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Abstract: Microplastic (MP) pollution is a rapidly spreading global problem, threatening the use and
sustainability of freshwater resources. MPs in water can act as both a source and sink of dissolved
organic compounds. This review summarizes the current knowledge of interactions between MPs and
dissolved organic compounds, including the adsorption and release of dissolved organic compounds
by MPs and the impacts of MPs on the source and sink of natural dissolved organic matter (DOM) in
aquatic ecosystems. The key mechanisms for the adsorption of dissolved organic compounds on MPs
are hydrophobic interactions, van der Waals forces, and π–π interactions. Particle size, morphological
characteristics, density, and environmental factors (pH, ionic strength, and UV radiation) have a
great influence on the adsorption of dissolved organic compounds on MPs. Although research on the
interactions between dissolved organic compounds and MPs has progressed rapidly, to date, research
on the impacts of increasing amounts of MPs on natural DOM cycles (production, transformation,
and fate) in aquatic ecosystems has been very limited. Knowledge gaps and future research directions
are outlined at the end of this review.
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1. Introduction

With the growth of the plastic industry all over the world, plastic pollution in the
environment has drawn much attention [1–3]. Currently, plastic debris is widely found
in the ocean [4,5], freshwater [1,6], sewage [7], sediments [8], and aquatic organisms [9].
Increasing amounts of plastic in water have pronounced effects on freshwater ecology
and societal services, as increasing plastic pollution may have toxic effects on aquatic
organisms [10], alter aquatic species composition [11], and increase the cost of drinking
water purification [12]. Microplastics (MPs) are defined as plastic debris with a diameter of
less than 5 mm [13], characterized by a small size and large specific surface area. Based on
their chemical composition, MPs are classified as polyethylene (PE), polypropylene (PP),
polyamide (PA), polyvinyl chloride (PVC), polystyrene (PS), polyethylene terephthalate
(PET), etc. There are two primary sources of MPs in aquatic systems: (1) fragmentation of
plastic litter released into water through solar radiation and microbial degradation [14,15],
and (2) direct discharge from municipal wastewater treatment plants, which may contain
personal care and cosmetic products or textile fiber residues [7].

MPs in the environment are often hydrophobic, chemically stable, and resistant to
degradation [16]. However, studies have shown that MPs can leach polymers or additives
into the surrounding environment through biotic and abiotic processes [17–19]. Plastic
additives are chemical compounds incorporated into plastic during the manufacturing
process, which can be used as plasticizers, foaming agents, flame retardants, antioxidants,
stabilizers, and pigments [20]. Most plastic additives are hydrophobic organic compounds
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and are recognized as toxic to aquatic organisms [21]. Lithner et al. (2009) tested the
acute toxicity of plastic leachates to Daphnia magna and found that 9 of 32 plastic leachates
had different toxic effects (48 h EC50s ranging from 5 to 80 g plastic L−1) on Daphnia
mobility [22]. After losing the protection of additives, the degradation of MPs in water
can be accelerated [23]. There is a great possibility that MP leachates (additives or any
other organic substrate) released into aquatic systems contribute to carbon cycling in water.
However, the effects of MP pollution on carbon cycling in water are not well studied.

Once released into the aquatic ecosystem, MPs can serve as a carrier for various or-
ganic pollutants and heavy metals [13,24], affecting the transportation and fate of chemical
pollutants. Ziajahromi et al. (2019) studied the effect of PE MPs on the acute toxicity of
the synthetic pyrethroid bifenthrin to the invertebrate Chironomus tepperi in both synthetic
water and river water and found that the presence of PE MPs could reduce the toxicity of
bifenthrin to exposed larvae [25]. Studies have shown that PVC, PE, PP, and PS have a high
sorption capacity for organic pollutants, such as dichlorodiphenyltrichloroethane (DDT),
phenanthrene (Phe), bis-2-Ethylhexyl phthalate (DEHP), and chlorinated benzenes [26–28].
The adsorption by MPs can transfer chemical compounds from water into aquatic organ-
isms. The concentrations of organic pollutants (polychlorinated biphenyls and polybromi-
nated diphenyl ethers) in aquatic organisms have been found to be positively related to the
amount of ingested MPs [29,30]. However, the adsorption capacity for organic pollutants
on MPs highly depends on the MPs’ characteristics, the chemical composition of the organic
pollutants, and environmental factors, such as pH and ionic strength [28].

