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Abstract: Sampling and analysing urban wastewater are found to be a reliable indicator of the
regional spread of infectious diseases. During the COVID-19 pandemic, several research groups
around the globe sampled wastewater from treatment plants or other points throughout a sewer
system and tried to identify the presence of the virus. Since infected persons are found to excrete the
virus in their feces and urine, urban wastewater analysis proved to be a valuable tool for the early
detection of spikes in the disease. In the present study, an effort was made to investigate several
fate and transport scenarios of SARS-CoV-2 in a sewer system. USEPA’s Storm Water Management
Model (SWMM) was utilized for the analysis. The modelling results were then used as an input
to an optimization procedure using an NSGA-II algorithm. The optimization procedure aimed to
determine the appropriate number and combination of sampling points for a better assessment of the
disease’s dispersion in the community. Four to six sampling points seem to offer a high likelihood of
SARS-CoV-2 RNA detection in minimum time, representing the maximum population.

Keywords: SARS-CoV-2; EPA SWMM; wastewater; wastewater surveillance; sampling points;
optimization; wastewater-based epidemiology

1. Introduction

Wastewater is normally considered a source of contamination; however, it can also
serve as a source of information. It can deliver useful information for several parameters
concerning the population living in a certain sewershed; this practice is referred to as
wastewater surveillance or wastewater-based epidemiology (WBE). Wastewater analy-
sis can reveal pharmaceuticals’ consumption patterns [1,2], the occurrence of antibiotics
and development of antibiotic resistance [3,4], human exposure to pesticides [5], and the
presence of viruses such as poliovirus [6,7], noroviruses [8], Hepatitis B virus [9], and
SARS-CoV [10].

Since the spread of the new coronavirus SARS-CoV-2 worldwide, causing the COVID-19
disease, wastewater surveillance for the presence of SARS-CoV-2 viral RNA has become
a common practice for many research groups from all over the world, including Aus-
tralia [11], Canada [12], France [13], Germany [14], Greece [15,16], Japan [17], United Arab
Emirates [18,19], and USA [20–22].

Wastewater surveillance for SARS-CoV-2 can serve as an expansion of the clinical de-
tection of infected individuals; this is owing to the fact that there is a possibility of underesti-
mation of the disease’s spread in the community, because of mild or asymptomatic carriers,
if the detection is based only on clinical tests [18]. Furthermore, wastewater surveillance
can be a useful tool in the case of low availability of clinical tests, and it also can serve as an
early warning tool for the spread of COVID-19 in a community. A quantity of viral RNA de-
tected in wastewater appears to have a correlation with clinical detected COVID-19 cases in
corresponding sewersheds [19,20]. Moreover, in many cases, the detection of viral RNA in
wastewater is possible days before first cases are reported by local authorities [23,24], and it
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can foresee an upsurge in infections or hospitalizations [12,13,16,19,20,25,26]. Identification
of the prevalence of a certain variant of the disease is also possible [27,28].

The presence of SARS-CoV-2 RNA in the feces, urine, or other excretions of COVID-19
patients has been recorded in various studies. A significant percentage of patients have
shown positive fecal samples, while the presence of viral RNA in feces does not appear to
be associated with the presence of gastrointestinal symptoms or with severity of illness;
further, it seems that fecal samples remain positive longer than respiratory samples [29,30].
Less is known about exact shedding quantities, shedding duration, or correlation with the
symptomatic phase.

Understanding the fate of SARS-CoV-2 RNA during its flow inside sewerage pipelines
is crucial for properly assessing SARS-CoV-2 RNA quantities in wastewater and the health
status of the corresponding population; however, very little is known about its mechanisms.

