Study on Parameter Inversion Model Construction and Evaluation Method of UAV Hyperspectral Urban Inland Water Pollution Dynamic Monitoring
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area Overview
2.2. UAV Hyperspectral Data Acquisition and Preprocessing
2.3. ROI Selection and Pretreatment Method
3. Analytical Model and Evaluation Criteria
3.1. Modeling Methods for the Full Spectrum Regression Model
3.2. Spectrum Dimensionality Reduction
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
COD | Chemical Oxygen Demand |
DO | Dissolved Oxygen |
TP | Total Phosphorus |
TN | Total Nitrogen |
NH3-N | Ammonia Nitrogen |
UAV | Unmanned Aerial Vehicle |
RMSE | Root Mean Square Error |
MAPE | Mean Absolute Percentage Error |
MAE | Mean Absolute Error |
Coefficient of Determination | |
CNN | Convolutional Neural Network |
DCGAN | Deep Convolutional Generation and Adversarial Network |
BNN | Bayesian Neural Network |
SSC | Suspended Sediment Concentration |
GRNN | Gated Recurrent Neural Network |
Chl-a | ChlorophylL-A |
PCA | Principal Component Analysis |
SPA | Successive Projections Algorithm |
SAA | Simulated Annealing Algorithm |
CIOMP | Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences |
ROI | Region of Interest |
SNV | Standard Normal Variate Correction |
MSC | Multiplicative Scatter Correction |
MMS | Min-Max Standardization |
WAVE | Wavelet Transform |
LR | LinearRegression |
SVR | Support Vector Regression |
PLS | Partial Least Squares Regression |
RFR | Random Forest Regression |
References
- Palmer, S.C.; Kutser, T.; Hunter, P.D. Remote sensing of inland waters: Challenges, progress and future directions. Remote Sens. Environ. 2015, 157, 1–8. [Google Scholar]
- Harish, B.; Manjulavani, K.; Shantosh, M.; Supriya, V.M. Change detection of land use and land cover using remote sensing techniques. In Proceedings of the 2017 IEEE International Conference on Power, Control, Signals and Instrumentation Engineering (ICPCSI), Chennai, India, 21–22 September 2017; pp. 2806–2810. [Google Scholar]
- HaRa, J.; Atique, U.; An, K.G. Multiyear links between water chemistry, algal chlorophyll, drought-flood regime, and nutrient enrichment in a morphologically complex reservoir. Int. J. Environ. Res. Public Health 2020, 17, 3139. [Google Scholar]
- Lewis, W.M., Jr.; Wurtsbaugh, W.A.; Paerl, H.W. Rationale for control of anthropogenic nitrogen and phosphorus to reduce eutrophication of inland waters. Environ. Sci. Technol. 2011, 45, 10300–10305. [Google Scholar]
- Adamiak, M.; Będkowski, K.; Majchrowska, A. Aerial imagery feature engineering using bidirectional generative adversarial networks: A case study of the pilica river region, Poland. Remote Sens. 2021, 13, 306. [Google Scholar]