Besides adsorption, MPs can leach organic compounds into water. Most of the plastic
additives are not covalently bound to MPs and can be released into the surrounding water.
The release process can be assisted by solar radiation and the biological degradation of
MPs [31]. DEHP and bisphenol A (BPA) additives have been detected in commercial
PVC and PS plastic solutions under UV light [17,32]. Polybrominated diphenyl ethers
(PBDEs), phthalates, nonylphenols (NPs), and antioxidant additives have also been found
in marine environments [20]. Besides additives, MPs can leach other dissolved organic
compounds derived from MP polymers into the aqueous phase. A few published studies
have documented that these polymer-derived dissolved organic compounds potentially
contribute to dissolved organic matter (DOM) pools in aquatic ecosystems [23,33]. DOM
is a complex mixture of organic molecules that can pass through a 0.2–0.7 µm filter [34].
MPs in natural waters can form a “micro-environment”, the chemical composition and
microbial activities of which are significantly different from those of the surrounding
environment. This “micro-environment” can affect the biogeochemical cycles of natural
DOM and microorganic pollutants [23,35–37]. MPs can also serve as a carrier for DOM,
which significantly impacts DOM transport along the aquatic continuum [38].

Research on the occurrence and ecological effects of MPs in water has progressed
rapidly in recent years. This study aims to review the current research and identify knowledge
gaps in the interactions between increasing amounts of MPs and dissolved organic compounds
in aquatic systems. In Sections 2 and 3, we summarize the adsorption and release of dissolved
organic compounds by MPs and their environmental factors. In Section 4, we explore the
current knowledge on the impacts of MPs on the source and sink of natural DOM. Guidance
on future study directions in this field is provided at the end of this paper.

2. Adsorption of Dissolved Organic Compounds on MPs

Currently, studies on the adsorption of dissolved organic compounds by MPs mainly
focus on the following aspects: (1) the adsorption mechanisms of dissolved organic com-
pounds on MPs, and (2) the impact of environmental factors on the adsorption of dissolved
organic compounds on MPs. Studies on the adsorption of dissolved organic compounds
on MPs are summarized in Table 1.
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Table 1. The adsorption mechanisms of dissolved organic compounds on MPs and the influencing factors.

Adsorption
Mechanisms

Influencing
Factors Specific Process Literature

Source

Hydrophobic
interactions

Chemical
property Adsorption increases with increasing hydrophobicity [27,39–44]

pH
Increasing pH→ promoting dissociation of hydrophobic neutral

sorbent molecules into hydrophilic, negatively charged substances
→ reducing hydrophobic interactions

[42,45]

Ionic strength
The presence of salt ions→ reducing the solubility of the

compound in aqueous solution→ promoting hydrophobic
adsorption of the compound on MPs

[40,42,46,47]

UV radiation
UV irradiation→ leading to the aging process→ changing the

surface properties (size, surface area, porosity, surface polarity) of
MPs→ enhancing the adsorption of hydrophilic organic pollutants

[48,49]

Van der Waals
force

Temperature
Increasing temperature→ increasing the mobility and solubility of
the adsorbed molecules→ the van der Waals forces decrease→ the

adsorption capacity decreases
[50]

Ionic strength Increasing ion concentrations→ ions (Na and Ca) can occupy the
adsorption sites of MPs→ decreasing absorption capacity [48]

π–π interactions

pH Increasing pH→ increasing the π donor capacity of the sorbent→
enhancing π–π interactions [51,52]

Ionic strength
The stronger the cation→ the stronger the binding between

organic compounds and other ionic compounds→ leading to
increased adsorption of organic compounds on MPs

[53]

Electrostatic
interactions

pH
Negatively charged MP surface and lower pH→ leading to the

protonation of MPs→ contributing to the electrostatic gravitational
force between organic compounds and MPs

[43,48,53–55]

Ionic strength Electrolytes can compete with adsorbates for electrostatic sites→
decreasing the adsorption capacity [43,53,56,57]

