Application of Judgmental Sampling Approach for the Monitoring of Groundwater Quality and Quantity Evolution in Mediterranean Catchments
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Sample Collection and Groundwater Level Measurements
2.3. Systematic Judgmental Sampling
- -
- The principal purpose of the current work is the determination of groundwater qualitative and quantitative status of the Mediterranean regions to provide a fundamental river basin protocol for management. The selection of the research period was performed to protect the groundwater systems from the expected droughts according to the future climate scenarios and current human activities.
- -
- The pressures in the study areas, as well as the drawbacks of previously published works, are provided in the previous work of Ntona et al. [26].
- -
- Monitoring points were selected according to (i) the extent of the basin for the optimum distribution of the points, (ii) land use, (iii) geology, (iii) the easy access to boreholes to avoid gaps in time scale, and (iv) budget. The selection of the data is based on its use in groundwater modeling in the next steps of the research.
- -
- For the investigation of the variations during the year, a minimum of two sampling campaigns during the wet and dry period is suggested. Thus, the minimum period for field data collection is at least one hydrological year.
2.4. Statistical Analysis
3. Results
3.1. Basic Statistical Analysis
3.2. Pearson Correlation Analysis
3.3. Multivariate Statistical Analysis (MSA)
Data Structure Determination Using PCA and FA
3.4. Identification of Varifactors
3.5. Groundwater Level Measurements
4. Discussion
5. Conclusions
- (1)
- The judgmental sampling approach can contribute to a cost and time-effective groundwater monitoring plan of a basin.
- (2)
- The application of the judgemental sampling approach provides reliable results regarding groundwater evolution. This information is crucial for the optimal application of water resource management and control techniques.
- (3)
- The implementation of a judgemental sampling approach should be performed periodically to minimize bias.
- (4)
- The methodological approach applied within this study is flexible and can be modified according to the specific characteristics of the site.
- (1)
- No significant variations in the physicochemical parameters of groundwater samples appeared between the two sampling periods.
- (2)
- Variations between the wet and dry periods appeared in the concentrations of Fe and As in Eastern Thermaikos Gulf as well as in Zn and Ni in the Mouriki basin.
- (3)
- NO3 pollution occurs in all the areas except the Mouriki basin, where mainly Zn fertilizers are applied.
- (4)
- Salinization dominates as a pollution process in the coastal aquifer of Eastern Thermaikos Gulf.
- (5)
- Groundwater quality decline has been observed in Eastern Thermaikos Gulf and Mouriki basin over the years due to overexploitation for agricultural activities.
- (1)
- A significant decline in GWL is observed over time in Eastern Thermaikos Gulf due to the over-pumping in the coastal/agricultural areas.
- (2)
- Negative and positive variations in GWL during the last decades appeared in all the areas.
- (3)
- Maximum recovery of GWL was noted in the Mouriki basin for the period 2014–2022.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chandnani, G.; Gandhi, P.; Kanpariya, D.; Parikh, D.; Shah, M.A. A comprehensive analysis of contaminated groundwater: Special emphasis on nature-ecosystem and socio-economic impacts. Ground. Sustain. Dev. 2022, 19, 100813. [Google Scholar] [CrossRef]
- Modibo Sidibé, A.; Lin, X.; Koné, S. Assessing Groundwater Mineralization Process, Quality, and Isotopic Recharge Origin in the Sahel Region in Africa. Water 2019, 11, 789. [Google Scholar] [CrossRef]