In a sewerage system, several microbial, chemical, and physicochemical processes take
place, which affect viruses’ fate during transport [31]. Coronaviruses are enveloped viruses
that have a lipid bilayer membrane outside the viral protein capsid, which contains proteins
or glycoproteins [32]. This kind of structure may have an impact on the viruses’ survival
in aqueous environments, where their lipid layers are sensitive to detergents and organic
solvents [32]. Coronavirus is found to die off very rapidly in wastewater; thus, while genetic
fragments remain detectable in wastewater, the virus most likely becomes nonviable once
the envelope is damaged [32–34]. The survival of coronavirus in water depends on a
number of factors, including temperature, light exposure (solar or UV inactivation), organic
matter, total dissolved solids (TDS), hardness, turbidity, pH, nitrate concentrations, and the
presence of antagonist microorganisms [35].

A few studies have paid closer attention to processes in sewerage systems. Petala
et al. [15] examine the effect of environmental parameters on the adsorption of a virus
onto suspended solids and found the ratio of the specific absorption (UV254/DOC) over
the dissolved oxygen (DO) to be the parameter with the highest correlation with the viral
copies. Kostoglou et al. [36] developed a general model for the absorption of SARS-CoV-2
parts on solid particles suspended in wastewater into a sewer system. Hart et al. [37]
estimated the decay rate of several biomarkers into sewer systems, based on wastewater
temperature, and examined the effect of seasonality and travel time on the SARS-CoV-2
loads available for observation at downstream monitoring locations [38].

The available studies inspect SARS-CoV-2 RNA’s persistence in wastewater under
storage conditions in the laboratory. The measured mean first-order decay rate constant
(k) of SARS-CoV-2 ranges from 0.08–3.4 day−1 and T90 (time required for 90% reduction)
between 3.3–52 days, for untreated wastewater, considering temperatures in the range of
4–37 ◦C. The tested material is either seeded raw wastewater samples [39–41] or positive
raw wastewater samples [14,42]. All of the reviewed studies assume first-order decay of
SARS-CoV-2 RNA. Bivins et al. [40] also examined the biphasic decay model for infec-
tious SARS-CoV-2 using the sum-of-squares F test; they found that this did not improve
the fit of the model, so they used only the first-order decay model for further analysis.
Hokajarvi et al. [41] tested the log-linear and biphasic decay models and concluded to a
linear decay of SARS-CoV-2 RNA at 4 ◦C.

Taking samples from the influent of WWTPs has been the main practice used for
wastewater surveillance of COVID-19 spread to date, mainly because of convenience.
This method has been proven to offer adequate information on the disease’s spread in
the corresponding sewershed. However, some weaknesses were not foreseen, such as
the possibility of loss of information because of dilution, decay, or other processes inside
sewerage pipelines, and the absence of more detailed monitoring of the spatial distribution
of virus spread in the sewershed. Sampling at more points upstream in the sewer system,
such as pumping stations, interceptors and manholes, has to be considered. In order to
find the most appropriate sampling points, an optimization methodology is applied herein
using an optimization algorithm.
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Genetic algorithms are a very popular and strong optimization tool. A collection of
several applications of genetic algorithms on water resources management can be found
in [43]. Optimization algorithms can be useful in the selection of monitoring points for
water quality observations; however, determining the objective function is the first and
most important step. During the Battle of the Water Sensor Networks (BWSN), a group of
design objectives for optimal sensor network design concerning water distribution systems
was suggested [44]. These included time of detection, population affected, consumption
of contaminated water, and detection likelihood. These objectives been used by several
researchers to establish a network of monitoring points, able to detect contamination events
in water distribution systems [45–47]. Banik et al. [48,49] used detection time and possibility
of detection as design objectives for the optimal design of a sensor network for monitoring
water quality parameters in a sewerage system. Also, Banik et al. [50] proposed joint
entropy as a measure of information content and total correlation as objective functions,
based on information theory. Lee et al. [51] proposed a methodology based on entropy the-
ory for optimal water quality monitoring points in sewer systems, and Alfonso et al. [52]
used information theory for optimal placement of flow measurement points in a river.
Brentan et al. [46] applied entropy theory, as a step following optimization procedure, to
rank a pareto front of nondominated solutions and find the best one. Psarrou et al. [53]
applied a genetic algorithm for choosing optimal locations for sewer mining implemen-
tation, based on the minimization of hydrogen sulfide production into sewerage and the
maximization of water needs satisfaction.