2.1. Adsorption of Dissolved Organic Compounds on MPs: Mechanisms
2.1.1. Hydrophobic Interactions

Hydrophobic interactions are of major importance for the adsorption of nonpolar dis-
solved organic compounds on MPs in aqueous solutions [38]. Hüffer and Hofmann (2016)
investigated the sorption behavior of seven aliphatic and aromatic organic compounds on
four types of MPs (PA, PE, PVC, and PS). The experimental isotherm results showed that
the chemical properties of both the MPs (monomeric composition) and organic compounds
(hydrophobicity) had important effects on the sorption behavior [58]. The adsorption of
Suwannee River humic acid (SRHA) and Suwannee River fulvic acid (SRFA) on PS in an
aquatic environment was investigated using kinetic, isotherm, and site energy distribution
analyses [39]. The results showed that hydrophobic interactions were one of the two main
adsorption mechanisms of SRHA and SRFA adsorption on PS. The adsorption capacity
for different organic compounds on MPs is positively correlated with their octanol–water
partition coefficient (Kow or log Kow), a parameter that is commonly used as a hydropho-
bic parameter [37,42,59].

2.1.2. Van der Waals Force

For nonpolar aliphatic polymers with no specific functional groups, their interactions
with organic compounds are mainly van der Waals interactions. For instance, Guo and
Wang (2019) demonstrated that the sorption capacity for sulfamethoxazole (SMX) on
polystyrene (PS) was higher than that of polypropylene (PP) [41]. This phenomenon is due
to the different chemical characteristics of PE and PS. PE and PS are aliphatic and aromatic
polymers, respectively. The adsorption of SMX on PE and PS is driven by van der Waals
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and π–π interactions, respectively, based on their aliphatic and aromatic characteristics. The
higher energy of π–π interactions than that of van der Waals interactions resulted in a higher
adsorption capacity for SMX on PS than on PE [41,43]. Li et al. (2018) also showed that the
adsorption affinity of sulfadiazine (SDZ) on PS through both non-specific van der Waals and
π–π interactions was higher than that on PE through only van der Waals interactions [54].

2.1.3. π–π Interactions

In the summary of the adsorption mechanisms of organic compounds on MPs (Table 1),
π–π interactions are often discussed together with van der Waals interactions. Through
spectroscopic analyses, Chen et al. (2018) investigated the interaction between commercial
dissolved organic matter humic acid (HA) and PS. Their results showed that PS mainly
interacts with the aromatic structure of dissolved organic compounds via π–π interactions
and is then entrapped in the organic molecule by carboxyl-group C=O bonds within the
DOM [52]. The study by Zhang et al. (2012) showed that, in addition to hydrophobic inter-
actions, π–π electron donor–acceptor interactions play an important role in the adsorption
of HA and FA on porous PS [53].

2.2. Adsorption of Dissolved Organic Compounds on MPs: The Effect of MP Characteristics

The adsorption of dissolved organic compounds on MPs is highly affected by the
characteristics of MPs, such as their particle size, porosity, and specific surface area [60]. The
chemical composition of a polymer is described based on its chain structure. The polymer
chains are arranged and stacked to form an aggregate structure, including crystalline and
amorphous components. The influence of the aggregate structure on adsorption is usually
more important than that of chain structures. In addition, other structural properties of
MPs, such as their density, degree of crystallinity, and abundance of rubbery and glassy
states in the amorphous region, can directly lead to different adsorption capacities [54,61].

2.2.1. Particle Size

The particle size of MPs is of great importance for the adsorption of dissolved organic
compounds on MPs [62,63]. Chen et al. (2018) demonstrated that the affinity of MP and
DOM interactions is highly dependent on the particle size of the MPs [52]. Smaller MP
particle sizes possess a larger specific surface area and higher porosity, which are favorable
for the adsorption of DOM on MPs [42,64,65]. Studies show that MPs’ specific surface
area and adsorption sites increase with decreasing particle size, which can enhance the
adsorption capacity for dissolved organic compounds on MPs [40]. However, Fang et al.
(2019) found that the adsorption capacity for triazole fungicide was the highest at a PS
particle size of 10 µm, followed by a particle size of 2 µm. The reason for this phenomenon
may be due to the agglomeration of MPs with particle sizes that are too small [66].