- Doña, C.; Chang, N.B.; Caselles, V.; Sánchez, J.M.; Camacho, A.; Delegido, J.; Vannah, B.W. Integrated satellite data fusion and mining for monitoring lake water quality status of the Albufera de Valencia in Spain. J. Environ. Manag. 2015, 151, 416–426. [Google Scholar]
- Ghaderi, D.; Rahbani, M. Tracing suspended matter in Tiab estuary applying ANN and Remote sensing. Reg. Stud. Mar. Sci. 2021, 44, 101788. [Google Scholar] [CrossRef]
- Dona, C.; Sanchez, J.M.; Caselles, V.; Domínguez, J.A.; Camacho, A. Empirical relationships for monitoring water quality of lakes and reservoirs through multispectral images. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 1632–1641. [Google Scholar] [CrossRef]
- Bonansea, M.; Ledesma, M.; Rodriguez, C.; Pinotti, L. Using new remote sensing satellites for assessing water quality in a reservoir. Hydrol. Sci. J. 2019, 64, 34–44. [Google Scholar] [CrossRef]
- Bao, Y. Diurnal variation of chlorophyll a concentration in Taihu Lake based on GOCI image classification. Spectrosc. Spectr. Anal. 2016, 36, 2562–2567. [Google Scholar]
- Gu, Q.; Li, Q.; Zhou, M. Water Quality Monitoring of the Yangtze Estuary by Using GF-5 Hyperspectral Image. In Proceedings of the 2019 12th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI), Suzhou, China, 19–21 October 2019; pp. 1–5. [Google Scholar] [CrossRef]
- Jichang, T.; Xueqin, Y.; Chaobo, C.; Song, G.; Jingcheng, W.; Cheng, S. Water quality prediction model based on GRU hybrid network. In Proceedings of the 2019 Chinese Automation Congress (CAC), Hangzhou, China, 22–24 November 2019; pp. 1893–1898. [Google Scholar] [CrossRef]
- Du, C.; Wang, Q.; Li, Y.; Lyu, H.; Zhu, L.; Zheng, Z.; Wen, S.; Liu, G.; Guo, Y. Estimation of total phosphorus concentration using a water classification method in inland water. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 29–42. [Google Scholar] [CrossRef]
- Ahn, J.M.; Kim, B.; Jong, J.; Nam, G.; Park, L.J.; Park, S.; Kang, T.; Lee, J.K.; Kim, J. Predicting Cyanobacterial Blooms Using Hyperspectral Images in a Regulated River. Sensors 2021, 21, 530. [Google Scholar]
- Flynn, K.F.; Chapra, S.C. Remote Sensing of Submerged Aquatic Vegetation in a Shallow Non-Turbid River Using an Unmanned Aerial Vehicle. Remote Sens. 2014, 6, 12815–12836. [Google Scholar]
- Pajares, G. Overview and Current Status of Remote Sensing Applications Based on Unmanned Aerial Vehicles (UAVs). Photogramm. Eng. Remote Sens. 2015, 81, 281–329. [Google Scholar] [CrossRef]
- Su, T.C.; Chou, H.T. Application of Multispectral Sensors Carried on Unmanned Aerial Vehicle (UAV) to Trophic State Mapping of Small Reservoirs: A Case Study of Tain-Pu Reservoir in Kinmen, Taiwan. Remote Sens. 2015, 7, 10078–10097. [Google Scholar]
