Investigating the Influence of the Relative Roughness of the Riverbanks to the Riverbed on Equilibrium Channel Geometry in Alluvial Rivers: A Variational Approach
Abstract
:1. Introduction
2. Methodology
2.1. Huang’s Variational Model
2.2. Definition of the Relative Roughness of Riverbank to the Riverbed
3. Mathematical Analysis of the Influence of Relative Roughness of Riverbanks to a Riverbed on River Channel Equilibrium Form
4. Effects of Relative Roughness of Riverbanks to a Riverbed on Equilibrium Hydraulic Geometry
4.1. Equilibrium Hydraulic Geometry in the State of
4.2. Averaged Equilibrium Hydraulic Geometry at the State of
5. Comparative Analysis between This Study and Previous Studies
5.1. Hydraulic Geometric Relationships in the State of
5.2. Hydraulic Geometric Relationships in the State of
6. Discussion
7. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Blench, T. Mobile Bed Fluviology; University of Alberta Press: Edmonton, AB, Canada, 1969; 164p. [Google Scholar]
- Mackin, J. Concept of the gradedriver. GSA Bull. 1948, 59, 463. [Google Scholar] [CrossRef]
- Gray, W.G.; Ghidaoui, M.S.; Karney, B.W. Does the stream power theory have a physical foundation? J. Hydraul. Res. 2018, 56, 585–595. [Google Scholar] [CrossRef]
- Nanson, G.C.; Huang, H.Q. Least action principle, equilibrium states, iterative adjustment and the stability of alluvial channels. Earth Surf. Process. Landf. 2008, 33, 923–942. [Google Scholar] [CrossRef]
- Nanson, G.C.; Huang, H.Q. Self-adjustment in rivers: Evidence for least action as the primary control of alluvial-channel form and process. Earth Surf. Process. Landf. 2017, 42, 575–594. [Google Scholar] [CrossRef]
- Nanson, G.C.; Huang, H.Q. A philosophy of rivers: Equilibrium states, channel evolution, teleomatic change and least action principle. Geomorphology 2018, 302, 3–19. [Google Scholar] [CrossRef]
- Lane, E.W. The design of stable channels. Trans. ASEC 1955, 120, 1234–1279. [Google Scholar] [CrossRef]
- Huang, H.Q.; Nanson, G.C. Vegetation and channel variation; A case study of four small streams in southeastern Australia. Geomorphology 1997, 18, 237–249. [Google Scholar] [CrossRef]
- Huang, H.Q.; Nanson, G.C. The influence of bank strength on channel geometry: An integrated analysis of some observations. Earth Surf. Process. Landf. 1998, 23, 865–876. [Google Scholar] [CrossRef]
- Hey, R.D.; Thorne, C.R. Stable channels with mobile gravel beds. J. Hydraul. Eng.-ASCE 1986, 112, 671–689. [Google Scholar] [CrossRef]
- Lacey, G. Stable channels in alluvium. Proc. Inst. Civ. Eng. 1929, 229, 259–292. [Google Scholar]
- Andrews, E.D. Bed-material entrainment and hydraulic geometry of gravel-bed rivers in Colorado. Bull. Geol. Soc. Am. 1984, 95, 371–378. [Google Scholar] [CrossRef]
- Leopold, L.B.; Wolman, M.G. River channel patterns—Braided, meandering and straight. Prof. Geogr. 1957, 9, 39–85. [Google Scholar]
- Schumm, S.A. Geomorphic Thresholds and the Complex Response of Drainage System, Fluvial Geomorphology; Publications of Geomorphology; State University of New York: New York, NY, USA, 1973; pp. 299–310. [Google Scholar]
- Schumm, S.A. The Fluvial System; A Wiley-Interscience Publication: Hoboken, NJ, USA, 1977. [Google Scholar]
- Schumm, S.A. Experimental Fluvial Geomorphology; John Wiley & Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Schumm, S.A.; Khan, H.R. Experimental study of channel patterns. GSA Bull. 1972, 83, 1755. [Google Scholar] [CrossRef]
- Huang, H.Q.; Nanson, G.C. Hydraulic geometry and maximum flow efficiency as products of the principle of least action. Earth Surf. Process. Landf. 2000, 25, 1–16. [Google Scholar] [CrossRef]
- Parker, G. Self-formed straight rivers with equilibrium banks and mobile bed, 1, the sand-silt river. J. Fluid Mech. 1978, 89, 109–125. [Google Scholar] [CrossRef]
- Parker, G. Self-formed straight rivers with equilibrium banks and mobile bed, 2, the gravel river. J. Fluid Mech. 1978, 89, 127–146. [Google Scholar] [CrossRef]
- Ikeda, S.; Parker, G.; Kimura, Y. Stable width and depth of straight gravel rivers with hetrogeneous bed materials. Water Resour. Res. 1988, 24, 713–722. [Google Scholar] [CrossRef]
- Chang, H.H. Geometry of rivers in regime. J. Hydraul. Div. ASCE 1979, 105, 691–706. [Google Scholar] [CrossRef]
- Chang, H.H. Minimum stream power and river channel patterns. J. Hydrol. 1979, 41, 303–327. [Google Scholar] [CrossRef]
- Chang, H.H. Geometry of gravel streams. J. Hydraul. Div. ASCE 1980, 106, 1443–1456. [Google Scholar] [CrossRef]
- Chang, H.H. Stable alluvial canal design. J. Hydraul. Div. ASCE 1980, 106, 873–891. [Google Scholar] [CrossRef]