- Luetkemeier, R.; Söller, L.; Frick-Trzebitzky, F. Anthropogenic Pressures on Groundwater. In Encyclopedia of Inland Waters, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 548–559. [Google Scholar]
- Chaudhary, A.; Dwivedi, A.; Bhaskarwar, A.N. Qualitative and Quantitative Analysis of Water. Appl. Water Sci. 2021, 1, 469–502. [Google Scholar]
- Zhang, Q.; Wang, H.; Wang, L. Tracing nitrate pollution sources and transformations in the over-exploited groundwater region of north China using stable isotopes. J. Contam. Hydrol. 2018, 218, 1–9. [Google Scholar] [CrossRef]
- He, X.; Li, P.; Shi, H.; Xiao, Y.; Guo, Y.; Zhao, H. Identifying strontium sources of flowback fluid and groundwater pollution using 87Sr/86Sr and geochemical model in Sulige gasfield, China. Chemosphere 2022, 306, 135594. [Google Scholar] [CrossRef]
- Voltaggio, M.; Spadoni, M.; Sacchi, E.; Sanam, R.; Pujari, P.R.; Labhasetwar, P.K. Assessment of groundwater pollution from ash ponds using stable and unstable isotopes around the Koradi and Khaperkheda thermal power plants (Maharashtra, India). Sci. Total Environ. 2015, 518–519, 616–625. [Google Scholar] [CrossRef]
- Zhao, X.; Wang, D.; Xu, H.; Ding, Z.; Shi, Y.; Lu, Z.; Cheng, Z. Groundwater pollution risk assessment based on groundwater vulnerability and pollution load on an isolated island. Chemosphere 2022, 289, 133134. [Google Scholar] [CrossRef]
- Giao, N.T.; Nhien, H.T.H.; Anh, P.K.; Thuptimdang, P. Groundwater quality assessment for drinking purposes: A case study in the Mekong Delta, Vietnam. Sci. Rep. 2023, 13, 4380. [Google Scholar] [CrossRef]
- Che Nordin, N.F.; Mohd, N.S.; Koting, S.; Ismail, Z.; Sherif, M.; El-Shafie, A. Groundwater quality forecasting modelling using artificial intelligence: A review. Groundw. Sustain. Dev. 2021, 14, 100643. [Google Scholar] [CrossRef]
- Haggerty, R.; Sun, J.; Yu, H.; Li, Y. Application of machine learning in groundwater quality modelling—A comprehensive review. Water Res. 2023, 233, 119745. [Google Scholar] [CrossRef]
- Abuzaid, A.S.; Jahin, H.S. Combinations of multivariate statistical analysis and analytical hierarchical process for indexing surface water quality under arid conditions. J. Contam. Hydrol. 2022, 248, 104005. [Google Scholar] [CrossRef] [PubMed]
- Busico, G.; Cuoco, E.; Kazakis, N.; Colombani, N.; Mastrocicco, M.; Tedesco, D.; Voudouris, K. Multivariate statistical analysis to characterize/discriminate between anthropogenic and geogenic trace elements occurrence in the Campania Plain, Southern Italy. Environ. Pollut. 2018, 234, 260–269. [Google Scholar] [CrossRef] [PubMed]
- Liu, F.; Zhao, Z.; Yang, L.; Ma, Y.; Xu, Y.; Gong, L.; Liu, H. Geochemical characterization of shallow groundwater using multivariate statistical analysis and geochemical modeling in an irrigated region along the upper Yellow River, Northwestern China. J. Geochem. Explor. 2020, 215, 106565. [Google Scholar] [CrossRef]
- Parisi, A.; Alfio, M.R.; Balacco, G.; Güler, C.; Fidelibus, M.D. Analyzing spatial and temporal evolution of groundwater salinization through Multivariate Statistical Analysis and Hydrogeochemical Facies Evolution-Diagram. Sci. Total Environ. 2023, 862, 160697. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Tsourlos, P.; Shin, S. Electrical resistivity tomography (ERT) monitoring of leachate seepage from an animal carcass waste (ACW) facility, South Korea. J. Appl. Geoph. 2022, 206, 104809. [Google Scholar] [CrossRef]
- Matiatos, I. Nitrate source identification in groundwater of multiple land-use areas by combining isotopes and multivariate statistical analysis: A case study of Asopos basin (Central Greece). Sci. Total Environ. 2016, 541, 802–814. [Google Scholar] [CrossRef]
- Meghdadi, A.; Javar, N. Quantification of spatial and seasonal variations in the proportional contribution of nitrate sources using a multi-isotope approach and Bayesian isotope mixing model. Environ. Poll. 2018, 235, 207–222. [Google Scholar] [CrossRef]