In the field of wastewater-based epidemiology, Domokos et al. [54] proposed a method-
ology for the optimal placement of sampling points for the detection of SARS-CoV-2, based
on calculated discharges at each point, aiming for each point to be representative of a
specific segment of the network and the whole network to be observed. However, they
contemplate not a hydraulic model but a GIS model.

In the present study, we make the first attempt to model the movement of SARS-CoV-2
RNA into a sewerage system. Parameters such as discharge points, initial concentration,
and decay rate of viral RNA can affect the concentration and load values that appear in
different points across the system. Sensitivity analysis is performed to assess the effect of
different values of initial concentration and decay rate to the maximum concentration and
detection time appearing in downstream nodes. Additionally, this study aims at proposing
a methodology for optimal selection of the quantity and the combination of sampling points
through a sewerage system with a view to assessing COVID-19 spread in the population.
This can be achieved by examining the effect of parameters such as detection time, detection
likelihood, and population served by each node of the system. Results from the hydraulic
model are then inserted into the optimization algorithm NSGA-II in order to find the
adequate number and combination of sampling points.

2. Materials and Methods

The proposed methodology includes a fate and transport modelling approach of SARS-
CoV-2 RNA into urban sewer systems, followed by an optimization procedure for selecting
optimal sampling points for COVID-19 spread surveillance. Time series data of SARS-
CoV-2 RNA concentration across the sewer system are obtained under different scenarios,
executed using the SWMM model. These data are used as input for running the NSGA-II
optimization algorithm and selecting optimal sampling points and an adequate number of
sampling locations. Finally, decision-making methods are applied as a supportive tool.

A brief description of the methodology used in this study is presented in the flowchart
illustrated in Figure 1.
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Figure 1. Workflow of the optimization methodology.

2.1. SWMM

The United States Environmental Protection Agency’s Storm Water Management
Model (EPA’s SWMM) is used for the simulation of SARS-CoV-2 RNA fate and transport in
sewer systems. SWMM is a dynamic rainfall runoff simulation model; it also contains a
flexible set of hydraulic modelling capabilities used to rout runoff, external inflows, and
water quality constituents through the drainage system [55]. It is possible for the user to
enter dry weather sanitary flows and user-specified external inflows at any point in the
drainage system. As a result, SWMM can be used to simulate combined sewer systems as
well as to separate drainage and sewer systems [56]. For water quality constituent rout-
ing, SWMM computations are based on one-dimensional advection—dispersion equation
(Equation (1)) for the transport of dissolved constituents along the length of a conduit [57]:

∂c
∂t

= −∂(uc)
∂x

+
∂

∂x

(
D

∂c
∂x

)
+ r(c) (1)

where c: constituent concentration (ML−3), u: longitudinal velocity (LT−1), D: longitudinal
dispersion coefficient (L2/T), r(c): reaction rate term (ML−3T−1)), x: longitudinal distance
(L), and t: time (T). SWMM assumes conduits to operate as completely mixed reactors and
uses (Equation (2)) to solve constituents’ transport into the sewer system [57]:

∂(Vc)
∂t

= CinQin − cQout − Vr(c) (2)

where V: volume within the reactor, c: concentration within the reactor, Cin: concentration
of any inflow to the reactor, Qin: volumetric flow rate of this inflow, Qout: volumetric
flow rate leaving the reactor, and r(c): a function that determines the rate of loss due to
reaction. To account for the reaction term, a constant first-order decay rate is assumed for
the present study.