2.2.2. Morphological Effects

Based on molecular chain arrangements, plastic polymers can be classified into crys-
talline, semi-crystalline, and amorphous structures. Amorphous structures consist of rubber
and glass subcomponents. Plastics in a glassy state can transform into a rubbery state at
a certain temperature, which can be influenced by a few factors including chain segment
fluidity [56]. The morphological transformation of plastics can influence their adsorption
of organic compounds [58]. Zhao et al. (2020) found that the adsorption capacity for
organic compounds on polar MPs was almost two orders of magnitude higher than that on
nonpolar MPs, due to the higher proportion of rubbery states in the amorphous region of
the polar MPs [67]. Liu et al. (2019) demonstrated that rubbery PS and PE possess a larger
internal cavity volume in the rubbery region compared to their glassy counterparts, which
favors the accumulation and adsorption of polycyclic aromatic hydrocarbons (PAHs) [68].

On the other hand, the surface characteristics and crystallinity degree of MPs can
determine the adsorption of antibiotics on MPs [54]. Guo et al. (2012) also found that
PEs with the same chemical composition but different crystallinities (ranging from 58.7%
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to 25.5%) had varying organic carbon content-normalized sorption coefficients (Koc) for
hydrophobic organic compounds. However, the study by Liu et al. (2019) found no
significant relationship between bisphenol A adsorption capacity and MPs’ crystallinity.
These studies demonstrated that the sorption capacity between organic compounds and
MPs is not only affected by the crystallinity factor but also by other factors including surface
functional groups and surface roughness, which can influence the hydrophobicity of MPs
and regulate the interactions between organic compounds and MPs [46,69].

2.2.3. Density

The density of MPs also affects the adsorption of dissolved organic compounds on MPs.
For instance, low-density PE showed a higher diffusion rate for PAHs than high-density
PE, demonstrating that the adsorption of organic compounds on MPs is inversely related
to the density of MPs [70]. When studying the sorption behavior of three non-steroidal
anti-inflammatory drugs (NSAIDs) on PE MPs with different densities, Elizalde-Velázquez
et al. (2020) found that, in comparison with ultrahigh-density PE and medium-density PE,
low-density PE had the highest sorption capacity for NSAIDs [71].

2.3. Adsorption of Dissolved Organic Compounds on MPs: The Effect of Environmental Factors
2.3.1. pH

The pH of media is an important factor influencing the adsorption of organic com-
pounds on MPs, due to the fact that variations in pH can change the morphology and
surface charge of organic compounds [71]. For instance, PE, PS, and PP have a net posi-
tive charge at pH values below their respective points of zero change, i.e., 6.63, 6.69, and
6.76 [54]. The acidic condition favors the partitioning of organic compounds onto MP
particles [71]. A few scholars demonstrated a gradual decrease in the adsorption of organic
compounds on MPs with increasing pH [54,72,73]. However, studies also showed that the
adsorption process of some organic compounds on MPs did not significantly change when
the pH was altered [40,48]. For instance, Zhang et al. (2020) proposed that the pH did not
significantly affect the adsorption of 9-Nitroanthrene (9NAnt) on PE. This phenomenon can
be explained by the sorption of 9NAnt on PE due to the combined effects of hydrophobic
interactions and van der Waals forces rather than electrostatic interactions, which are more
easily affected by the pH of the medium [48,74].

2.3.2. Ionic Strength

The adsorption of dissolved organic compounds on MPs can be affected by the ionic
strength level. An increase in ionic strength (including Cl−, Ca2+, Na+, and K+ ions)
could reduce the adsorption of hydrophilic compounds but increase that of hydrophobic
organic compounds on MPs [24,40,75–77]. The presence of salt ions could reduce the
solubility of organic compounds and promote their hydrophobic adsorption on MPs, but
the adsorption enhancement may reach a plateau when the compound’s hydrophobicity no
longer changes with increasing ionic strength [40]. Guo et al. (2018) found that the presence
of potassium ions (K+) in the solution can cause competition between K+ ions and DOM
for MP adsorption sites. This competition increases with the ionic strength of the solution,
which results in a decrease in adsorption [78]. However, Tang et al. (2019) found that the
sorption isotherms of benzene on HA were not affected by the concentration of CaCl2 in
the solution, which may be due to the fact that the sorption of benzene on HA does not
occur via electrostatic interactions or ion exchange [76].