- Banda, T.D.; Kumarasamy, M. Application of Multivariate Statistical Analysis in the Development of a Surrogate Water Quality Index (WQI) for South African Watersheds. Water 2020, 12, 1584. [Google Scholar] [CrossRef]
- Davis, H.T.; Marjorie Aelion, C.; McDermott, S.; Lawson, A.B. Identifying natural and anthropogenic sources of metals in urban and rural soils using GIS-based data, PCA, and spatial interpolation. Environ. Poll. 2019, 157, 2378–2385. [Google Scholar] [CrossRef]
- Machiwal, D.; Jha, M.K. Identifying sources of groundwater contamination in a hard-rock aquifer system using multivariate statistical analyses and GIS-based geostatistical modeling techniques. J. Hydrol. Reg. Stud. 2015, 4, 80–110. [Google Scholar] [CrossRef]
- Meng, L.; Zuo, R.; Wang, J.; Yang, J.; Teng, Y.; Shi, R.; Zhai, Y. Apportionment and evolution of pollution sources in a typical riverside groundwater resource area using PCA-APCS-MLR model. J. Contam. Hydrol. 2018, 218, 70–83. [Google Scholar] [CrossRef] [PubMed]
- Tizro, A.T.; Fryar, A.E.; Vanaei, A.; Kazakis, N.; Voudouris, K.; Mohammadi, P. Estimation of total dissolved solids in Zayandehrood River using intelligent models and PCA. Sustain. Water Res. Manag. 2021, 7, 22. [Google Scholar] [CrossRef]
- Xiao, Y.; Hao, Q.; Zhang, Y.; Zhu, Y.; Yin, S.; Qin, L.; Li, X. Investigating sources, driving forces and potential health risks of nitrate and fluoride in groundwater of a typical alluvial fan plain. Sci. Total Environ. 2022, 802, 149909. [Google Scholar] [CrossRef] [PubMed]
- Busico, G.; Ntona, M.M.; Carvalho, S.C.P.; Patrikaki, O.; Voudouris, K.; Kazakis, N. Simulating future groundwater recharge in coastal and inland catchments. Water Resour. Manag. 2021, 35, 3617–3632. [Google Scholar] [CrossRef]
- Ntona, M.M.; Busico, G.; Mastrocicco, M.; Kazakis, N. Coupling SWAT and DPSIR models for groundwater management in Mediterranean catchments. J. Environ. Manag. 2023, 344, 118543. [Google Scholar] [CrossRef]
- Appelo, C.A.J.; Postma, D. Geochemistry, Groundwater and Pollution, 2nd ed.; A.A. Balkema: Rotterdam, The Netherlands, 2005; p. 649. [Google Scholar]
- Retike, I.; Bikse, J.; Kalvans, A.; Delina, A.; Avotniece, Z.; Zaadnoordijk, W.J.; Jeme janova, M.; Popovs, K.; Babre, A.; Zelenkevics, A.; et al. Rescue of groundwater level time series: How to visually identify and treat errors. J. Hydrol. 2022, 605, 127294. [Google Scholar] [CrossRef]
- Leach, J.M.; Coulibaly, P.; Guo, Y. Entropy based groundwater monitoring network design considering spatial distribution of annual recharge. Adv. Water Resour. 2016, 96, 108–119. [Google Scholar] [CrossRef]
- Azadi, S.; Amiri, H.; Ataei, P.; Javadpour, S. Optimal design of groundwater monitoring networks using gamma test theory. Hydrogeol. J. 2020, 28, 1389–1402. [Google Scholar] [CrossRef]
- Ayvaz, M.T.; Elçi, A. Identification of the optimum groundwater quality monitoring network using a genetic algorithm based optimization approach. J. Hydrol. 2018, 563, 1078–1091. [Google Scholar] [CrossRef]
- Ayhan, H.Ö. Non-probability Sampling Survey Methods. In International Encyclopedia of Statistical Science; Springer: Berlin/Heidelberg, Germany, 2011; pp. 979–982. [Google Scholar] [CrossRef]
- Jiang, Y.; Guo, H.; Jia, Y.; Cao, Y.; Hu, C. Principal component analysis and hierarchical cluster analyses of arsenic groundwater geochemistry in the Hetao basin, Inner Mongolia. Geochemistry 2015, 75, 197–205. [Google Scholar] [CrossRef]
- Zhang, H.; Cheng, S.; Li, H.; Fu, K.; Xu, Y. Groundwater pollution source identification and apportionment using PMF and PCA-APCA-MLR receptor models in a typical mixed land-use area in Southwestern China. Sci. Total Environ. 2020, 741, 140383. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.; Zhou, Y.; Yuan, L.; Li, X.; Shao, H.; Lu, X. Integrated decision-making model for groundwater potential evaluation in mining areas using the cusp catastrophe model and principal component analysis. J. Hydrol. Reg. Stud. 2021, 37, 100891. [Google Scholar] [CrossRef]