It is assumed that SARS-CoV-2 RNA decay in wastewater follows the first-order decay
(Equation (3)) as long as there are no more specific data available to run a more sophisti-
cated model; first-order decay has been also suggested in other studies [22,37,39,40,58], as
previously mentioned.

C = C0e−kt (3)

where C: SARS-CoV-2 concentration, k: first-order decay rate constant.
Simulation results for SARS-CoV-2 RNA concentration at each node of the system are

extracted from the SWMM model using the pyswmm Python library [59].
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2.2. Optimization

For performing the optimization procedure, a number of scenarios were considered.
The relatively low value of 3 × 104 gene copies/L (GC/L) was chosen for the initial
concentration of virus discharging into the sewer system, from one insertion point at a
time; for the decay rate, the relatively high value equal to 3.36 day−1 was considered. In
order to reduce computational time, sixteen different insertion points of the virus across
the sewer system were examined (Figure 2a), and nodes with the higher values of base
flow were chosen. Furthermore, 21 nodes were evaluated as possible sampling points
(Figure 2b) based on their placement into the sewer system. Nodes located at central areas
of the city and nodes where multiple branches contribute were chosen. The outfall node to
the WWTP was also included. The time series of concentration at all candidate nodes was
extracted from the SWMM simulation results, then they were used to calculate parameters
required as an input to the optimization model. The average values of detection time (Td)
and detection likelihood (DL) were calculated for each control node, under all scenarios.
Additionally, the population served (Ps) from each control node was estimated. These
values were then imported into the optimization model.
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Figure 2. Sewerage system of the city of Kozani with denoted: (a) simulated insertion points,
(b) simulated candidate sampling points, (c) sewerage path from insert node 1344 to candidate
sampling node 2 (outfall to the WWTP); across this path, indicative results of simulation are presented.

The optimal selection of sampling points combinations aims to be able to detect
quickly the SARS-CoV-2 traces reliable, and to be representative of as many individuals
as possible. This concept can be realized through a multi-objective optimization problem.
Detection time was proposed by [44] as an objective function for optimal sensor location
for hazardous pollutant detection in water distribution systems, which is also used by [49]
for sewer systems’ water quality monitoring. Ostfeld et al. [44] also proposed detection
likelihood and affected population as objective functions. Hereafter, the three objective
functions that are evaluated in this study are described:

Detection time (Td). Td is the elapsed time from the start of viral shedding to the
sewer system until the first detection at the node. Its values are generated from the SWMM
model results, considering a limit of detection (LOD) equal to 103 GC/L. In the case that
the concentration at a node never reaches the LOD during the whole simulation time, it is
not taken into account. Average detection time (Td) for a certain combination is used for
the optimization.

Td =
∑N

1 Td(Xi)

N
, i = 1 . . . N (4)

where Td (Xi) is the first detection time at the sampling point (node) Xi, and N is the number
of selected sampling points.
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Population (Ps) is the upstream population (Ps) that is connected to a particular node.
In maximum population (Ps), that which can be represented from a certain combination
is considered.

Ps = maxPs (Xi), i = 1 . . . .N (5)

where Ps (Xi) is the upstream population connected to a sampling point (node) Xi.
Detection likelihood (DL), at each node. Average detection likelihood (DL) for a certain

combination is used for the optimization:

DL =
∑N

i DL(Xi)

N
, i = 1 . . . .N (6)

where DL (Xi) is the detection likelihood at a particular node Xi, DL is equal to 1 if the viral
RNA is detected and equal to 0 otherwise.

Thus, the multi-objective optimization problem was performed with three different
combinations of objective functions as described in the following Equations (7)–(9):

Combination 1: f1 = minTd, f2 = maxDL (7)

Combination 2: f1 = minTd, f2 = maxPs (8)

Combination 3: f1 = minTd, f2 = maxPs, f3 = maxDL (9)

The optimization problem was solved by the nondominated sorting genetic algorithm
(NSGA-II), a multi-objective evolutionary algorithm proposed by [60]. The NSGA-II algo-
rithm achieves alleviation of computational complexity by introducing a fast nondominated
sorting procedure and a selection operator that creates a mating pool by combining the
parent and offspring populations and selecting the best solutions in terms of fitness and
spread. The main operations of the algorithm are nondominated sorting, crowding-distance
calculation, and sorting based on a crowding-comparison operator [60]. For realization of
the optimization methodology, the pymoo Python library was used [61].

