and the
potential evaporation is 2200 mm. The distribution of rainfall and runoff within this basin
exhibits seasonal variations with uneven patterns throughout the year. Notably, during
the flood season (June–September), the rainfall accounts for approximately 82% of the total
annual precipitation. The rainfall in the flood season tends to be concentrated and takes the
form of heavy rain, resulting in sharp changes in the flood level. It serves as a critical source
of coarse sand in the Yellow River, China. In recent decades, several strategies have been
employed to promote vegetation restoration in the basin, such as the implementation of soil
and water conservation techniques and the conversion of agricultural land into forested
or grassy areas. These endeavors have led to a remarkable growth in vegetation coverage
within the region. As a result, there has been a noticeable alteration in land use and cover,
leading to a substantial decrease in both runoff and sediment [33].



Water 2023, 15, 4010 4 of 18

Figure 1. The geographical location of the Xiliugou basin.

2.2. Data

Comprehensive meteorological data, including daily precipitation, temperatures, sun-
shine duration, specific humidity, and wind speed, were diligently collected from the
National Meteorological Information Center of China (https://www.nmic.cn/, 8 August
2022). This comprehensive dataset spans a significant timeframe, ranging from 1960 to 2020.
To acquire monthly runoff information specifically for the Longtouguai hydrological station
within the aforementioned period, we extensively consulted the esteemed Hydrological
Yearbook of the People’s Republic of China for accurate references and information. The
leaf area index (LAI) data for the period from 1982 to 2020 were acquired from the reputable
Global LAnd Surface Satellite (GLASS) and the Advanced Very-High-Resolution Radiome-
ter (AVHRR) LAI product. These datasets were integrated into the proficient Google Earth
Engine platform for seamless analysis. These detailed records exhibit an outstanding spatial
resolution of 0.05◦ and a temporal resolution of every 8 days. Additionally, we diligently
acquired a digital elevation model (DEM) with a resolution of 30 m from the renowned
NASA Advanced Spaceborne Thermal Emission and Reflection Radiometer Global Digital
Elevation Model (ASTER GDEM) (https://lpdaac.usgs.gov/, 2 August 2022). Subsequently,
we precisely extracted the underlying surface data, encompassing crucial elements such as
soil properties (including physicochemical aspects), a 1:100,000 soil distribution map, and
the crucial land use/land cover (LULC) data, all possessing a remarkable 30 m resolution.
These invaluable resources were collected from the renowned Chinese Academy of Sciences’
Data Center for Resources and Environmental Sciences (https://www.resdc.cn, 18 August
2022), with a specific focus on the noteworthy time period of the 1980s.

2.3. Trend Analysis and Abrupt Change Detection

The widely employed nonparametric Mann–Kendall (MK) method [34,35] has found
extensive application in the analysis of trends and sudden shifts in hydrometeorological
time series. In this study, the MK method was applied to estimate annual runoff trends and
abrupt points in the Longtouguai hydrological station.

2.4. Six Methods for Attribution Analysis of Runoff Change
2.4.1. Precipitation–Runoff Double Mass Curve (DMC) Method

The double mass curve technique plays a vital role in investigating the coherence and
connection between two variables. It involves examining the gradient of cumulatively

https://www.nmic.cn/
https://lpdaac.usgs.gov/
https://www.resdc.cn
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accumulated values of the two variables over various time periods, which are then plotted
on a Cartesian coordinate system [36]. In this study, the variable used as a reference or
independent variable, represented by x, signifies precipitation, while the test variable or
dependent variable, denoted as y, represents runoff. The notation of xi and yi is employed
to represent N years of observations, where i ranges from 1 to N.

To commence the analysis, the cumulative yearly values of x and y can be computed
using Formulas (1) and (2), respectively. The utilization of these formulas enables the
determination of yearly cumulative series, denoted as Xi and Yi, which is achieved through
the following calculations:

Xi =
N

∑
i=1

xi (1)

Yi =
N

∑
i=1

yi (2)

Subsequently, a relationship curve is constructed within a rectangular coordinate
system to graphically depict the cumulative values of the two variables. This curve serves as
a visual representation of the association between the accumulated values of the respective
variables. In the absence of any systematic bias in the dependent variable or test variable,
the cumulative curve exhibits a linear pattern. An upward bias indicates an increase, while
a downward bias suggests a decrease.

