Global Paradigm Shifts in Urban Stormwater Management Optimization: A Bibliometric Analysis
Abstract
:1. Introduction
2. Methodology
3. Results
3.1. Publishing Trend Analysis
3.2. Author and Country Analysis
3.3. Keyword Co-Occurrence Analysis
3.4. Examination of Top 10 Articles
3.5. Cluster Analysis
3.6. Keywords with the Strongest Citation Bursts
4. Discussion
4.1. Relation between Research Intensity and the Origin of Terminology
4.2. Artificial Intelligence: Emerging Research Method
4.3. Prognostications and Constraints
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
References
- Tol, R.S.J. The Economic Impacts of Climate Change. Rev. Env. Econ. Policy 2018, 12, 4–25. [Google Scholar] [CrossRef]
- Cann, K.F.; Thomas, D.R.; Salmon, R.L.; Wyn-Jones, A.P.; Kay, D. Extreme water-related weather events and waterborne disease. Epidemiol. Infect. 2013, 141, 671–686. [Google Scholar] [CrossRef] [PubMed]
- Murray, V.; Ebi, K.L. IPCC Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). J. Epidemiol. Commun. Health 2012, 66, 759–760. [Google Scholar] [CrossRef]
- Yin, J.B.; Gentine, P.; Zhou, S.; Sullivan, S.C.; Wang, R.; Zhang, Y.; Guo, S.L. Large increase in global storm runoff extremes driven by climate and anthropogenic changes. Nat. Commun. 2018, 9, 4389. [Google Scholar] [CrossRef] [PubMed]
- Lourenco, I.B.; Guimaraes, L.F.; Alves, M.B.; Miguez, M.G. Land as a sustainable resource in city planning: The use of open spaces and drainage systems to structure environmental and urban needs. J. Clean. Prod. 2020, 276, 123096. [Google Scholar] [CrossRef]
- Rentachintala, L.; Reddy, M.G.M.; Mohapatra, P.K. Urban stormwater management for sustainable and resilient measures and practices: A review. Water Sci. Technol. 2022, 85, 1120–1140. [Google Scholar] [CrossRef]
- Frantzeskaki, N. Seven lessons for planning nature-based solutions in cities. Environ. Sci. Policy 2019, 93, 101–111. [Google Scholar] [CrossRef]
- Wang, J.; Liu, G.H.; Wang, J.Y.; Xu, X.L.; Shao, Y.T.; Zhang, Q.; Liu, Y.C.; Qi, L.; Wang, H.C. Current status, existent problems, and coping strategy of urban drainage pipeline network in China. Environ. Sci. Pollut. Res. 2021, 28, 43035–43049. [Google Scholar] [CrossRef]
- Pour, S.H.; Abd Wahab, A.K.; Shahid, S.; Asaduzzaman, M.; Dewan, A. Low impact development techniques to mitigate the impacts of climate-change-induced urban floods: Current trends, issues and challenges. Sustain. Cities Soc. 2020, 62, 102373. [Google Scholar] [CrossRef]
- Zhang, K.; Chui, T.F.M. Linking hydrological and bioecological benefits of green infrastructures across spatial scales—A literature review. Sci. Total Environ. 2019, 646, 1219–1231. [Google Scholar] [CrossRef]
- Alves, A.; Gersonius, B.; Kapelan, Z.; Vojinovic, Z.; Sanchez, A. Assessing the Co-Benefits of green-blue-grey infrastructure for sustainable urban flood risk management. J. Environ. Manag. 2019, 239, 244–254. [Google Scholar] [CrossRef] [PubMed]
- De Sousa, M.R.C.; Montalto, F.A.; Spatari, S. Using Life Cycle Assessment to Evaluate Green and Grey Combined Sewer Overflow Control Strategies. J. Ind. Ecol. 2012, 16, 901–913. [Google Scholar] [CrossRef]
- Wang, M.M.; Sweetapple, C.; Fu, G.T.; Farmani, R.; Butler, D. A framework to support decision making in the selection of sustainable drainage system design alternatives. J. Environ. Manag. 2017, 201, 145–152. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Zhang, Y.; Zhang, D.Q.; Zheng, Y.S.; Li, S.; Tan, S.K. Life-cycle cost analysis and resilience consideration for coupled grey infrastructure and low-impact development practices. Sustain. Cities Soc. 2021, 75, 103358. [Google Scholar] [CrossRef]