- Chang, H.H. Mathematical-model for erodible channels. J. Hydraul. Div. ASCE 1982, 108, 678–689. [Google Scholar] [CrossRef]
- Chang, H.H. Analysis of river meanders. J. Hydraul. Div. ASCE 1984, 110, 37–50. [Google Scholar] [CrossRef]
- Chang, H.H. Modeling of river channel changes. J. Hydraul. Div. ASCE 1984, 110, 157–172. [Google Scholar] [CrossRef]
- Chang, H.H. River morphology and thresholds. J. Hydraul. Div. ASCE 1985, 111, 503–519. [Google Scholar] [CrossRef]
- Mengoni, B.; Paris, E.; Bettess, R. Analytical approach to river regime. J. Hydraul. Div. ASCE 1982, 108, 1179–1193. [Google Scholar]
- Yang, C.T. Unit stream power and sediment transport. J. Hydraul. Div. ASCE 1974, 100, 1269–1272. [Google Scholar] [CrossRef]
- Yang, C.T. Minimum unit stream power and fluvial hydraulics. J. Hydraul. Div. ASCE 1976, 102, 919–934. [Google Scholar] [CrossRef]
- Yang, C.T. Closure to Minimum unit stream power and fluvial hydraulics. J. Hydraul. Div. ASCE 1978, 104, 122–125. [Google Scholar] [CrossRef]
- Yang, C.T. Unit stream power equations for total load. J. Hydrol. 1979, 40, 123–138. [Google Scholar] [CrossRef]
- Yang, C.T. Unit stream power equation for gravel. J. Hydraul. Div. ASCE 1984, 110, 1783–1797. [Google Scholar] [CrossRef]
- Yang, C.T.; Molinas, A. Sediment transport and unit stream power function. J. Hydraul. Div. ASCE 1982, 108, 774–793. [Google Scholar] [CrossRef]
- Yang, C.T.; Song, C.C.S. Theory of minimum rate of energy-dissipation. J. Hydraul. Div. ASCE 1979, 105, 769–784. [Google Scholar] [CrossRef]
- Yang, C.T.; Song, C.C.S.; Woldenberg, M.J. Hydraulic geometry and minimum rate of energy-dissipation. Water Resour. Res. 1981, 17, 1014–1018. [Google Scholar] [CrossRef]
- Yang, C.T.; Stall, J.B. Applicability of unit stream power equation-closure. J. Hydraul. Div. ASCE 1978, 104, 1095–1103. [Google Scholar] [CrossRef]
- Eaton, B.C.; Millar, R.G. Optimal alluvial channel width under a bank stability constraint. Geomorphology 2004, 62, 35–45. [Google Scholar] [CrossRef]
- Song, C.C.S.; Yang, C.T. Comment on “Extremal hypotheses for river regime: An illsion of progress” by George A. Griffiths. Water Resour. Res. 1986, 22, 993–994. [Google Scholar] [CrossRef]
- Ferguson, R.I. Hydraulics and hydraulic geometry. Prog. Phys. Geogr. Earth Environ. 1986, 10, 1–31. [Google Scholar] [CrossRef]
- Griffiths, G.A. Extremal Hypotheses for River Regime: An Illusion of Progress. Water Resour. Res. 1984, 20, 113–118. [Google Scholar] [CrossRef]
- Chang, H.H. Comment on “Extremal hypotheses for river regime: An illusion of progress” by George A. Griffiths. Water Resour. Res. 1984, 20, 1767–1768. [Google Scholar] [CrossRef]
- Millar, R.G. Theoretical regime equations for mobile gravel-bedrivers with stable banks. Geomorphology 2005, 64, 207–220. [Google Scholar] [CrossRef]
- Eaton, B.; Millar, R. Predicting gravel bed river response to environmental change: The strengths and limitations of a regime-based approach. Earth Surf. Process. Landf. 2017, 42, 994–1008. [Google Scholar] [CrossRef]
- Huang, H.Q.; Nanson, G.C. A stability criterion inherent in laws governing alluvial channel flow. Earth Surf. Process. Landf. 2002, 27, 929–944. [Google Scholar] [CrossRef]
- Huang, H.Q.; Chang, H.H.; Nanson, G.C. Minimum energy as the general form of critical flow and maximum flow efficiency and for explaining variations in river channel pattern. Water Resour. Res. 2004, 40, 13. [Google Scholar] [CrossRef]
- Huang, H.Q.; Nanson, G.C. Why some alluvial rivers develop an anabranching pattern. Water Resour. Res. 2007, 43, 12. [Google Scholar] [CrossRef]
- Huang, H.Q. Reformulation of the bed load equation of Meyer-Peter and Muller in light of the linearity theory for alluvial channel flow. Water Resour. Res. 2010, 46, 11. [Google Scholar] [CrossRef]
- Fan, J.; Huang, H.; Yu, G.; Su, T. River channel forms in relation to bank steepness: A theoretical investigation using a variational analytical method. Water 2020, 12, 1250. [Google Scholar] [CrossRef]
- Manning, R. On the Flow of Water in Open Channels. Trans. Inst. Civ. Eng. Irel. 1889, 20, 161–207. [Google Scholar]
- Chien, N. Meyer-Peter Formula for Bed Load Transport Aniond Einstein Bed Load Function; University of California: Berkeley, CA, USA, 1954. [Google Scholar]
- Meyer-Peter, E.; Muller, R. Formulas for Bed-Load Transport. In IAHSR 2nd Meeting, Stockholm, Appendix 2; IAHR: Madrid, Spain, 1948. [Google Scholar]
- Einstein, H.A. Formula for transportation of bed load. Trans. ASEC 1942, 107, 561–597. [Google Scholar] [CrossRef]
- Einstein, H.A. The Bed Load Function for Sediment Transportation in Open Channel Flows; Technical Bulletin; U.S. Department of Agriculture: Washington, DC, USA, 1950; p. 71.