2.4.2. Slope Change Ratio of Cumulative Quantity (SCRCQ) Method

The SCRCQ method [17] serves as a valuable tool for quantifying and distinguishing
the relative influences exerted by these two factors on the observed changes in runoff. This
approach can be used by two ways: (1) reflecting climate change only by precipitation
to estimate its contribution rate, and (2) reflecting climate change comprehensively by
precipitation and temperature. Within the scope of this study, the climate change factors
under investigation encompassed precipitation and temperature. These variables were
carefully chosen as key indicators to better comprehend the dynamics of climate change
within the analyzed context.

To commence the analysis, the calculation of the slope for cumulative runoff, cumu-
lative precipitation, and cumulative temperature was conducted individually for both
the baseline period and the period of change. These slopes are denoted as SRa, SPa, and
STa for the baseline period and SRb, SPb, and STb for the change period. By calculating
the difference between the slopes of the baseline period and the change period, we can
determine the rates of change for cumulative runoff (RR), cumulative precipitation (RP),
and cumulative temperature (RT). It is important to note that in this method, precipitation
and runoff were assumed to exhibit a positive correlation, while temperature and runoff
considered to exhibit a negative correlation. Furthermore, we defined the attribution of
precipitation (ηP) and temperature (ηT) to the variability in runoff as follows:

ηP = (RP/RR)× 100% (3)

ηT = −(RT/RR)× 100% (4)

We calculated and quantified the respective impacts of climate change (ηC) and human
activities (ηH) on the observed alterations in runoff through the following calculations:

ηC = ηP + ηT (5)

ηH = 1− ηC (6)
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2.4.3. Sensitivity Coefficient Methods by the Budyko Equation

The Budyko theory provides a comprehensive framework for understanding the
distribution mechanism of precipitation between runoff and evapotranspiration, offering
insights into the intricate coupling between water and energy within a given basin. This
theory delves into the fundamental principles that govern the interplay of water and
energy dynamics, shedding light on the intricate relationship between these two crucial
components. This study used the Budyko equation for Fu’s formula [37] to study the
attribution analysis of runoff change:

E
P
= 1− Q

P
= 1 +

EP
P
−

[
1 +

(
EP
P

)ω]1/ω

(7)

where Q represents the average annual runoff depth (mm), P signifies the average an-
nual precipitation (mm), E denotes the average annual evapotranspiration (mm), and EP
corresponds to the average annual potential evapotranspiration (mm). Furthermore, the
basin-specific parameters are represented by the symbol ω.

To accurately assess the influence of climate elements, specifically precipitation (P) and
potential evapotranspiration (EP) on runoff, we utilized the sensitivity coefficient technique.
This approach facilitates the computation of runoff sensitivity to changes in P and EP,
enabling a rigorous and quantitative assessment of their respective influences:

∆QC =
∂Q
∂P

∆P +
∂Q
∂EP

∆EP (8)

where the runoff change caused by this phenomenon is represented by ∆QC. The sensitivity
coefficients of runoff with respect to P and EP are denoted by ∂Q

∂P and ∂Q
∂EP

, respectively,
and ∆P and ∆EP represent the changes in precipitation and potential evapotranspiration,
respectively.

The calculation of sensitivity coefficients was conducted as follows:

∂Q
∂P

= Pω−1(Eω
P + Pω)

1
ω−1 (9)

∂Q
∂EP

= EP
ω−1(EP

ω + Pω)
1
ω−1 − 1 (10)

When evaluating the influence of human activities on runoff, it is possible to quantify
the alterations in runoff caused by these activities. This calculation involves determining
the alteration in runoff attributable to human interventions:

∆QH = ∆Q− ∆QC (11)

where the alteration in runoff attributed specifically to human activities is represented as
∆QH. It is crucial to distinguish ∆QH from the overall actual change in runoff, represented
as ∆Q, in order to separate and quantify the distinct impact of human interventions on
changes in runoff.