- Leng, L.Y.; Jia, H.F.; Chen, A.S.; Zhu, D.Z.; Xu, T.; Yu, S. Multi-objective optimization for green-grey infrastructures in response to external uncertainties. Sci. Total Environ. 2021, 775, 145831. [Google Scholar] [CrossRef]
- Rahman, M.M.; Szabo, G. Multi-objective urban land use optimization using spatial data: A systematic review. Sustain. Cities Soc. 2021, 74, 103214. [Google Scholar] [CrossRef]
- Chen, W.J.; Wang, W.Q.; Huang, G.R.; Wang, Z.L.; Lai, C.G.; Yang, Z.Y. The capacity of grey infrastructure in urban flood management: A comprehensive analysis of grey infrastructure and the green-grey approach. Int. J. Disast. Risk. Re. 2021, 54, 102045. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, M.; Zhang, D.Q.; Lu, Z.M.; Bakhshipour, A.E.; Liu, M.; Jiang, Z.Y.; Li, J.J.; Tan, S.K. Multi-stage planning of LID-GREI urban drainage systems in response to land-use changes. Sci. Total Environ. 2023, 859, 160214. [Google Scholar] [CrossRef]
- Wang, M.; Jiang, Z.Y.; Zhang, D.Q.; Zhang, Y.; Liu, M.; Rao, Q.Y.; Li, J.J.; Tan, S.K. Optimization of integrating life cycle cost and systematic resilience for grey-green stormwater infrastructure. Sustain. Cities Soc. 2023, 90, 104379. [Google Scholar] [CrossRef]
- Islam, A.; Hassini, S.; El-Dakhakhni, W. A systematic bibliometric review of optimization and resilience within low impact development stormwater management practices. J. Hydrol. 2021, 599, 126457. [Google Scholar] [CrossRef]
- Xu, H.W.; Randall, M.; Fryd, O. Urban stormwater management at the meso-level: A review of trends, challenges and approaches. J. Environ. Manag. 2023, 331, 117255. [Google Scholar] [CrossRef] [PubMed]
- Shishegar, S.; Duchesne, S.; Pelletier, G. Optimization methods applied to stormwater management problems: A review. Urban Water J. 2018, 15, 276–286. [Google Scholar] [CrossRef]
- Taylor, J. Doing Your Literature Review—Traditional and Systematic Techniques Jill K Jesson Doing Your Literature Review—Traditional and Systematic Techniques. Nurse Res. 2012, 19, 45. [Google Scholar] [CrossRef] [PubMed]
- Fetscherin, M.; Usunier, J.C. Corporate branding: An interdisciplinary literature review. Eur. J. Marketing. 2012, 46, 733–753. [Google Scholar] [CrossRef]
- Chen, C.M.; Ibekwe-SanJuan, F.; Hou, J.H. The Structure and Dynamics of Co-citation Clusters: A Multiple-Perspective Co-citation Analysis. J. Am. Soc. Inf. Sci. Technol. 2010, 61, 1386–1409. [Google Scholar] [CrossRef]
- Li, X.; Wu, P.; Shen, G.Q.P.; Wang, X.Y.; Teng, Y. Mapping the knowledge domains of Building Information Modeling (BIM): A bibliometric approach. Automat. Constr. 2017, 84, 195–206. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, Y.Y.; Xiong, L.H.; He, S.; Wang, L.F.; Yu, Z.B. Opportunities and challenges of the Sponge City construction related to urban water issues in China. Sci. China Earth Sci. 2017, 60, 652–658. [Google Scholar] [CrossRef]
- Chui, T.F.M.; Liu, X.; Zhan, W.T. Assessing cost-effectiveness of specific LID practice designs in response to large storm events. J. Hydrol. 2016, 533, 353–364. [Google Scholar] [CrossRef]
- Romero, L.; Portillo-Salido, E. Trends in Sigma-1 Receptor Research: A 25-Year Bibliometric Analysis. Front. Pharmacol. 2019, 10, 564. [Google Scholar] [CrossRef]
- Freeman, L.C. Centrality in social networks: Conceptual clarification. In Social Network: Critical Concepts in Sociology; Routledge: London, UK, 2002; Volume 1, pp. 238–263. [Google Scholar]