- Zaman, B.; Jensen, A.M.; Clemens, S.; McKee, M. Retrieval of Spectral Reflectance of High Resolution Multispectral Imagery Acquired with an Autonomous Unmanned Aerial Vehicle: AggieAir™. Photogramm. Eng. Remote Sens. 2014, 80, 1139–1150. [Google Scholar]
- Su, T.C. A study of a matching pixel by pixel (MPP) algorithm to establish an empirical model of water quality mapping, as based on unmanned aerial vehicle (UAV) images. Int. J. Appl. Earth Obs. Geoinf. 2017, 58, 213–224. [Google Scholar] [CrossRef]
- Pour, S.H.; Shahid, S.; Chung, E.S.; Wang, X.J. Model output statistics downscaling using support vector machine for the projection of spatial and temporal changes in rainfall of Bangladesh. Atmos. Res. 2018, 213, 149–162. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, G.; Wang, H.; Li, X. Application of a Hybrid Interpolation Method Based on Support Vector Machine in the Precipitation Spatial Interpolation of Basins. Water 2017, 9, 760. [Google Scholar] [CrossRef]
- Leone, A.P.; Viscarra-Rossel, R.A.; Amenta, P.; Buondonno, A. Prediction of soil properties with PLSR and vis-NIR spectroscopy: Application to mediterranean soils from Southern Italy. Curr. Anal. Chem. 2012, 8, 283–299. [Google Scholar] [CrossRef]
- Hou, L.; Li, X.; Li, F. Hyperspectral-based Inversion of Heavy Metal Content in the Soil of Coal Mining Areas. J. Environ. Qual. 2019, 1, 57–63. [Google Scholar] [CrossRef]
- Shi, C.; Liao, D.; Zhang, T.; Wang, L. Hyperspectral Image Classification Based on Expansion Convolution Network. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Xi, J.; Ersoy, O.K.; Cong, M.; Zhao, C.; Qu, W.; Wu, T. Wide and Deep Fourier Neural Network for Hyperspectral Remote Sensing Image Classification. Remote Sens. 2022, 14, 2931. [Google Scholar] [CrossRef]
- Vaiphasa, C.; Skidmore, A.K.; de Boer, W.F.; Vaiphasa, T. A hyperspectral band selector for plant species discrimination. ISPRS J. Photogramm. Remote Sens. 2007, 62, 225–235. [Google Scholar] [CrossRef]
- Xu, Y.; Du, Q.; Younan, N. Particle swarm optimization-based band selection for hyperspectral target detection. In Proceedings of the 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing, China, 10–15 July 2016; pp. 5872–5875. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, L.; Zhang, Z. A novel atom search optimization for dispersion coefficient estimation in groundwater. Future Gener. Comput. Syst. 2019, 91, 601–610. [Google Scholar] [CrossRef]
- Zhong, K.; Luo, Q.; Zhou, Y.; Jiang, M. TLMPA: Teaching-learning-based Marine Predators algorithm. AIMS Math. 2021, 6, 1395–1442. [Google Scholar] [CrossRef]
- Hennessy, A.; Clarke, K.; Lewis, M. Hyperspectral Classification of Plants: A Review of Waveband Selection Generalisability. Remote Sens. 2020, 12, 113. [Google Scholar] [CrossRef]
Serial Number | Section Name | Latitude (N) | Longitude (E) |
---|---|---|---|