2.4.4. HBV and SIMHYD Hydrological Model

The Hydrologiska Byrans Vattenbalansavdelning (HBV) hydrological model [38]
and SIMulation of HYDrology (SIMHYD) [39–43] are two conceptual precipitation runoff
models. These models exhibit their proficiency in establishing the connections between
precipitation, evaporation, and runoff. Moreover, they integrate modifications in soil,
water and groundwater processes using a set of precise mathematical equations. These
equations form the basis for accurately simulating and analyzing the intricate dynamics of
a hydrological system.
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The HBV model structure is mainly composed of a snow melting module, a soil
moisture module, and a production confluence module. The specific model structure is
shown in Figure 2.
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The SIMHYD model comprises three main elements: surface runoff, soil water move-
ment, and subsurface flow. The fundamental structure of the model is depicted in Figure 3.
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2.4.5. SWAT Hydrological Model

The Soil and Water Assessment Tool (SWAT) model, established by the United States
Department of Agriculture, is a widely acknowledged and extensively employed physically
based model at a large scale [44,45]. SWAT incorporates a comprehensive set of physical
principles and mathematical algorithms to accurately represent the complex dynamics of a
soil–water system. It includes several modules, such as a hydrology module, a sediment
transport module, and a nutrient transport module, etc. This model has a wide range
of applicability, including basin water balance accounting. Additionally, it facilitates
explorations into the impact of management strategies, as well as variations in climate
and land use, on both the quantity and quality of water within basins. The versatility and
robustness of this model make it an invaluable tool for the comprehensive and accurate
analysis of hydrological processes and their associated environmental impacts. The model
corresponds each process of the hydrological cycle to different sub-modules through
modular modeling, and each module can be run independently or combined, which is
conducive to expansion and application. The hydrological module includes numerous
variables, such as evapotranspiration, river discharge, surface runoff, soil water transport,
groundwater recharge, etc., realizing the calculation and simulation of the hydrological
cycle. The SWAT model is divided into a sub-basin calculation module and a channel
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production and confluence module influenced by the underlying surface properties and
rainfall processes.

The basis of this model is built upon the water balance equation, which can be repre-
sented as follows:

SWt = SW0 +
t

∑
i=1

(
Pday,i −Qsur f ,i − Ea,i −Wseep,i −Qgw,i

)
(12)

where SWt (mm) represents the soil water storage at a specific time, SW0 (mm) indicates
the initial soil water storage, t denotes the time, Pday,i (mm) signifies precipitation on the
ith day, Qsurf,i (mm) denotes the surface runoff on the ith day, Ea,i (mm) represents the
evapotranspiration on the ith day, Wseep,i (mm) indicates the amount of water infiltration on
the ith day, and Qgw,i (mm) represents the return flow from the groundwater on the ith day.

2.5. Calibration and Verification of HBV and SIMHYD Models

To optimize the parameters of the HBV and SIMHYD hydrological models, a widely
recognized global optimizer called the particle swarm optimization (PSO) toolbox [46] was
employed. These specific values were selected to ensure an effective exploration of the
solution space, leading to the identification of the most optimal solution.

The two hydrological models underwent a rigorous calibration and validation process,
utilizing the monthly runoff data from the baseline period. For calibration purposes, 70%
of the available data were employed, while the remaining 30% were reserved for validation.
For the purpose of model calibration in this study, the Nash–Sutcliffe efficiency (NSE) [47]
was chosen as the objective function. This widely recognized metric serves as a reliable
indicator of model performance and enabled a robust assessment of the model’s ability to
accurately replicate the observed runoff patterns:

F = (1− NSE) + 5|LN(1 + Bias)|2.5 (13)

NSE = 1−

N
∑

i=1
(Qobs,i −Qsim,i)

2

N
∑

i=1

(
Qobs,i −Qobs

)2 (14)

Bias =

N
∑

i=1
Qobs,i −

N
∑

i=1
Qsim,i

N
∑

i=1
Qobs,i

(15)

where the NSE (Nash–Sutcliffe efficiency) was calculated by comparing the simulated
monthly runoff (Qsim) with the observed monthly runoff (Qobs). The NSE was determined
using the average value of the observed monthly runoff, with “i” representing the ith
month and “N” denoting the total number of months in the calibration period. The F value
was minimized during the calibration to enhance the model’s performance and its ability to
accurately replicate the observed runoff patterns. The NSE value serves as a robust metric
to evaluate and compare the results of the calibration and verification processes, providing
valuable insights into the accuracy and reliability of the hydrological models.

