Copper Nanoparticles Coupled with Fine-Powdered Active Carbon-Modified Ceramic Membranes for Improved Filtration Performance in a Membrane Bioreactor
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials and Chemicals
2.2. Membrane Modification and Characterization
2.3. Membrane Performance
2.3.1. Anti-Biofouling Performance Evaluation
2.3.2. Membrane-Bioreactor Setup
2.4. Membrane-Fouling Resistances and Cleaning
2.4.1. Membrane-Fouling Resistances
2.4.2. Membrane Cleaning
2.5. Analytical Methods
3. Results and Discussion
3.1. Membrane-Surface Characteristics
3.2. Antibacterial Activity Assays
3.3. MBR-Treatment Performance
3.3.1. TMP Analysis of Different MBR Systems
3.3.2. Removal Efficiency of Pollutants in an MBR System
3.4. Membrane Fouling and Cleaning
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Subject | Coarseness (Mesh) | Iodine Absorb (mg/g) | Hardness (%) | Moisture (%) | Ash (%) |
---|---|---|---|---|---|
Index | 0.5–1, 1–2, 2–4 | ≥700 | 98 | ≤8 | ≤5 |
Subject | Name | Thickness | Pore Size | Size | Constituent Materials | Effective Area |
---|---|---|---|---|---|---|
Index | Ceramic membrane | 0.25 mm | 0.1 µm | 12 | Al2O3, SiO2, TiO2 | 0.0192 m2 |
Subject | T (°C) | pH | COD (mg/L) | NH4+-N (mg/L) | TP (mg/L) |
---|---|---|---|---|---|
Index | 15–35 | 7.20–8.31 | 380–400 | 35–45 | 5–7 |
C (%) | O (%) | Al (%) | Cu (%) | Yb (%) | |
---|---|---|---|---|---|
M0 | 14.51 | 44.76 | 38.10 | - | 2.63 |
M-CuOC | 22.69 | 38.47 | 36.07 | 0.45 | 2.32 |
References
- Girón, H.I.; Ruiz, L.M.; Pérez, J.I.; Gómez, M.A. Influence of Discontinuous On-Line Ultrasonic Irradiation Applied in Ultrafiltration MBR Systems over the Physical-Chemical and Biological Characteristics of the Activated Sludge. Chem. Eng. Process.-Process Intensif. 2023, 193, 109527. [Google Scholar] [CrossRef]
- Zang, L.; Yang, X.-L.; Xu, H.; Deng, Y.-J.; Yue, Z.-X.; Song, H.-L. Alleviating Membrane Fouling by Enhanced Bioelectricity Generation via Internal Reflux of Sludge Mixed Liquor in Microbial Fuel Cell-Membrane Bioreactor (MFC-MBR) Coupling System. J. Membr. Sci. 2023, 673, 121495. [Google Scholar] [CrossRef]
- Li, X.; Yang, H.; Wang, X.; Lu, S.; Wang, Y.; Liu, B.; Zhang, Y.; Zhao, H.; Tian, Z.; Zheng, X. Balancing Sludge Reduction and Membrane Fouling Mitigation by Tuning Electrical Voltages of a Side-Flow Electrochemical Oxidation System during MBR Processing. J. Clean. Prod. 2023, 425, 138712. [Google Scholar] [CrossRef]
- Ongena, S.; de Walle, A.V.; Mosquera-Romero, S.; Driesen, N.; Gutierrez, L.; Rabaey, K. Comparison of MBR and MBBR Followed by UV or Electrochemical Disinfection for Decentralized Greywater Treatment. Water Res. 2023, 235, 119818. [Google Scholar] [CrossRef] [PubMed]
- Gu, Q.; Ng, T.C.A.; Poh, W.; Kirk, C.H.; Lyu, Z.; Zhang, L.; Wang, J.; Ng, H.Y. 3D Spray-Coated Gradient Profile Ceramic Membranes Enables Improved Filtration Performance in Aerobic Submerged Membrane Bioreactor. Water Res. 2022, 220, 118661. [Google Scholar] [CrossRef] [PubMed]