1 | In the library | 21.596800900 | 109.232536650 |
2 | Downhill Village | 21.607201300 | 109.237450290 |
3 | Caohualing Village | 21.60265254 | 109.240883460 |
4 | Slope Heart Ridge | 21.612006920 | 109.230904750 |
5 | Dam Head | 21.589200229 | 109.229440652 |
Model Preprocessing | Regression Model | RMSE | MAE | Predicted | |
---|---|---|---|---|---|
MSC | Linear | 0.0877 | 0.7071 | 0.8227 | 0.8921 |
SVR | 0.0980 | 0.0829 | 0.7773 | 0.9448 | |
PLS | 0.0742 | 0.0565 | 0.8726 | 0.7037 | |
RandomForest | 0.0678 | 0.0202 | 0.8930 | 0.9686 | |
SNV | Linear | 0.0849 | 0.0647 | 0.8381 | 0.9022 |
SVR | 0.0980 | 0.0825 | 0.7788 | 0.8944 | |
PLS | 0.0735 | 0.0561 | 0.8769 | 0.9244 | |
RandomForest | 0.0894 | 0.0285 | 0.8154 | 0.8795 | |
MMS | Linear | 0.0574 | 0.0496 | 0.9232 | 0.9051 |
SVR | 0.0975 | 0.0971 | 0.7816 | 0.8796 | |
PLS | 0.0728 | 0.0489 | 0.8781 | 0.9063 | |
RandomForest | 0.0077 | 0.0038 | 0.9985 | 0.8611 | |
WAVE | Linear | 0.0656 | 0.0514 | 0.9005 | 0.9007 |
SVR | 0.0742 | 0.0643 | 0.8730 | 0.8711 | |
PLS | 0.0721 | 0.0484 | 0.8806 | 0.7740 | |
RandomForest | 0.0100 | 0.0039 | 0.9976 | 0.8825 | |
MSC+SNV | Linear | 0.0860 | 0.0689 | 0.8292 | 0.8100 |
SVR | 0.0980 | 0.0828 | 0.7771 | 0.8953 | |
PLS | 0.0742 | 0.0566 | 0.8727 | 0.9132 | |
RandomForest | 0.0686 | 0.0199 | 0.8905 | 0.9085 | |
SNV+MSC | Linear | 0.0825 | 0.0658 | 0.8441 | 0.9430 |
SVR | 0.0980 | 0.0825 | 0.7788 | 0.8944 | |
PLS | 0.0735 | 0.056 | 0.8769 | 0.8444 | |
RandomForest | 0.0922 | 0.0288 | 0.8045 | 0.9895 |
Model Preprocessing | Regression Model | RMSE | MAE | Predicted | |
---|---|---|---|---|---|
MSC | Linear | 0.2789 | 0.2308 | 0.8951 | 0.8455 |
SVR | 0.4589 | 0.3604 | 0.7159 | 0.8630 | |
PLS | 0.2059 | 0.1611 | 0.9428 | 0.5471 | |
RandomForest | 0.2462 | 0.1311 | 0.9182 | 0.7813 | |
SNV | Linear | 0.2693 | 0.2221 | 0.9022 | 0.8644 |
SVR | 0.4593 | 0.3612 | 0.7051 | 0.8744 | |
PLS | 0.2020 | 0.1571 | 0.9441 | 0.7923 | |
RandomForest | 0.1931 | 0.1027 | 0.9496 | 0.8443 | |
MMS | Linear | 0.1288 | 0.1071 | 0.9775 | 0.8359 |
SVR | 0.1136 | 0.1021 | 0.9825 | 0.8332 | |
PLS | 0.1483 | 0.1072 | 0.9703 | 0.8307 | |
RandomForest | 0.1778 | 0.0825 | 0.9571 | 0.8128 | |
WAVE | Linear | 0.1411 | 0.1152 | 0.9731 | 0.8703 |
SVR | 0.1175 | 0.1020 | 0.9813 | 0.9064 | |
PLS | 0.1428 | 0.1101 | 0.9724 | 0.7448 | |
RandomForest | 0.1682 | 0.0748 | 0.9617 | 0.8467 | |
MSC+SNV | Linear | 0.2766 | 0.2281 | 0.8968 | 0.8622 |
SVR | 0.4587 | 0.3604 | 0.7160 | 0.8741 | |
PLS | 0.2059 | 0.1612 | 0.9428 | 0.8934 | |
RandomForest | 0.2966 | 0.1251 | 0.8812 | 0.8386 | |
SNV+MSC | Linear | 0.2661 | 0.2199 | 0.9044 | 0.8630 |
SVR | 0.4593 | 0.3612 | 0.7152 | 0.8744 | |
PLS | 0.2020 | 0.1571 | 0.9449 | 0.7923 | |
RandomForest | 0.2078 | 0.1011 | 0.9421 | 0.8538 |