2.6. Calibration and Verification of SWAT Model

In this study, the calibration and verification of the model parameters were carried out
utilizing the SWAT-CUP Premium tool (https://www.2w2e.com/, 10 October 2022). This
tool offers advanced features for rigorous model evaluation. The calibration and validation
of the SWAT model were proficiently performed using the monthly runoff data from the
baseline period. To ensure an accurate representation of the hydrological processes, 70% of
the available data were allocated for calibration, while the remaining 30% were dedicated to

https://www.2w2e.com/
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validation. This systematic approach enabled the identification of optimal parameter values
and ensured the model’s ability to effectively reproduce the observed runoff patterns.

During the calibration and validation processes, a comprehensive objective function,
denoted as F, was implemented in SWAT-CUP Premium. This function incorporated
multiple evaluation metrics, including R2, the Nash–Sutcliffe efficiency (NSE) [47], and Bias.
By integrating these diverse criteria, the objective function facilitated a thorough assessment
of the model’s performance and enhanced the reliability of the results. Simultaneously
considering multiple aspects of model accuracy, precision, and bias, this approach provided
a robust framework for both the calibration and verification stages:

F = w3R2 + w5NSE − |w8Bias| (16)

NSE = 1−

N
∑

i=1
(Qobs,i −Qsim,i)

2

N
∑

i=1

(
Qobs,i −Qobs

)2 (17)

Bias =

N
∑

i=1
Qobs,i −

N
∑

i=1
Qsim,i

N
∑

i=1
Qobs,i

(18)

R2 =

[
N
∑

i=1

(
Qobs ,i −Qobs

)(
Qsim,i −Qsim

)]2

N
∑

i=1

(
Qobs,i −Qobs

)2 N
∑

i=1

(
Qsim,i −Qsim

)2
(19)

where the weights (w3, w5, w8) used in the objective function were calculated following the
prescribed equations outlined in the SWAT-CUP Premium handbook:

w3 = 1, w5 = |avg_goal_R2/avg_goal_NSE|, w8 = avg_goal_R2/avg_goal_Bias (20)

The findings validated the suitability of these three hydrological models for assessing
the attribution on runoff variations in the Xiliugou basin.

2.7. Calculation of Contribution of Climate Factors and Human Activities to Runoff Variations

To quantify the variations in runoff resulting from climate change and human activities,
the following equations were utilized for the computation:

∆Q = Qpast −Qpre = ∆QC + ∆QH (21)

∆QH = Qpast −Qsim (22)

∆QC = ∆Q− ∆QH = Qsim −Qpre (23)

where the change in runoff (∆Q) can be attributed to two primary factors: climate variability
(∆QC) and human activities (∆QH). To determine their relative contributions, the observed
annual average runoff during the baseline period (Qpast) and the change period (Qpre) were
utilized. Additionally, the multiyear average simulated runoff (Qsim), which only accounts
for the impact of climate factors, was obtained. The relative contributions of climate factors
(ηC) and human disturbance (ηH) towards the overall runoff variations were calculated
as follows:

ηC =
|∆QC|

|∆QC|+ |∆QH |
× 100% (24)
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ηH =
|∆QH |

|∆QC|+ |∆QH |
× 100% (25)