- Brandes, U. A faster algorithm for betweenness centrality. J. Math. Sociol. 2001, 25, 163–177. [Google Scholar] [CrossRef]
- Zhang, K.; Chui, T.F.M.; Yang, Y. Simulating the hydrological performance of low impact development in shallow groundwater via a modified SWMM. J. Hydrol. 2018, 566, 313–331. [Google Scholar] [CrossRef]
- Bennett, N.D.; Croke, B.F.W.; Guariso, G.; Guillaume, J.H.A.; Hamilton, S.H.; Jakeman, A.J.; Marsili-Libelli, S.; Newham, L.T.H.; Norton, J.P.; Perrin, C.; et al. Characterising performance of environmental models. Environ. Modell. Softw. 2013, 40, 1–20. [Google Scholar] [CrossRef]
- Gomez-Baggethun, E.; Barton, D.N. Classifying and valuing ecosystem services for urban planning. Ecol. Econ. 2013, 86, 235–245. [Google Scholar] [CrossRef]
- Fletcher, T.D.; Andrieu, H.; Hamel, P. Understanding, management and modelling of urban hydrology and its consequences for receiving waters: A state of the art. Adv. Water Resour. 2013, 51, 261–279. [Google Scholar] [CrossRef]
- Davis, A.P.; Hunt, W.F.; Traver, R.G.; Clar, M. Bioretention Technology: Overview of Current Practice and Future Needs. J. Environ. Eng. ASCE 2009, 135, 109–117. [Google Scholar] [CrossRef]
- Kabisch, N.; Frantzeskaki, N.; Pauleit, S.; Naumann, S.; Davis, M.; Artmann, M.; Haase, D.; Knapp, S.; Korn, H.; Stadler, J.; et al. Nature-based solutions to climate change mitigation and adaptation in urban areas: Perspectives on indicators, knowledge gaps, barriers, and opportunities for action. Ecol. Soc. 2016, 21, 39. [Google Scholar] [CrossRef]
- Ahiablame, L.M.; Engel, B.A.; Chaubey, I. Effectiveness of Low Impact Development Practices: Literature Review and Suggestions for Future Research. Water Air Soil Poll. 2012, 223, 4253–4273. [Google Scholar] [CrossRef]
- Gunawardena, K.R.; Wells, M.J.; Kershaw, T. Utilising green and bluespace to mitigate urban heat island intensity. Sci. Total Environ. 2017, 584, 1040–1055. [Google Scholar] [CrossRef]
- Demuzere, M.; Orru, K.; Heidrich, O.; Olazabal, E.; Geneletti, D.; Orru, H.; Bhave, A.G.; Mittal, N.; Feliu, E.; Faehnle, M. Mitigating and adapting to climate change: Multi-functional and multi-scale assessment of green urban infrastructure. J. Environ. Manag. 2014, 146, 107–115. [Google Scholar] [CrossRef]
- Meerow, S.; Newell, J.P. Spatial planning for multifunctional green infrastructure: Growing resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Tsay, M.Y. Citation analysis of Ted Nelson’s works and his influence on hypertext concept. Scientometrics 2009, 79, 451–472. [Google Scholar] [CrossRef]
- Barnett, G.A. Encyclopedia of Social Networks; Sage Publications: Thousand Oaks, CA, USA, 2011. [Google Scholar]
- Trujillo, C.M.; Long, T.M. Document co-citation analysis to enhance transdisciplinary research. Sci. Adv. 2018, 4, e1701130. [Google Scholar] [CrossRef]
- Xu, X.H.; Chen, X.F.; Jia, F.; Brown, S.; Gong, Y.; Xu, Y.F. Supply chain finance: A systematic literature review and bibliometric analysis. Int. J. Prod. Econ. 2018, 204, 160–173. [Google Scholar] [CrossRef]
- Chen, C.M. CiteSpace II: Detecting and visualizing emerging trends and transient patterns in scientific literature. J. Am. Soc. Inf. Sci. Technol. 2006, 57, 359–377. [Google Scholar] [CrossRef]
- Ghodsi, S.H.; Zahmatkesh, Z.; Goharian, E.; Kerachian, R.; Zhu, Z.D. Optimal design of low impact development practices in response to climate change. J. Hydrol. 2020, 580. [Google Scholar] [CrossRef]