Model Preprocessing | Regression Model | RMSE | MAE | Predicted | |
---|---|---|---|---|---|
MSC | Linear | 0.0648 | 0.0525 | 0.78 | 0.7718 |
SVR | 0.0800 | 0.0687 | 0.663 | 0.3485 | |
PLS | 0.0539 | 0.0413 | 0.8459 | 0.3131 | |
RandomForest | 0.0548 | 0.0148 | 0.8529 | 0.3269 | |
SNV | Linear | 0.0632 | 0.0511 | 0.7918 | 0.8148 |
SVR | 0.0775 | 0.0685 | 0.663 | 0.5574 | |
PLS | 0.0548 | 0.0409 | 0.85125 | 0.7984 | |
RandomForest | 0.0632 | 0.0197 | 0.7837 | 0.6705 | |
MMS | Linear | 0.0447 | 0.0356 | 0.9079 | 0.2477 |
SVR | 0.0949 | 0.097 | 0.5081 | 0.3672 | |
PLS | 0.0548 | 0.035 | 0.859 | 0.5531 | |
RandomForest | 0.0063 | 0.0035 | 0.9976 | 0.6270 | |
WAVE | Linear | 0.0447 | 0.0369 | 0.8842 | 0.7128 |
SVR | 0.0707 | 0.06169 | 0.7331 | 0.7967 | |
PLS | 0.0548 | 0.035 | 0.8604 | 0.7792 | |
RandomForest | 0.0100 | 0.002 | 0.9971 | 0.6951 | |
MSC+SNV | Linear | 0.0632 | 0.052 | 0.786 | 0.8300 |
SVR | 0.0775 | 0.0686 | 0.6635 | 0.5616 | |
PLS | 0.0548 | 0.04 | 0.8461 | 0.8542 | |
RandomForest | 0.0529 | 0.0135 | 0.8566 | 0.6679 | |
SNV+MSC | Linear | 0.0632 | 0.0503 | 0.7969 | 0.8128 |
SVR | 0.0775 | 0.0685 | 0.6634 | 0.5574 | |
PLS | 0.0539 | 0.04097 | 0.8511 | 0.6984 | |
RandomForest | 0.0632 | 0.021 | 0.7699 | 0.6541 |
Model Preprocessing | Regression Model | RMSE | MAE | Predicted | |
---|---|---|---|---|---|
MSC | Linear | 0.0055 | 0.0042 | 0.824 | 0.8513 |
SVR | 0.0141 | 0.0151 | 0.436 | 0.8718 | |
PLS | 0.0045 | 0.0033 | 0.8769 | 0.2256 | |
RandomForest | 0.0548 | 0.0012 | 0.9008 | 0.7795 | |
SNV | Linear | 0.0055 | 0.0041 | 0.8343 | 0.8385 |
SVR | 0.0045 | 0.0152 | 0.4361 | 0.8718 | |
PLS | 0.0055 | 0.0034 | 0.8768 | 0.8410 | |
RandomForest | 0.0632 | 0.0018 | 0.8051 | 0.8049 | |
MMS | Linear | 0.0032 | 0.0029 | 0.9216 | 0.7713 |
SVR | 0.0141 | 0.0152 | 0.4361 | 0.8718 | |
PLS | 0.0045 | 0.0029 | 0.8782 | 0.7754 | |
RandomForest | 0.0055 | 0.0003 | 0.9981 | 0.7641 | |
WAVE | Linear | 0.0045 | 0.0321 | 0.9012 | 0.6872 |
SVR | 0.0141 | 0.0151 | 0.4361 | 0.5718 | |
PLS | 0.0042 | 0.0029 | 0.8828 | 0.7067 | |
RandomForest | 0.0041 | 0.0002 | 0.9938 | 0.8631 | |
MSC+SNV | Linear | 0.0051 | 0.0041 | 0.8291 | 0.8533 |
SVR | 0.0141 | 0.0151 | 0.4362 | 0.8718 | |
PLS | 0.0044 | 0.0039 | 0.8727 | 0.8369 | |
RandomForest | 0.0041 | 0.0012 | 0.8871 | 0.8949 | |
SNV+MSC | Linear | 0.0050 | 0.0041 | 0.8392 | 0.7405 |
SVR | 0.0141 | 0.0152 | 0.4362 | 0.8718 | |
PLS | 0.0044 | 0.0034 | 0.8769 | 0.8410 | |
RandomForest | 0.0057 | 0.0017 | 0.7964 | 0.7749 |
Model Preprocessing | Regression Model | RMSE | MAE | Predicted | |
---|---|---|---|---|---|
MSC | Linear | 0.2755 | 0.0698 | 0.8721 | 0.7200 |
SVR | 0.0990 | 0.0838 | 0.8323 | 0.8838 | |
PLS | 0.0755 | 0.0571 | 0.9021 | 0.2605 | |
RandomForest | 0.0671 | 0.0224 | 0.9228 | 0.8771 | |