3. Results
3.1. Abrupt Change analysee of Annual Runoff

The outcomes of the Mann–Kendall (MK) test indicated a statistically significant
decrease in the annual runoff (Z = −4.25, p < 0.01). Additionally, a sudden shift was
identified in 2006, as depicted in Figure 4.
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The precipitation–runoff DMC in the Xiliugou basin was generated based on the
identified abrupt change points (refer to Figure 5). The analysis confirmed the validity of
the detected abrupt change point in 2006.
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3.2. Calibration and Validation Results of Three Hydrological Models

In this study, the calibration and validation of the model were performed using the
baseline period. The calibration period ranged from 1960 to 1992, while the validation
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period spanned from 1993 to 2006. The hydrology models were evaluated based on
multiple criteria, and their performance is illustrated in Figure 6. The assessment indicated
satisfactory results, with NSE and R2 values exceeding 0.5 and bias values falling within
the acceptable range of ±0.15 during both the calibration and validation periods [43,48].
Consequently, these three hydrology models were considered appropriate for analyzing
the effects of climate change and human activities on runoff changes in the Xiliugou basin.
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3.3. The Impact of Climate Change and Human Activities on Changes in Runoff

In this study (refer to Figure 7), significant variations were observed in the results
obtained from the six different methodologies, indicating the presence of methodological
uncertainties. The DMC method calculated that climate change contributed to 40.4% of the
runoff change, while human activities accounted for the remaining 59.6%. Similarly, the
SCRCQ method indicated a contribution rate of 39.9% for climate change and 60.1% for
human activities. By employing the Budyko equation, the runoff change was attributed to
climate change at a rate of 12.9%, whereas human activities contributed to 87.1%. When
considering the three hydrological models, their respective contributions to climate change
were 6.9%, 16%, and 28.9%, while the contributions of human activities were 93.1%, 84%,
and 71.1%, respectively. According to the six methods used, the average contribution
of climate change was determined to be 24.2%, while human activities accounted for an
average contribution of 75.8%. Consistently, all the methods indicated that human activities
significantly influenced the modification of runoff patterns in the Xiliugou basin. Figure 8
presents the simulated monthly runoff process lines by the three hydrological models and
the measured monthly runoff process line during the impact/change period (2007–2020). It
is evident that the simulated monthly runoff processes by all three hydrological models
exhibited consistency during the impact period. Notably, the SWAT model produced the
highest simulation results. However, the three hydrological models demonstrated limited
capability in capturing extreme runoff events, with all simulations underestimating the
magnitude of extreme runoff occurrences in 2016.
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4. Discussion

In this study, the MK test was utilized as a statistical tool to identify the point of abrupt
change in the runoff series. The analysis indicated that the year 2006 was identified as the
observed abrupt change point. This finding was further substantiated by examining the
precipitation–runoff double mass curve, which displayed a gradual increase in cumulative
runoff around the aforementioned year, thereby corroborating the results obtained from
the MK test. The results showed that the contribution rates calculated by the two statistical
analysis methods were extremely close, which could be enforced by the similar principle
of mechanism of both methods. The results calculated by the three hydrological models
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were slightly different, which may have been caused by the different model structures and
physical mechanisms of the three hydrological models.