- López, J.; Reig, M.; Vecino, X.; Gibert, O.; Cortina, J.L. Comparison of Acid-Resistant Ceramic and Polymeric Nanofiltration Membranes for Acid Mine Waters Treatment. Chem. Eng. J. 2020, 382, 122786. [Google Scholar] [CrossRef]
- Maddela, N.R.; Torres, R.O.V. The Presence of Low Fouling-Causing Bacteria Can Lead to Decreased Membrane Fouling Potentials of Mixed Cultures. J. Environ. Chem. Eng. 2021, 9, 105131. [Google Scholar] [CrossRef]
- Tian, J.; Pan, H.; Bai, Z.; Huang, R.; Zheng, X.; Gao, S. Alleviated Membrane Fouling of Corundum Ceramic Membrane in MBR: As Compared with Alumina Membrane. J. Environ. Chem. Eng. 2022, 10, 108949. [Google Scholar] [CrossRef]
- Teng, J.; Shen, L.; Xu, Y.; Chen, Y.; Wu, X.-L.; He, Y.; Chen, J.; Lin, H. Effects of Molecular Weight Distribution of Soluble Microbial Products (SMPs) on Membrane Fouling in a Membrane Bioreactor (MBR): Novel Mechanistic Insights. Chemosphere 2020, 248, 126013. [Google Scholar] [CrossRef]
- Meng, F.; Zhang, S.; Oh, Y.; Zhou, Z.; Shin, H.-S.; Chae, S.-R. Fouling in Membrane Bioreactors: An Updated Review. Water Res. 2017, 114, 151–180. [Google Scholar] [CrossRef]
- Teng, J.; Zhang, M.; Leung, K.-T.; Chen, J.; Hong, H.; Lin, H.; Liao, B.-Q. A Unified Thermodynamic Mechanism Underlying Fouling Behaviors of Soluble Microbial Products (SMPs) in a Membrane Bioreactor. Water Res. 2019, 149, 477–487. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Guo, Y.; Wang, T.; Wu, Z.; Wang, Z. Antibiofouling Performance and Mechanisms of a Modified Polyvinylidene Fluoride Membrane in an MBR for Wastewater Treatment: Role of Silver@silica Nanopollens. Water Res. 2020, 176, 115749. [Google Scholar] [CrossRef]
- Gu, Q.; Ng, T.C.A.; Zang, W.; Zhang, L.; Lyu, Z.; Zhang, Z.; Ng, H.Y.; Wang, J. Surface Engineered Alumina Microfiltration Membranes Based on Rationally Constructed Core-Shell Particles. J. Eur. Ceram. Soc. 2020, 40, 5951–5958. [Google Scholar] [CrossRef]
- Mustafa, G.; Wyns, K.; Buekenhoudt, A.; Meynen, V. Antifouling Grafting of Ceramic Membranes Validated in a Variety of Challenging Wastewaters. Water Res. 2016, 104, 242–253. [Google Scholar] [CrossRef] [PubMed]
- Dong, M.; Guo, J.; Liu, Q.; Zeng, J.; Xiong, X.; Gai, X.; Wang, Y.; Wu, Y. Low-Pressure Carbon Nanotube Membrane with Different Surface Properties for the Removal of Organic Dyes and PPCPs. J. Environ. Chem. Eng. 2023, 11, 110131. [Google Scholar] [CrossRef]
- Wang, Z.; Qi, J.; Zhao, Y.; Jiang, H.; Han, B.; He, H.; He, M.; Ma, J. Graphitic Carbon Nitride Membranes Intercalated with Nano-Sized Fe-MOF for Enhanced Water Purification via Synergistic Separation and Fenton-like Processes. Chemosphere 2023, 340, 139937. [Google Scholar] [PubMed]
- Yang, Y.; Zhao, F.; Yang, L.; Zhang, J.; Park, H.-D.; Li, Z.; Chen, H.; Zhang, X.; Gao, M. Catalytic Degradation of Bisphenol a (BPA) in Water by Immobilizing Silver-Loaded Graphene Oxide (GO-Ag) in Ultrafiltration Membrane with Finger-like Structure. Chem. Eng. J. 2023, 474, 145577. [Google Scholar]