SNV | Linear | 0.0849 | 0.0682 | 0.8766 | 0.7819 |
SVR | 0.0990 | 0.0834 | 0.8332 | 0.8648 | |
PLS | 0.0742 | 0.0561 | 0.9055 | 0.7024 | |
RandomForest | 0.0949 | 0.0285 | 0.8241 | 0.7990 | |
MMS | Linear | 0.0600 | 0.0518 | 0.9371 | 0.7924 |
SVR | 0.0949 | 0.0951 | 0.8432 | 0.7671 | |
PLS | 0.0742 | 0.0496 | 0.9057 | 0.9210 | |
RandomForest | 0.0084 | 0.0053 | 0.9981 | 0.8871 | |
WAVE | Linear | 0.0686 | 0.0541 | 0.9192 | 0.5748 |
SVR | 0.0735 | 0.0638 | 0.9071 | 0.7005 | |
PLS | 0.0707 | 0.0564 | 0.9123 | 0.7305 | |
RandomForest | 0.0063 | 0.0033 | 0.9938 | 0.7862 | |
MSC+SNV | Linear | 0.0837 | 0.0681 | 0.8731 | 0.7747 |
SVR | 0.0990 | 0.0837 | 0.8324 | 0.8620 | |
PLS | 0.0755 | 0.0574 | 0.9024 | 0.6989 | |
RandomForest | 0.0735 | 0.0185 | 0.9074 | 0.7995 | |
SNV+MSC | Linear | 0.0837 | 0.0671 | 0.8801 | 0.7833 |
SVR | 0.0985 | 0.0832 | 0.8332 | 0.8638 | |
PLS | 0.0742 | 0.0569 | 0.9055 | 0.7024 | |
RandomForest | 0.0872 | 0.0284 | 0.8709 | 0.8050 |
Spectral Dimensionality Reduction Method | Predicted | MAPE | |
---|---|---|---|
COD | MSC-SAA-RFR | 0.9871 | 0.0129 |
MSC-SPA-RFR | 0.9412 | 0.0588 | |
MSC-SPA-RFR | 0.9132 | 0.0868 | |
DO | WAVE-SAA-SVR | 0.9291 | 0.0709 |
WAVE-SPA-SVR | 0.7647 | 0.2353 | |
WAVE-PCA-SVR | 0.9096 | 0.0904 | |
NH3-N | MSC+SNV-SAA-PLS | 0.8746 | 0.1254 |
MSC+SNV-SPA-PLS | 0.5897 | 0.4103 | |
MSC+SNV-PCA-PLS | 0.5951 | 0.4049 | |
TP | MSC+SNV-SAA-RFR | 0.7230 | 0.277 |
MSC+SNV-SPA-RFR | 0.8941 | 0.1059 | |
MSC+SNV-PCA-RFR | 0.8000 | 0.2 | |
TN | MMS-SAA-PLS | 0.8871 | 0.1129 |
MMS-SPA-PLS | 0.8752 | 0.1248 | |
MMS-PCA-PLS | 0.9210 | 0.079 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, J.; Wang, J.; Feng, S.; Zhao, Z.; Wang, M.; Sun, C.; Song, N.; Yang, J. Study on Parameter Inversion Model Construction and Evaluation Method of UAV Hyperspectral Urban Inland Water Pollution Dynamic Monitoring. Water 2023, 15, 4131. https://doi.org/10.3390/w15234131
Chen J, Wang J, Feng S, Zhao Z, Wang M, Sun C, Song N, Yang J. Study on Parameter Inversion Model Construction and Evaluation Method of UAV Hyperspectral Urban Inland Water Pollution Dynamic Monitoring. Water. 2023; 15(23):4131. https://doi.org/10.3390/w15234131
Chicago/Turabian StyleChen, Jiaqi, Jinyu Wang, Shulong Feng, Zitong Zhao, Mingjia Wang, Ci Sun, Nan Song, and Jin Yang. 2023. "Study on Parameter Inversion Model Construction and Evaluation Method of UAV Hyperspectral Urban Inland Water Pollution Dynamic Monitoring" Water 15, no. 23: 4131. https://doi.org/10.3390/w15234131
APA StyleChen, J., Wang, J., Feng, S., Zhao, Z., Wang, M., Sun, C., Song, N., & Yang, J. (2023). Study on Parameter Inversion Model Construction and Evaluation Method of UAV Hyperspectral Urban Inland Water Pollution Dynamic Monitoring. Water, 15(23), 4131. https://doi.org/10.3390/w15234131