- Audet, C.; Bigeon, J.; Cartier, D.; Le Digabel, S.; Salomon, L. Performance indicators in multi objective optimization. Eur. J. Oper. Res. 2020, 292, 397–422. [Google Scholar] [CrossRef]
- Kaiser, H.F. An index of factorial simplicity. Psychometrika 1974, 39, 31–36. [Google Scholar] [CrossRef]
- Piper, A.M. A graphical procedure in the geochemical interpretation of water analysis. Eos Trans. Am. Geophys. Union 1944, 25, 914. [Google Scholar] [CrossRef]
- Kouras, A.; Katsoyiannis, I.; Voutsa, D. Distribution of arsenic in groundwater in the area of Chalkidiki, Northern Greece. J. Hazar. Mat. 2007, 147, 890–899. [Google Scholar] [CrossRef]
- Kazakis, N.; Busico, G.; Ntona, M.M.; Philippou, K.; Kaprara, E.; Mitrakas, M.; Bannenberg, M.; Ioannidou, A.; Pashalidis, I.; Colombani, N.; et al. The origin of uranium in groundwater of the eastern Halkidiki region, northern Greece. Sci. Total Environ. 2022, 812, 152445. [Google Scholar] [CrossRef]
- Tzampoglou, P.; Loupasakis, C. Hydrogeological Hazards in Open Pit Coal Mines–Investigating Triggering Mechanisms by Validating the European Ground Motion Service Product with Ground Truth Data. Water 2023, 15, 1474. [Google Scholar] [CrossRef]
- Li, M.; Liu, Z.; Zhang, M.; Chen, Y. A workflow for spatio-seasonal hydro-chemical analysis using multivariate statistical techniques. Water Res. 2021, 188, 116550. [Google Scholar] [CrossRef]
- Okiongbo, K.S.; Douglas, R.K. Evaluation of major factors influencing the geochemistry of groundwater using graphical and multivariate statistical methods in Yenagoa city, southern Nigeria. Appl. Water Sci. 2015, 5, 27–37. [Google Scholar] [CrossRef]
- Zhu, X.; Miao, P.; Qin, J.; Li, W.; Wang, L.; Chen, Z.; Zhou, J. Spatio-temporal variations of nitrate pollution of groundwater in the intensive agricultural region: Hotspots and driving forces. J. Hydrol. 2023, 623, 129864. [Google Scholar] [CrossRef]
- Taghavi, N.; Niven, R.K.; Paull, D.J.; Kramer, M. Groundwater vulnerability assessment: A review including new statistical and hybrid methods. Sci. Total Environ. 2022, 822, 153486. [Google Scholar] [CrossRef] [PubMed]
- Guo, Z.; Chen, K.; Yi, S.; Zheng, C. Response of groundwater quality to river-aquifer interactions during managed aquifer recharge: A reactive transport modeling analysis. J. Hydrol. 2023, 616, 128847. [Google Scholar] [CrossRef]
- Haji Gholizadeh, M.; Melesse, A.M.; Reddi, L. Water quality assessment and apportionment of pollution sources using APCS-MLR and PMF receptor modeling techniques in three major rivers of South Florida. Sci. Total Environ. 2016, 566–567, 1552–1567. [Google Scholar] [CrossRef] [PubMed]
- Abdelaziz, S.; Gad, M.I.; El Tahan, A.H.M.H. Groundwater quality index based on PCA: Wadi El-Natrun, Egypt. J. Afr. Earth Sci. 2020, 172, 103964. [Google Scholar] [CrossRef]
- Chen, Z.; Zhou, Q.; Lv, J.; Jiang, Y.; Yang, H.; Yang, H.; Mei, S.; Jia, Z.; Zhang, H.; Jin, Y.; et al. Assessment of Groundwater Quality Using APCS-MLR Model: A Case Study in the Pilot Promoter Region of Yangtze River Delta Integration Demonstration Zone, China. Water 2023, 15, 225. [Google Scholar] [CrossRef]
- Thurston, G.D.; Spengler, J.D. A quantitative assessment of source contributions to inhalable particulate matter pollution in metropolitan Boston. Atmos. Environ. 1985, 19, 9–25. [Google Scholar] [CrossRef]
- De Biase, M.; Chidichimo, F.; Maiolo, M.; Micallef, A. The Impact of Predicted Climate Change on Groundwater Resources in a Mediterranean Archipelago: A Modelling Study of the Maltese Islands. Water 2021, 13, 3046. [Google Scholar] [CrossRef]
- Li, H.; Gu, J.; Hanif, A.; Dhanasekar, A.; Carlson, K. Quantitative decision making for a groundwater monitoring and subsurface contamination early warning network. Sci. Total Environ. 2019, 683, 498–507. [Google Scholar] [CrossRef]