2.3. Study Area

The proposed methodology was applied to the sewer system of the city of Kozani
located in Western Macedonia, Greece, as shown in Figure 3. The region of Kozani was
one of the areas of Greece most affected by the COVID-19 pandemic, with 48.5% of the
population diagnosed with COVID-19 between 2020 and 2022 [62]. The city of Kozani has
a combined sewerage system that collects wastewater and stormwater and conveys them
to the local treatment plant; there is also a combined sewer overflow outfall in front of
the entrance to the treatment plant in the event of intense rainfall. The local wastewater
treatment plant (WWTP) serves about 49,000 inhabitants from the city of Kozani and the
nearby suburban area of Krokos. The WWTP receives mainly residential wastewater, and
there is a hospital in the area. Data about the geometry of the sewer system were obtained
from the local water supply and sewerage services company. The available data included
nodes’ coordinates, maximum depth, and incomplete elevation data, along with conduits’
length, cross-section geometry, and material. Due to the lack of complete data, only the main
branches of the sewerage system were used in the present analysis. The wastewater inflows
at each node of the system were unknown, thus they were estimated based on the service
area of each node, statistical data on population density, and the data of the inflow to the
WWTP. For the data preparation and estimation of each node service area, QGIS software,
version 3.16.11 was used, and at nodes where the elevation is not known, it was extracted
from the digital elevation model (DEM) acquired from Copernicus, Land Monitoring
Service. The system was studied under dry weather conditions. Constant flow of domestic
wastewater was assumed, and no hourly patterns were taken into consideration.
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Several scenarios were examined under dry weather conditions considering different
values of the initial concentration of SARS-CoV-2, the decay rate of viral RNA, and all the
possible insertion points across the sewer system. Continuous discharge of SARS-CoV-2
was assumed, during the 24 h simulation time, with initial concentration between 3 × 104

gene copies/L (GC/L) and 15 × 104 GC/L. Since the reported concentration values in
wastewater from the available studies are of different orders of magnitude and no standard-
ized discharge concentration values per person exist, the values used here were derived as
multipliers of the limit of detection (LOD). The LOD of SARS-CoV-2 in wastewater was
assumed to be in the range of 1,000–3,000 GC/L [16,22,63].

In this study, a first-order decay rate constant in the range of 0.1 to 3.4 day−1 [22,39,40] was
considered, assuming average wastewater temperatures in the range of 15–25 ◦C [37,38,64].
Wastewater temperature appears to have a positive correlation with the decay of SARS-CoV-2
RNA; the higher the temperature, the higher the decay rate [65].

3. Results and Discussion
3.1. Simulation Results and Sensitivity Analysis

Different scenarios were simulated using SWMM model; four values of decay rate
and initial concentration were considered, and various SARS-CoV-2 insertion points were
evaluated. The results of the simulations and optimization are presented in the rest of
this manuscript.