- Kong, F.H.; Ban, Y.L.; Yin, H.W.; James, P.; Dronova, I. Modeling stormwater management at the city district level in response to changes in land use and low impact development. Environ. Modell. Softw. 2017, 95, 32–142. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Multiobjective optimization of low impact development stormwater controls. J. Hydrol. 2018, 562, 564–576. [Google Scholar] [CrossRef]
- Jia, H.F.; Yao, H.R.; Tang, Y.; Yu, S.L.; Field, R.; Tafuri, A.N. LID-BMPs planning for urban runoff control and the case study in China. J. Environ. Manage. 2015, 149, 65–76. [Google Scholar] [CrossRef]
- Fletcher, T.D. Shuster, W.; Hunt, W.F.; Ashley, R.; Butler, D. ; Arthur, S.; Trowsdale, S.; Barraud, S. SUDS, LID, BMPs, WSUD and more - The evolution and application of terminology surrounding urban drainage. Urban Water J. 2015, 12, 525–542. [Google Scholar] [CrossRef]
- Mei, C.; Liu, J.H.; Wang, H.; Yang, Z.Y.; Ding, X.Y.; Shao, W.W. Integrated assessments of green infrastructure for flood mitigation to support robust decision-making for sponge city construction in an urbanized watershed. Sci. Total. Environ. 2018, 639, 1394–1407. [Google Scholar] [CrossRef]
- Eckart, K.; McPhee, Z.; Bolisetti, T. Performance and implementation of low impact development—A review. Sci. Total Environ. 2017, 607, 413–432. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.Z.; Theller, L.O.; Pijanowski, B.C.; Engel, B.A. Optimal selection and placement of green infrastructure to reduce impacts of land use change and climate change on hydrology and water quality: An application to the Trail Creek Watershed, Indiana. Sci. Total Environ. 2016, 553, 149–163. [Google Scholar] [CrossRef] [PubMed]
- Bakhshipour, A.E.; Zhang, Y.Y.; Xiong, L.H.; He, S.; Wang, L.F.; Yu, Z.B. Hybrid green-blue-gray decentralized urban drainage systems design, a simulation-optimization framework. J. Environ. Manag. 2019, 249, 109364. [Google Scholar] [CrossRef] [PubMed]
- Li, C.H.; Peng, C.; Chiang, P.C.; Cai, Y.P.; Wang, X.; Yang, Z.F. Mechanisms and applications of green infrastructure practices for stormwater control: A review. J. Hydrol. 2019, 568, 626–637. [Google Scholar] [CrossRef]
- Ying, J.; Zhang, X.J.; Zhang, Y.Q.; Bilan, S. Green infrastructure: Systematic literature review. Econ. Res-Ekon. Istraz. 2022, 35, 343–366. [Google Scholar] [CrossRef]
- Zhou, Q.Q.; Leng, G.Y.; Su, J.H.; Ren, Y. Comparison of urbanization and climate change impacts on urban flood volumes: Importance of urban planning and drainage adaptation. Sci. Total Environ. 2019, 658, 24–33. [Google Scholar] [CrossRef]
- Wang, M.; Liu, M.; Zhang, D.Q.; Zhang, Y.; Su, J.; Zhou, S.Q.; Bakhshipour, A.E.; Tan, S.K. Assessing hydrological performance for optimized integrated grey-green infrastructure in response to climate change based on shared socio-economic pathways. Sustain. Cities Soc. 2023, 91, 104436. [Google Scholar] [CrossRef]
- Liu, J.; Sample, D.J.; Bell, C.; Guan, Y.T. Review and Research Needs of Bioretention Used for the Treatment of Urban Stormwater. Water. 2014, 6, 1069–1099. [Google Scholar] [CrossRef]
- Liu, Y.Z.; Engel, B.A.; Flanagan, D.C.; Gitau, M.W.; McMillan, S.K.; Chaubey, I. A review on effectiveness of best management practices in improving hydrology and water quality: Needs and opportunities. Sci. Total Environ. 2017, 601, 580–593. [Google Scholar] [CrossRef]
- Burszta-Adamiak, E.; Mrowiec, M. Modelling of green roofs’ hydrologic performance using EPA’s SWMM. Water Sci. Technol. 2013, 68, 36–42. [Google Scholar] [CrossRef]