2.3.3. UV Radiation

UV radiation is crucial in the degradation of microplastic particles in the environ-
ment [19,79,80]. UV radiation leads to the formation of carbonyl groups in the surface layer
of MPs due to the introduction of oxygen. As a result, the polarity of MPs increases, which
can lead to a decrease in the adsorption capacity of MPs for nonpolar organic compounds,
such as benzene, toluene, ethyl benzene, and xylene [49]. Hüffer et al. (2018) suggested
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that UV-induced surface functionalization decreases the adsorption coefficient of organic
compounds on PS [80]. The adsorption of hydrophilic organic compounds on artificially
aged (UV-accelerated aging) MPs was studied by Liu et al. (2019). Their results showed that
the adsorption capacities of dissolved organic compounds on aged PS and PVC were much
higher than on pristine MPs. The higher adsorption capacity of the aged MPs was caused
by the enhanced hydrogen bonding and electrostatic interactions after UV radiation [68].

3. Release of Dissolved Organic Compounds from Microplastics

Although durability and inertness are important characteristics of plastics, studies
have shown that plastics can leach additives, such as plasticizers and colorants, when
encountering different environmental conditions [81–85]. Mechanical, chemical, and bi-
ological processes can cause fragmentation, embrittlement, and modification of MPs in
aquatic environments. For instance, Shi et al. (2021) found that the photoaging of poly-
carbonate MPs could facilitate the fragmentation of PC MPs and enhance bisphenol A
release [82]. Romera-Castillo et al. (2018) estimated that, globally, up to 23,600 metric tons
of dissolved organic carbon (DOC) can be leached from marine plastics each year. Leached
DOC is crucial for the composition and activity of microbe communities in seawater [23].
The environmental modification and weathering processes of MPs in aquatic systems can
result in the loss of their surfactants, accelerating the release of organic compounds from
MPs into the environment [17].

Besides leaching artificial additives (i.e., plasticizers, colorants, and flame retardants),
MPs can also leach absorbed organic compounds into the environment. After irradiation
with UV and visible light, Chen et al. (2019) detected the release of organotin compounds
(OTCs) from PVC microplastics (MPs) [86]. Four types of OTC, namely dimethyltin (DMT),
monomethyltin (MMT), dibutyltin (DBT), and monobutyltin (MBT), were observed to be re-
leased from PVC in the dark. However, upon exposure to UV–visible light, only DMT and DBT
were detected. This can be attributed to the rapid photodegradation of MMT and MBT [83].

3.1. Effects of MPs’ Characteristics

The concentration of organic compounds released from PE is almost four times higher
than that released from PP, indicating that the leaching concentration of porous organic
matter varies with the type and characteristics of the polymer [23]. Lee et al. (2020)
found that the desorption of the MP-derived additive BPA from rubbery PE and PP is
usually greater than that from glassy PVC and PS [17]. Research has demonstrated that
the molecular chain segments in the glassy subcomponent are denser and more tightly
linked than those in the rubbery subcomponent. As a result, the molecules located in
the amorphous regions are less densely packed and more prone to decomposition than
those in the crystalline regions [87]. The adsorption process in the glass subcomponent is
affected by partitioning and space filling [88]. Furthermore, space filling results in a lag in
release, primarily due to the conformational changes and distinct physical formation of
pores during adsorption and release [89]. It is evident that the release mechanism of MPs
can be affected by their distinct morphologies, which alter their conformation.

Organic compounds’ release efficiency can be affected by plastic materials such as
polymers and additives. Lee et al. (2020) compared the concentration and fluorescence
characteristics of DOM released from four different plastic materials (two polymers, PVC
and PS, and two additives, DEHP and BPA) under dark and light conditions. Their re-
sults showed that even small amounts of additives added to the polymers can increase
the possibility of organic compounds being leached from MPs into the aqueous environ-
ment [17]. Based on linear model fitting, Zuo et al. (2019) found that the adsorption capacity
for phenanthrene (PHEN) was much higher on the biodegradable plastic poly(butylene
adipate co-terephthalate) (PBAT) than on conventional plastics, such as PE and PS. The sorp-
tion and desorption capacities of MPs are highly dependent on their molecular properties,
such as the abundance of rubbery subfractions [90].
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3.2. Effects of Environmental Factors