- Kazakis, N.; Mattas, C.; Pavlou, A.; Patrikaki, O.; Voudouris, K. Multivariate statistical analysis for the assessment of groundwater quality under different hydrogeological regimes. Environ. Earth Sci. 2017, 76, 349. [Google Scholar] [CrossRef]
- Patrikaki, O.; Kazakis, N.; Voudouris, K. Vulnerability map: A useful tool for groundwater protection: An example from Mouriki basin, North Greece. Fresenius Environ. Bull. 2012, 21, 2516–2521. [Google Scholar]
- Hannover, B. Evaluation of Performance: A Judgmental Approach; Springer: New York, NY, USA, 1988. [Google Scholar]
- Karakatsanis, D.; Patsialis, T.; Kalaitzidou, K.; Kougias, I.; Ntona, M.M.; Theodossiou, N.; Kazakis, N. Optimization of dam operation and interaction with groundwater. An overview focusing on Greece. Water 2023, 15, 3852. [Google Scholar] [CrossRef]
Parameter | Description |
---|---|
Definition of the target |
|
Aquifer types |
|
Hydro morphological zones | Impacts of hydro morphological pressures (e.g., soil erosion) |
Land Use |
|
Previous data |
|
Point representativeness | Comparison of sampling points |
Study area |
|
Cost | Funds availability |
Time |
|
Field issues |
|
Mouriki basin | Thermaikos Gulf | Volturno basin | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
2021 | 2022 | 2021 | 2022 | 2021 | |||||||
Parameters | Component | Component | Component | Component | Component | ||||||
1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 1 | 2 | 3 | |
pH | −0.040 | −0.962 | −0.882 | 0.268 | −0.156 | −0.910 | −0.107 | −0.990 | −0.006 | −0.093 | 0.867 |
EC | 0.945 | 0.323 | 0.652 | 0.751 | 0.996 | 0.071 | 0.970 | 0.187 | 0.937 | 0.239 | −0.006 |
HCO3− | 0.846 | 0.148 | −0.276 | 0.925 | −0.132 | 0.915 | 0.907 | 0.186 | 0.965 | 0.103 | −0.202 |
Cl− | 0.286 | 0.870 | 0.947 | 0.290 | 0.998 | −0.018 | 0.978 | 0.109 | 0.448 | 0.848 | −0.064 |
SO4− | 0.947 | 0.219 | 0.961 | 0.066 | 0.986 | −0.029 | 0.976 | 0.082 | 0.063 | 0.581 | 0.696 |
SO4− | 0.685 | 0.657 | 0.961 | 0.066 | 0.915 | −0.154 | 0.973 | 0.044 | −0.493 | −0.145 | 0.491 |
Na+ | 0.375 | 0.767 | 0.826 | 0.393 | 0.988 | 0.044 | 0.954 | 0.155 | −0.135 | 0.961 | −0.033 |
K+ | −0.804 | −0.409 | −0.458 | −0.593 | 0.966 | 0.162 | 0.883 | 0.323 | −0.865 | 0.007 | −0.373 |
Ca2+ | 0.982 | 0.149 | −0.022 | 0.987 | 0.869 | 0.426 | 0.874 | 0.398 | 0.951 | 0.161 | −0.114 |
Mg2+ | 0.910 | 0.319 | 0.583 | 0.808 | 0.973 | −0.035 | 0.892 | 0.041 | 0.890 | −0.158 | −0.075 |
Eigenvalue | 7.13 | 1.68 | 6.12 | 2.85 | 7.49 | 1.87 | 8.21 | 1.03 | 4.9 | 2.06 | 1.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ntona, M.M.; Chalikakis, K.; Busico, G.; Mastrocicco, M.; Kalaitzidou, K.; Kazakis, N. Application of Judgmental Sampling Approach for the Monitoring of Groundwater Quality and Quantity Evolution in Mediterranean Catchments. Water 2023, 15, 4018. https://doi.org/10.3390/w15224018
Ntona MM, Chalikakis K, Busico G, Mastrocicco M, Kalaitzidou K, Kazakis N. Application of Judgmental Sampling Approach for the Monitoring of Groundwater Quality and Quantity Evolution in Mediterranean Catchments. Water. 2023; 15(22):4018. https://doi.org/10.3390/w15224018
Chicago/Turabian StyleNtona, Maria Margarita, Konstantinos Chalikakis, Gianluigi Busico, Micòl Mastrocicco, Kyriaki Kalaitzidou, and Nerantzis Kazakis. 2023. "Application of Judgmental Sampling Approach for the Monitoring of Groundwater Quality and Quantity Evolution in Mediterranean Catchments" Water 15, no. 22: 4018. https://doi.org/10.3390/w15224018
APA StyleNtona, M. M., Chalikakis, K., Busico, G., Mastrocicco, M., Kalaitzidou, K., & Kazakis, N. (2023). Application of Judgmental Sampling Approach for the Monitoring of Groundwater Quality and Quantity Evolution in Mediterranean Catchments. Water, 15(22), 4018. https://doi.org/10.3390/w15224018