- Wang, M.; Zhang, D.Q.; Wang, Z.L.; Zhou, S.Q.; Tan, S.K. Long-term performance of bioretention systems in storm runoff management under climate change and life-cycle condition. Sustain. Cities Soc. 2021, 65, 102598. [Google Scholar] [CrossRef]
- Su, H.N.; Lee, P.C. Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in Technology Foresight. Scientometrics 2010, 85, 65–79. [Google Scholar] [CrossRef]
- Santamouris, M. Cooling the cities—A review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Sol. Energy 2014, 103, 682–703. [Google Scholar] [CrossRef]
- Castleton, H.F.; Stovin, V.; Beck, S.B.M.; Davison, J.B. Green roofs; building energy savings and the potential for retrofit. Energ. Build. 2010, 42, 1582–1591. [Google Scholar] [CrossRef]
- Wolch, J.R.; Byrne, J.; Newell, J.P. Urban green space, public health, and environmental justice: The challenge of making cities ‘just green enough’. Landsc. Urban Plan. 2014, 125, 234–244. [Google Scholar] [CrossRef]
- Kan, H.D.; Chen, R.J.; Tong, S.L. Ambient air pollution, climate change, and population health in China. Environ. Int. 2012, 42, 10–19. [Google Scholar] [CrossRef]
- Chan, F.K.S.; Griffiths, J.A.; Higgitt, D.; Xu, S.Y.; Zhu, F.F.; Tang, Y.T.; Xu, Y.Y.; Thorne, C.R. “Sponge City” in China—A breakthrough of planning and flood risk management in the urban context. Land Use Policy 2018, 76, 772–778. [Google Scholar] [CrossRef]
- Jiang, Y.; Zevenbergen, C.; Ma, Y.C. Urban pluvial flooding and stormwater management: A contemporary review of China's challenges and “sponge cities” strategy. Environ. Sci. Policy 2018, 80, 132–143. [Google Scholar] [CrossRef]
- Li, H.; Ding, L.Q.; Ren, M.L.; Li, C.Z.; Wang, H. Sponge City Construction in China: A Survey of the Challenges and Opportunities. Water 2017, 9, 594. [Google Scholar] [CrossRef]
- Wang, M.; Yuan, H.J.; Zhang, D.Q.; Qi, J.D.; Rao, Q.Y.; Li, J.J.; Tan, S.K. Supply-demand measurement and spatial allocation of Sponge facilities for Sponge city construction. Ecol. Indic. 2023, 148, 110141. [Google Scholar] [CrossRef]
- Wong, T.H.F.; Brown, R.R. The water sensitive city: Principles for practice. Water Sci. Technol. 2009, 60, 673–682. [Google Scholar] [CrossRef]
- Angelov, P.P.; Soares, E.A.; Jiang, R.C.; Arnold, N.I.; Atkinson, P.M. Explainable artificial intelligence: An analytical review. Wires. Data. Min. Knowl. 2021, 11, e1424. [Google Scholar] [CrossRef]
- Tang, J.; Liu, G.; Pan, Q.T. A Review on Representative Swarm Intelligence Algorithms for Solving Optimization Problems: Applications and Trends. IEEE-CAA J. Autom. 2021, 8, 1627–1643. [Google Scholar] [CrossRef]
- Yang, Y.; Chui, T.F.M. Modeling and interpreting hydrological responses of sustainable urban drainage systems with explainable machine learning methods. Hydrol Earth Syst. Sci. 2021, 25, 5839–5858. [Google Scholar] [CrossRef]
- El Ghazouli, K.; El Khatabi, J.; Soulhi, A.; Shahrour, I. Model predictive control based on artificial intelligence and EPA-SWMM model to reduce CSOs impacts in sewer systems. Water Sci. Technol. 2022, 85, 398–408. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Bowes, B.D.; Beling, P.A.; Goodall, J.L. Reinforcement Learning for Flooding Mitigation in Complex Stormwater Systems during Large Storms. In Proceedings of the IEEE EUROCON 2021—19th International Conference on Smart Technologies, Lviv, Ukraine, 6–8 July 2021; pp. 274–279. [Google Scholar]