The indicative SWMM simulation results are reported in Figures 4 and 5a,b. Results
for candidate sampling nodes located on the sewerage path between node 1344 (the virus’s
entrance point) and node 2 (the outfall to WWTP) (Figure 2c) are included. Figure 4 presents
the maximum total inflow (L/s) at each node. Figure 5a presents the peak concentration
(Cmax) and detection time (Td) at each node under four different values of decay rate, in
the range of values referred to in the reviewed bibliography. Meanwhile, Figure 5b shows
the peak concentration and detection time at each node under four different values of
initial concentration. The nodes appear from left to right, from upstream to downstream.
The maximum total inflow increases from upstream to downstream, and a sharper rise
appears after an extra branch contributes its flow to the main path. At the same nodes, an
acute reduction of peak concentration also appears for the combination of all simulation
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parameters, due to dilution. Likewise, peak concentration is reduced while travel time
increases, because of the effect of decay. Downstream nodes where the entrance to the
treatment plant is located show a notable decline in the peak concentration. The effect of
the decay rate and the dilution is significant; considering that few data are available for
fate and transport of the SARS-CoV-2 RNA value, this leads to a great deal of uncertainty
in the analysis of SARS-CoV-2 RNA presence in samples coming from the entrance to the
WWTP, which is the common practice during wastewater surveillance. As expected, the
detection time of SARS-CoV-2 RNA at each node is increased with the distance from the
discharge point.
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In the present study, maximum concentration values at node 2 (entrance to WWTP) are found
between 1,377–7,979 GC/L. The available data from other studies report concentration values
of the WWTPs’ influent in the range of 100–100,000 GC/L (capacity 57,000–200,000 m3/day) [20],
750–34,000 GC/L (capacity 5,200–241,000 m3/day) [18], 12–22,000 GC/L [23], and 3,000–20,000 GC/L
(capacity 13,400–1,100,000 m3/day) [14]. Direct comparisons are not possible because of the different
capacities of the studied WWTPs and the unknown or roughly estimated number of infected persons.
However, our simulated data are in the reported range of these studies, in the low side of them,
which is expected since the WWTP under study have a lower capacity (16,500 m3/day) than the
WWTPs studied elsewhere. Furthermore, in the present study, the viral load insertion is assumed to
be only in one node at a time, in order to simulate the case of a low number of infected persons and
an early detection of the disease surge. The concentration data along the sewer system are spears;
however, the reported values of 286–29,000 GC/L [18] are of the same order of magnitude as the
simulated values of the present study.

Sensitivity analysis was performed for examining how different values of the input
parameters affect the model’s outputs. In the present study, the decay rate and initial
concentration of SARS-CoV-2 are tested for their effect on maximum concentration and
detection time (Figure 5). It is evident that decay rate values have no significant effect on
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either maximum concentration or detection time. The maximum concentration values are
slightly different, and the detection time values are almost the same except for the three last
nodes, especially node 2 (in front of the entrance to the WWTP). However, the patterns are
similar across the sewer system and, as a result, the optimization results are not expected to
be affected. On the other hand, the different initial concentration values cause an important
change in the maximum concentration values, especially in the nodes closer to the entrance
point. Moreover, influence on detection time is less important and appears at the nodes
with longer distance from the entrance point. More data will subsequently be needed on
the virus’s shedding quantities from infected persons for a better interpretation of the WBE
data, although the optimization results may not be affected since the patterns are similar.

3.2. Optimization Results

Even though the best option for wastewater-based evaluation of SARS-CoV-2 preva-
lence in a sewershed is to take samples from all possible nodes, this may not be practical
because of budget, time, personnel, or other constraints, and in this case only a certain
number of sampling points have to be included. In this study, 21 nodes of the main path
of the sewer pipeline network were evaluated as possible sampling points (Figure 2b),
and sixteen nodes were considered as possible insertion points (Figure 2a). As long as
sensitivity analysis results reveal a slight effect of tested input parameters, optimization
methodology is applied under simulation results for 3 × 104 GC/L initial concentration and
a decay rate equal to 3.4 day−1. Using the NSGA-II optimization algorithm and assuming
that a set of 1 to 10 sampling points (Ns) can be selected each time, the following results are
derived. Figures 6 and 7 present optimization results for objective functions combination
(1), (2) and (3), respectively. Each point represents a solution and the values of objective
function that can be achieved with each one of them. For the sewer system under study,
four to six sampling points appear to be adequate to acquire representative samples and to
allow the detection of SARS-CoV-2 RNA quickly and reliably, under all combinations of
objective functions. A set of two sampling points also performs well in some cases (e.g.,
combination 1), though in other cases it is not (e.g., combination 2). Thus, they are not
proposed as a possible optimal solution, in this study. On the other hand, increasing the
number of sampling points to more than six does not seem to further improve the value
of the objective functions under all the examined combinations. Domokos et al. [54] also
concluded to the selection of six sampling points as an optimal placement of measurement
points for SARS-CoV-2 measurements into the sewer system of a small city in Hungary.