Various environmental factors can affect the release of organic compounds from MPs.
Liu et al. (2019) found that the release of the MP additive BPA increased significantly as
the pH increased from 3.0 to 11.0 [46]. This result can be explained by the fact that under
alkaline conditions, BPA becomes ionized and promotes MP hydrolysis, which increases
the solubility and release of BPA [46]. Suhrhoff and Scholz-Böttcher (2015) investigated the
impact of salinity, UV radiation, and turbulence on the leaching of plastic-derived organic
additives (citrate, phthalates, BPA, etc.). A positive relationship between turbulence and
the magnitude of plastic-derived additive leaching was found. In contrast to turbulence,
salinity has a minor impact on organic additive leaching from MPs. The effect of salinity
highly depends on the inherent properties of plastics. The reason for this is that changes
in salinity can alter the water and compound chemistry, affecting the pH, ionic strength,
polarity, and other parameters [19]. Chen et al. (2019) found that the release of organotin
compounds from PVC particles was inhibited under high-salinity conditions, probably due
to organotin’s re-adsorption on PVC [86].

The weathering or aging of MPs can lead to changes in MPs’ surface and their release
of organic compounds. Lee et al. (2020) investigated the leaching of DOM from additive-free
MPs in artificial freshwater under UV radiation and dark conditions. Their results showed
that UV radiation facilitated the release of DOM from plastic polymers, and the amount
of leached DOM was approximately 3% of the total plastic mass [91]. Lee et al. (2020)
explored the fluorescence signature of DOM leached from two plastic polymers (PVC
and PS), two additives (diethylhexyl (DEHP) and BPA), and two commercial plastics.
They found that UV radiation facilitated the leaching of plastic-derived DOM. Under UV
radiation, one humic-like component (Ex/Em = 235(290)/410 nm) and one protein/phenol-
like fluorescent component (Ex/Em = 270/309 nm) were found to have strong correlations
with the polymer-derived DOM [17].

4. Impacts of MPs on Natural DOM in Aquatic Ecosystems

DOM is ubiquitous and plays an essential role in aquatic ecosystems by regulating
underwater light and providing an energy source for microorganisms [92,93]. The primary
source of autochthonous natural DOM in water is living phytoplankton, which release
DOM through lysis, senescence, and grazing [94]. Numerous studies have investigated
the toxicity effects of MPs on phytoplankton in water; however, very little is known about
the impact of MPs on the phytoplankton production of natural DOM. One recent study by
our research group found that light-aged MPs could decrease algal DOM production by
38% and modify the chemical composition of natural DOM by increasing the aromaticity
and molecular weight [95]. Compared to direct DOM leaching, the impact of MPs on
phytoplankton production of DOM may be more important to natural DOM cycling in
water (Figure 1).

Since natural DOM is a heterogeneous organic mixture (ranging from small amino
acids to large humic substances) with various functional groups [96], the aforementioned
mechanisms (hydrophobic interactions, van der Waals interactions, π–π interactions, hy-
drogen interactions, and electrostatic interactions) can apply to the interactions between
MPs and natural DOM in aquatic environments. In addition, as the molecular structure
of natural DOM is much more complex than that of a single organic compound, several
mechanisms often coexist for the adsorption of natural DOM on MPs.

Firstly, MPs can affect the physicochemical state of natural DOM in water. Natural
DOM in the water column can quickly form organic aggregates due to adsorption on MPs
via covalent bonding, hydrogen bonding, or other reactive functional groups, which can
lead to the co-precipitation of natural DOM with particulate organic matter (POM). Galgani
et al. (2018) observed an accumulation of chromophoric DOM (CDOM) in the sea surface
microlayer when MPs were present [97]. Chen et al. (2018) found that 10 ppb nanoplastic
particles in the water column accelerated DOM–POM aggregation due to the hydrophobic
kinetic assembly [38].
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Figure 1. Schematic diagram of the impacts of microplastics (MPs) on the production and transfor-
mation of natural dissolved organic matter (DOM) in water. These processes are as follows: (1) MPs
affect the autochthonous production of DOM by interacting with phytoplankton and microorganisms;
(2) MPs affect DOM production by interacting with zooplankton; and (3) MPs affect DOM production
and transformation by releasing and adsorbing organic molecules.