- Nanson, R.A.; Nanson, G.C.; Huang, H.Q. The hydraulic geometry of narrow and deep channels: Evidence for flow optimisation and controlled peatland growth. Geomorphology 2010, 117, 143–154. [Google Scholar] [CrossRef]
- Lane, E.W. Progress Report on Results of Studies on Design of Stable Channels; Hydraulic Laboratory Report Hyd-352; U.S. Bureau of Reclamation: Washington, DC, USA, 1952.
- Rhodes, D.D. The b-f-m diagram for downstream hydraulic geometry. Geogr. Ann. Ser. A Phys. Geogr. 1987, 69, 147. [Google Scholar] [CrossRef]
- Huang, H.Q. The multivariate controls of hydraulic geometry: A causal investigation in terms of boundary shear distribution. Earth Surf. Process. Landforms 1995, 20, 115–130. [Google Scholar] [CrossRef]
(%) | (m3/s) | (%) | ||
---|---|---|---|---|
1 | 61.48 | 0 | 0.0741 | 0 |
0.1 | 89.2 | 45.09 | 0.0729 | −1.62 |
0.5 | 73.36 | 19.32 | 0.0734 | −0.94 |
2 | 29.8 | −51.53 | 0.0763 | 2.97 |
Values of a, b, and c | ||
---|---|---|
0.1 | 3.12 | |
0.5 | 2.47 | |
1 | 2 | |
2 | 1.62 |
0.1 | 1000 | 4~1000 |
0.5 | 833 | 3~833 |
1 | 625 | 3~625 |
2 | 215 | 2~215 |
Averaged Equilibrium Channel Relationships | ||
---|---|---|
0.1 | ||
0.5 | ||
1 | ||
2 |
Averaged Hydraulic Geometry Relationships | ||
---|---|---|
0.1 | ||
0.5 | ||
1 | ||
2 |
Channel Geometry Factor | This Study | Fan and Huang (2020) [51] | Threshold Theory (Lane, 1952) [58] |
---|---|---|---|
Width () | |||
Depth () | |||
Slope () | |||
Width/depth ratio () | 1.62–3.12 | 2–4 | 7.05–8.61 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fan, J.; Luo, Q.; Bai, Y.; Liu, X.; Li, R. Investigating the Influence of the Relative Roughness of the Riverbanks to the Riverbed on Equilibrium Channel Geometry in Alluvial Rivers: A Variational Approach. Water 2023, 15, 4029. https://doi.org/10.3390/w15224029
Fan J, Luo Q, Bai Y, Liu X, Li R. Investigating the Influence of the Relative Roughness of the Riverbanks to the Riverbed on Equilibrium Channel Geometry in Alluvial Rivers: A Variational Approach. Water. 2023; 15(22):4029. https://doi.org/10.3390/w15224029
Chicago/Turabian StyleFan, Jinsheng, Qiushi Luo, Yuchuan Bai, Xiaofang Liu, and Renzhi Li. 2023. "Investigating the Influence of the Relative Roughness of the Riverbanks to the Riverbed on Equilibrium Channel Geometry in Alluvial Rivers: A Variational Approach" Water 15, no. 22: 4029. https://doi.org/10.3390/w15224029
APA StyleFan, J., Luo, Q., Bai, Y., Liu, X., & Li, R. (2023). Investigating the Influence of the Relative Roughness of the Riverbanks to the Riverbed on Equilibrium Channel Geometry in Alluvial Rivers: A Variational Approach. Water, 15(22), 4029. https://doi.org/10.3390/w15224029