1 
 

 
 
 
 
 
 

 

Figure 6. Optimization’s results under combination (1) of objective functions: detection time (Td) and
detection likelihood (DL) and combination (2) of objective functions: population represented (Ps) and
detection time (Td).
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 Figure 7. Optimization’s results under combination (3) of objective functions: population represented
(Ps), detection time (Td) and detection likelihood (DL).

3.3. Decision Making

Due to large number of optimal solutions derived from the multi-objective optimiza-
tion procedure, a decision-making step is necessary. This step may be applied by decision
makers, based on their critical thinking, or a decision-making technique can be engaged.
By means of mathematics, all solutions are equal. Since objective functions are conflicting,
choosing a solution that improves one parameter, this comes at the cost of deteriorating an-
other one. A two-step procedure with multi-objective optimization as a first step, followed
by a decision-making technique as a second step, is implemented in the present study. In
order to reduce the search area, the decision-making technique is applied only for optimal
solutions derived from combinations of 4, 5, and 6 sampling points, which are found to give
the best results among all the tested combinations. The Technique for order of preference
by similarity to ideal solution (TOPSIS) [66] is utilized herein as the decision-making step.
With the TOPSIS method, optimal solutions are sorted based on how close they are to the
positive ideal solution and how far they are from the negative ideal solution. Although
simple, it is found to be among the best methods by [67], who made a comparative study of
well-established methods for selection amid nondominated optimal solutions, formulated
by multi-objective optimization procedure. The TOPSIS results for the first four ranked
solutions are presented in Table 1 for each optimization combination. Also, the Simple
Additive Weighting (SAW) method [68] and ranking based on detection likelihood were
tested in the present study, and the results for combination C3 are presented in Table 1.
Both the TOPSIS and the SAW methods are proposed as solutions that are representative
for the whole population. The first four selected solutions by the TOPSIS method yield
a detection likelihood of more than 0.3 (DL > 0.30) and a detection time of less than 48 min
(Td < 48 min), while those selected by the SAW method yield DL > 0.46 and Td < 42 min. On
the other hand, sorting solutions based on DL values suggests higher values of detection
likelihood (DL > 0.50) and similar levels of detection time (Td < 43 min). However, the
represented population is lower (no more than 18,500 inhabitants). In general, the SAW
method appears to have slightly better performance than TOPSIS, in terms of the proposed
solutions, and both methods seem to have better performance than a sorting solution based
on detection likelihood.
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Table 1. Decision-making results of optimal solutions that ranked in the four first places for each
optimization combination (C1, C2 and C3) (Ns: number of sampling points, Td: detection time, Ps:
population represented, DL: detection likelihood).