Secondly, MPs can influence the natural DOM cycle by altering the microorganism
community in water [98]. Microorganisms are closely associated with MPs in water and
sediments and play a crucial role in aquatic biogeochemical cycles [99]. MPs can move up
the food chain and quickly become part of the biogeochemical cycles in the water column.
They can act as a carbon source for elemental cycling [100]. Planktonic microorganisms
can attach to or aggregate with MPs or actively consume or break down MPs [101]. En-
vironmental factors, such as photo-oxidation, can cause microplastics to age and change
their surface morphology, roughness, and chemical properties. These changes can increase
microbe adhesion, provide favorable conditions for biofilm formation, and ultimately
accelerate the biodegradation of MPs [99]. Studies have shown that microorganisms can
actively interact with or passively attach to MPs, using available electron acceptors to break
down these polymers. These intermediate degradation products may act as electron donors
for microbial utilization [101]. On the other hand, the adsorption and release of DOM
by MPs can impact the productivity and structure of microbial communities in natural
water bodies [101]. Andres et al. (2019) proposed that DOM released by MPs could explain
the different characteristics of carbon substrate utilization by microorganisms attached
to MPs compared to microorganisms in the surrounding water [102]. Pinto et al. (2020)
demonstrated that certain prokaryotes can survive solely on MPs and are relatively abundant
in various water masses of the global ocean [103]. Recent studies have shown that the release
of DOM from MPs can stimulate microbial utilization of DOC in water [104,105]. However,
the article by Oberbeckmann and Labrenz (2020) reviewed the role of microbial interactions
with MPs in marine ecosystems and demonstrated that MPs in the ocean represent recalcitrant
substances for microorganisms that probably would not be microbially degraded [105].

Finally, MPs can influence natural DOM cycling by interacting with zooplankton.
Fecal pellets excreted by zooplankton are not only a food source for marine organisms but
also part of the biological pump that contributes to the marine vertical flux of POM, an
important source of DOM in water. Cole et al. (2016) found that zooplankton that ingested
marine MPs could reduce the density, structural integrity, and sinking rate of their fecal
pellets. This interference can hinder the biological transport of carbon from the ocean
surface to the deep sea [106]. This result was also observed by Corsi et al. (2020), who
demonstrated that the adsorption of MP particles on the surface or their internalization
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in feces reduced their motility and affected their sinking or floating behavior, ultimately
affecting the “sink” of natural DOM [107].

5. Conclusions and Future Perspectives

The present review on the interactions between MPs and dissolved organic compounds
addressed the following research issues: the adsorption mechanism of dissolved organic
compounds on MPs and environmental factors; the release of dissolved organic compounds
from MPs and environmental factors; and the impact of MPs on natural DOM cycling in
aquatic ecosystems. Although researchers have made progress in understanding how
organic compounds are absorbed and released by MPs in water, the mechanisms that
drive the adsorption and release behaviors of dissolved organic compounds on MPs are
still not fully understood. More importantly, there has been little investigation into the
direct interactions between MPs and natural DOM in aquatic environments. Specifically,
the impacts of MPs on the production and transformation of natural DOM in aquatic
ecosystems are unanswered questions. In addition, the interactions between aquatic
organisms and MPs are numerous and complex, and the nature of their interactions has not
yet been thoroughly investigated. The following knowledge gaps require further studies:

(1) Thus far, studies have concentrated on the adsorption of specific organic pollutants
on MPs, and little information is available on the direct interactions between MPs and
natural sources of dissolved organic compounds.

(2) A few recent studies reported the magnitude of DOM released from MPs in water;
however, the significance and contribution of DOM released by MPs to aquatic carbon
cycling require further evaluation.

(3) The topic of “MPs have the potential to become a local hotspot for microbial activity
and influence the carbon cycling process in water” has been widely proposed. Nevertheless,
to what extent MPs influence microorganism metabolism linked to carbon cycling remains
an enigma.

This review highlighted the interactions between MPs and natural DOM, offering a
limited understanding of the interactions between MPs and dissolved organic compounds
in water. Due to the wide variety of MPs and natural DOM, future advances in under-
standing the impact of MPs on the magnitude and transformation of dissolved organic
compounds are urgently needed.
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