The collective findings from all the utilized methodologies consistently demonstrated
that the variations in runoff within the Xiliugou basin were predominantly influenced by
human activities. This observation is consistent with prior studies conducted in the Yellow
River basin, which further strengthens the understanding that human activities have a
notable impact on the formation of runoff patterns in these areas [7,19,24,28,49]. The typical
human activities entail the implementation of comprehensive soil and water conservation
management practices in the Xiliugou basin. These activities include engineering and
vegetation ecological measures. The implementation of comprehensive soil and water
conservation practices in the Xiliugou basin commenced in the 1960s. However, due
to the low investment, small management scale, low conservation rate, and fewer gully
dam projects for flood and sand control, the problem has not been taken care thoroughly.
During the 1990s, the Ministry of Water Resources, together with the Inner Mongolia
Autonomous Region and relevant departments in Ordos, demonstrated a strong dedication
to executing the initial phase of the soil and water conservation project in the Dalate
banner, which received financial support from the World Bank. The basic aims of that
project were afforestation, grass plantation, soil and water conservation, and cancelling all
sloping farmland above 25◦. To bolster vegetation coverage and combat soil erosion in the
Loess Plateau, a collaborative endeavor spanning over two decades has been undertaken.
These sustained endeavors have led to significant improvements in the overall vegetation
condition within the region. Several vegetation restoration programs were introduced
in the late 1990s. The “Natural Forest Conservation Program” and the “Grain for Green
Program” [5,11,31] are the most prominent projects introduced for vegetation restoration in
the region. Over a span of more than two decades, the implementation of these projects has
resulted in substantial improvements in the vegetation coverage of the Loess Plateau [50,51].
Figure 9 shows the annual changes in the leaf area index (LAI) in the Xiliugou basin from
1982 to 2020. It can be observed that the implementation of large-scale vegetation restoration
measures after 1997 significantly increase the LAI trends from 0.12 to 0.36 between 1997
and 2020.
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In addition to the extensive vegetation restoration initiatives, the construction of check
dams also plays a crucial role in conserving soil and water resources. In recent years, a
substantial number of check dams have been erected in the Xiliugou basin to mitigate
soil erosion. Figure 10 illustrates the annual variations in the count and storage of check
dams in the Xiliugou basin. The construction of these dams primarily commenced after
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2000, with a particular focus between 2005 and 2010. By 2018, the Xiliugou basin hosted a
total of 105 check dams, including 39 large/backbone dams, 31 medium-sized dams, and
35 small dams. The total storage capacity corresponding to check dams is 0.493 × 108 m3.
These intense human activities have substantially affected on the runoff distributions and
patterns in the studied basin.
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Because there is an absence of meteorological stations within the investigated basin
(Figure 1), the meteorological data (such as precipitation, temperature, etc.) used in this
study could be a little different from the actual meteorological data in the basin. Therefore,
there could be some uncertainties in the interannual variation in the hydrometeorological
series and the role of climate change and human activities in the runoff change. To enhance
the scientific rigor and accuracy of the research findings, it is imperative to intensify the
collection and assessment of meteorological data within the basin during subsequent
research endeavors.

The current research approaches for distinguishing the impacts of climate change and
human activities on basin runoff changes rely on the assumption that climate change and
human activities are relatively independent factors. The contribution of climate variations
to runoff change is evaluated using various methodologies, while the remaining portion
is attributed to human activities. However, the precise quantitative assessment of the
interplay between climate change and human activities in runoff changes is still not fully
understood due to the complex multi-factorial influence mechanisms and interactions
involved. Therefore, isolating the impacts of climate factors and human activities cannot be
achieved simplistically. For instance, climate change can influence human activities, and
vice versa. Given the uncertainties associated with the methodology and limitations of
hydrological data, future studies should adopt a comprehensive approach that considers
various factors to accurately attribute the response of runoff to climate change and human
activities. This holistic approach will contribute to ensuring water resource security and
facilitate a more informed regulation and control of water resources.

5. Conclusions

Six distinct methods were employed to discern the respective impacts of climate
change and human activities on runoff changes within the Xiliugou basin in this study. By
conducting the Mann–Kendall test, an abrupt change point in the runoff series was identi-
fied in 2006. The findings indicated a significant decrease in annual runoff from 1960 to 2020.
To account for this abrupt change point, the research period was divided into two distinct
periods: 1960–2006 as the baseline period and 2007–2020 as the change period/impact
period. The results obtained from all the methodologies consistently demonstrated that
human activities predominantly drove the observed runoff changes. The average contribu-
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tion rates attributed to climate change and human activities across all six methods were
determined to be 24.2% and 75.8%, respectively. Notably, the Xiliugou basin exhibits typical
human activities characterized by soil and water conservation measures. In recent years,
the implementation of vegetation restoration programs and check dam construction, aimed
at enhancing vegetation coverage and promoting soil and water conservation, have signifi-
cantly impacted the runoff processes in the region. This study provides valuable insights
into the medium-to-long-term consequences of soil and water conservation measures on
water availability, spanning from the catchment to regional scales. The gained insights
hold immense significance in fostering sustainable water resource management within
river basins.
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