- Liu, L.J.; Guo, S.H.; Li, D.B.; Peng, J.H.; Chen, G.; Xu, L. Research on Prediction of the Stability of Partially Stabilized Zirconia Prepared by Microwave Heating Using Levenberg Marquardt-Back Propagation Neural Network; Wiley: Hoboken, NJ, USA, 2012; pp. 771–778. [Google Scholar]
- Meixner, T.; Berkowitz, A.R.; Downey, A.E.; Pillich, J.; LeVea, R.; Smith, B.K.; Chandler, M.; Gupta, N.; Rullman, S.; Woodroof, A.; et al. Rapid Assessment and Long-Term Monitoring of Green Stormwater Infrastructure with Citizen Scientists. Sustainability 2021, 13, 12520. [Google Scholar] [CrossRef]
- Wang, M.; Sun, C.H.; Zhang, D.Q. Opportunities and challenges in green stormwater infrastructure (GSI): A comprehensive and bibliometric review of ecosystem services from 2000 to 2021. Environ Res. 2023, 236, 116701. [Google Scholar] [CrossRef]
- Yang, Y.; Chui, T.F.M. Optimizing surface and contributing areas of bioretention cells for stormwater runoff quality and quantity management. J. Environ. Manag. 2018, 206, 1090–1103. [Google Scholar] [CrossRef]
Author | Publication Number | The Year the Paper Was First Published |
---|---|---|
Wang, Mo | 10 | 2021 |
Engel, Bernard A. | 7 | 2016 |
Zhang, Dongqing | 7 | 2021 |
Jia, Haifeng | 6 | 2019 |
Liu, Yaoze | 5 | 2016 |
Liu, Ming | 5 | 2022 |
Wang, Hao | 4 | 2020 |
Bakhshipour, Amin E. | 4 | 2022 |
Li, Jiake | 4 | 2021 |
Tan, Soon Keat | 4 | 2023 |
Country | Publication Number | The Year the Paper Was First Published |
---|---|---|
People’s R. China | 184 | 2012 |
USA | 159 | 2004 |
Australia | 48 | 2012 |
United Kingdom | 35 | 2016 |
Canada | 25 | 2004 |
Germany | 24 | 2015 |
Iran | 22 | 2014 |
Netherlands | 17 | 2015 |
Singapore | 16 | 2016 |
Italy | 15 | 2018 |
Keywords (Sorted by Keyword Count) | Count | Centrality | Year of First Appearance | Keywords (Sorted by Centrality) | Count | Centrality | Year of First Appearance | ||
---|---|---|---|---|---|---|---|---|---|
1 | low-impact development | 191 | 0.05 | 2004 | 1 | model | 67 | 0.37 | 2012 |
2 | stormwater management | 178 | 0.33 | 2004 | 2 | stormwater management | 178 | 0.33 | 2004 |
3 | green infrastructure | 166 | 0.25 | 2010 | 3 | green infrastructure | 166 | 0.25 | 2010 |
4 | climate change | 125 | 0.02 | 2015 | 4 | best management practices | 11 | 0.18 | 2009 |
5 | performance | 98 | 0.02 | 2015 | 5 | benefits | 20 | 0.17 | 2014 |
6 | management | 86 | 0.11 | 2016 | 6 | hydrology | 18 | 0.17 | 2016 |
7 | runoff | 78 | 0.16 | 2004 | 7 | stormwater runoff | 10 | 0.17 | 2016 |
8 | model | 67 | 0.37 | 2012 | 8 | runoff | 78 | 0.16 | 2004 |
9 | design | 64 | 0.07 | 2013 | 9 | optimization | 59 | 0.16 | 2010 |
10 | optimization | 59 | 0.16 | 2010 | 10 | decision support | 12 | 0.16 | 2017 |
Reference | Type | Citations | Main Content |
---|---|---|---|
Bennett et al. [33] | Article | 1034 | This paper proposes that environmental modeling requires the use and implementation of workflows that combine several approaches to use environmental models effectively for management and decision-making. |
Gomez-Baggethun et al. [34] | Article | 1015 | This paper discusses the various ways in which urban ecosystem services enhance urban resilience and quality of life. It identifies a range of possible economic costs and the socio-cultural impacts of the loss of urban ecosystem services, as well as knowledge gaps and challenges for the ecosystem services research agenda in urban areas. |
Fletcher et al. [35] | Review | 864 | The history, scope, application, and basic principles of urban drainage terminology are documented, and recommendations are made for clearly communicating these principles. |