Optimization Combination Ns Solutions Td (min) PS (inh) DL

WWTP 1 86 47,494 0.25

TOPSIS

C1

4 1872, 1161, 1893, 1295 39.75 0.53

4 1872, 1161, 251, 1295 37 0.52

4 1872, 1161, 1295, 1290 34.5 0.47

4 1937, 1872, 1161, 1295 34.5 0.47

C2

6 1263, 1680, 1714, 1291, 128, 2 28.5 47,496

6 1263, 2171, 1680, 1714, 1291, 128 22.5 47,494

4 1263, 1680, 128, 2 32.75 47,496

4 1263, 2171, 1680, 128 23.75 47,494

C3

4 1161, 1680, 1295, 2 44.75 47,496 0.39

4 1872, 251, 1295, 2 47.75 47,496 0.44

4 1937, 2171, 1680, 1295 31.5 47,494 0.31

4 1680, 1295, 1291, 2 39 47,496 0.30

SAW

C3

4 1872, 2171, 1161, 1295 40.5 47,494 0.47

5 1872, 2171, 1161, 1893, 1295 41.8 47,494 0.47

5 1872, 2171, 1161, 251, 1295 39.6 47,494 0.46

6 1872, 2171, 1161, 1893, 251, 1295 40.8 47,494 0.47

Sorted based on DL

C3

4 1872, 1161, 1893, 1295 39.75 17,731 0.53

4 2185, 1872, 1161, 1295 40.25 17,814 0.53

5 2185, 1872, 1161, 1893, 1295 41.6 17,814 0.52

4 1872, 1887, 1161, 1295 43 18,532 0.52

Sampling only from the WWTP influent, which is the common practice, appears to
have a worse performance, obtaining DL = 0.25, Td = 86 min. Samples of the WWTP’s
entrance can be representative of the whole population, though sampling at various points
across the sewer system can offer insight about the space distribution of disease prevalence.
Furthermore, sampling near the source diminishes the decay and dilution effect, and it can
be an effective tool for accurate estimation of the number of infected persons [69].

Furthermore, Figure 8 depicts the 1st ranked solutions derived from the TOPSIS and
SAW methods and sorting based on detection likelihood under C3 optimization combi-
nation. It is apparent that the solutions are well allocated throughout the sewer system.
Spread measurement points across the sewer system are proposed by Banik et al. [48] for
water quality monitoring and by Domokos et al. [54] for SARS-CoV-2 monitoring; both of
these methods include WWTP as part of the optimal solution. Moreover, the solutions are
overlapping at certain nodes.
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4. Conclusions

In this study, simulation of the fate and transport of SARS-CoV-2 RNA and a method-
ology to determine the optimal sampling points in terms of number and combinations
for wastewater surveillance were applied. The sewerage system of the city of Kozani was
used for testing the proposed methodology. The proposed methodology can be useful for
wastewater-based monitoring of future virus strikes and pandemics. SWMM was used
for the modelling procedure, followed by the application of the NSGA-II optimization
algorithm and a decision-making procedure in order to choose the appropriate sampling
points. Several scenarios were considered, and the results show that parameters such as the
initial concentration and decay rate of SARS-CoV-2 have an impact on concentration and
detection time at downstream nodes. This impact is more obvious when the distance from
the insertion point is bigger. The optimization results indicate that for the network under
study, combinations of 4 to 6 sampling points are sufficiently informative for SARS-CoV-2
RNA presence. They are representative of all the population and allow a reliable detection
of viral RNA, with more than 30% likelihood. Additionally, very soon after the first release
into the sewer system, a detection of SARS-CoV-2 with an average time of 40 min is possible.
Yet if a bigger part of the sewer system is modelled, the travel time and consequently the
detection time will be longer. Sampling more than six points does not appear to further
improve the detection time or detection likelihood. Decision-making techniques are used as
a supportive tool due to the large number of optimal results. Solutions that are ranked first
have some nodes in common and are well spread along the sewer system. Additionally,
selecting sampling points located at different locations across the sewer system seems
to be more informative than sampling at a single downstream location. Comparing the
results of the present study with the case of taking samples for the WWTP’s entrance, it is
revealed that a higher detection likelihood and a lower detection time can be yielded if the
measurement points are more scattered across the sewerage. It must be mentioned that
since the shedding concentration per infected person and the decay rate in wastewater are
barely known, it is apparent that there is great uncertainty in any attempt to simulate the
fate and transport of viral particles and fragments into the sewer system. More research is
needed to determine parameters such as shedding duration, shedding rate per person, and
persistence of viral RNA in wastewater.
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