Davis et al. [36] | Article | 620 | It is pointed out that bioretention facilities significantly reduce runoff and peak flow and can effectively control other pollutants, but there are still many design problems in practice. |
Fletcher et al. [35] | Article | 570 | It describes the significant progress made in urban stormwater management toward restoring a more natural water balance and points out that urban hydrology still faces many significant challenges. |
Kabisch et al. [37] | Article | 563 | The various scenarios in which nature-based solutions are relevant to climate mitigation and adaptation in urban areas are explored, and indicators and related knowledge gaps are identified for assessing the effectiveness of nature-based solutions. |
Ahiablame at al. [38] | Review | 538 | This paper emphasizes the evidence of the beneficial use of LID practice in literature, discusses how to represent LID practice in hydrological/water quality models, and proposes the direction of future research. |
Gunawardena et al. [39] | Article | 528 | A meta-analysis of how green and blue spaces affect urban canopy and boundary layer temperature was conducted to mitigate the adverse effects of urban heat islands and enhance climate adaptation ability. |
Demuzere et al. [40] | Article | 511 | The contribution of green spaces to climate change mitigation and adaptation services is explored, and avenues for further research on the role of green urban infrastructure in different types of urban, climatic, and social contexts are identified. |
Meerow et al. [41] | Article | 468 | The green infrastructure spatial planning (GISP) model was introduced to provide an inclusive and replicable approach to planning future green infrastructure. |
Cluster | Amount | Clustering Label (LSI) |
---|---|---|
1 | 63 | green infrastructure planning; urban stormwater management; using green infrastructure; systematic bibliometric review; catchment scale | sponge city; urban stormwater management; green infrastructure; green-grey infrastructure; current gap |
2 | 55 | using green infrastructure; multi-stage planning; land-use change; deep uncertainty application; flood management | LID–GREI urban drainage system; shared socio-economic pathway; assessing hydrological performance; resilience assessment; decision-making framework |
3 | 48 | case study; bioretention cell; cost-based greedy strategy; adaptive socio-hydrology; situating green infrastructure | regulating urban surface runoff; nature-based solution; alternative selection; small urban catchment; different investment period |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Jiang, Z.; Ikram, R.M.A.; Sun, C.; Zhang, M.; Li, J. Global Paradigm Shifts in Urban Stormwater Management Optimization: A Bibliometric Analysis. Water 2023, 15, 4122. https://doi.org/10.3390/w15234122
Wang M, Jiang Z, Ikram RMA, Sun C, Zhang M, Li J. Global Paradigm Shifts in Urban Stormwater Management Optimization: A Bibliometric Analysis. Water. 2023; 15(23):4122. https://doi.org/10.3390/w15234122
Chicago/Turabian StyleWang, Mo, Zhiyu Jiang, Rana Muhammad Adnan Ikram, Chuanhao Sun, Menghan Zhang, and Jianjun Li. 2023. "Global Paradigm Shifts in Urban Stormwater Management Optimization: A Bibliometric Analysis" Water 15, no. 23: 4122. https://doi.org/10.3390/w15234122
APA StyleWang, M., Jiang, Z., Ikram, R. M. A., Sun, C., Zhang, M., & Li, J. (2023). Global Paradigm Shifts in Urban Stormwater Management Optimization: A Bibliometric Analysis. Water, 15(23), 4122. https://doi.org/10.3390/w15234122