- Hong, M.; Wang, B.; Xu, X.; Bin, P.; Zhang, J.; Zhang, Q. Rational Design of High-Performance Continuous Flow Catalytic Membrane Reactor Based on Poly(4-Vinylpyridine) Brush-Anchored Au Nanoparticles. J. Membr. Sci. 2022, 662, 121002. [Google Scholar] [CrossRef]
- Wang, L.; Gao, N.; Han, F.; Mao, Y.; Tian, J. Immobilization of Nano-Cu on Ceramic Membrane by Dopamine Assisted Flowing Synthesis for Enhanced Catalysis. Sep. Purif. Technol. 2023, 326, 124781. [Google Scholar] [CrossRef]
- Jafari, B.; Abbasi, M.; Hashemifard, S.A.; Sillanpää, M. Elaboration and Characterization of Novel Two-Layer Tubular Ceramic Membranes by Coating Natural Zeolite and Activated Carbon on Mullite-Alumina-Zeolite Support: Application for Oily Wastewater Treatment. J. Asian Ceram. Soc. 2020, 8, 848–861. [Google Scholar] [CrossRef]
- Wang, S.; Wu, Q.; Huang, R.; Guo, Y.; Yan, B.; Hao, X.; Li, J.; Xia, W.; Tian, J. Catalytic Ceramic Membrane Integrated with Granular Activated Carbon for Efficient Removal of Organic Pollutants. J. Water Process Eng. 2022, 47, 102751. [Google Scholar] [CrossRef]
- Liu, W.; Li, Y.; Xu, L.; Wang, G.; Ma, X.; Wang, Y. Biomimic Heterostructured Graphene Oxide Membranes via Supramolecular-Mediated Intercalation Assembly for Efficient Water Transport. Small 2022, 18, e2200461. [Google Scholar] [CrossRef] [PubMed]
- Rashed, A.O.; Merenda, A.; Kondo, T.; Lima, M.; Razal, J.; Kong, L.; Huynh, C.; Dumée, L.F. Carbon Nanotube Membranes–Strategies and Challenges towards Scalable Manufacturing and Practical Separation Applications. Sep. Purif. Technol. 2021, 257, 117929. [Google Scholar] [CrossRef]
- Tran, D.T.; Thieffry, G.; Jacob, M.; Batiot-Dupeyrat, C.; Teychene, B. Modification of Tubular Ceramic Membranes with Carbon Nanotubes Using Catalytic Chemical Vapor Deposition. Water Sci. Technol. J. Int. Assoc. Water Pollut. Res. 2015, 72, 1404–1410. [Google Scholar] [CrossRef] [PubMed]
- Song, D.; Zhang, W.; Cheng, W.; Jia, B.; Wang, P.; Sun, Z.; Ma, J.; Zhai, X.; Qi, J.; Liu, C. Micro Fine Particles Deposition on Gravity-Driven Ultrafiltration Membrane to Modify the Surface Properties and Biofilm Compositions: Water Quality Improvement and Biofouling Mitigation. Chem. Eng. J. 2020, 393, 123270. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, J.; Ma, Y.; Li, Y.; Shao, J.; Li, H. High Transparent Ag NPs/PVC SERS Membrane Combined with Molecular Imprinting Technology for Selective Detection of Norfloxacin. J. Environ. Chem. Eng. 2022, 10, 108916. [Google Scholar] [CrossRef]
- Xiao, J.; Dong, H.; Li, Y.; Li, L.; Chu, D.; Xiang, S.; Hou, X.; Dong, Q.; Xiao, S.; Jin, Z.; et al. Graphene Shell-Encapsulated Copper-Based Nanoparticles (G@Cu-NPs) Effectively Activate Peracetic Acid for Elimination of Sulfamethazine in Water under Neutral Condition. J. Hazard. Mater. 2023, 441, 129895. [Google Scholar] [CrossRef]
- Wang, J.; Lin, Q.; Wang, D.; Yu, H.; He, W.; Jiang, W.; Liu, C.; Zhu, E.; LI, H. Synthesis of PVDF Membrane Loaded with Wrinkled Au NPs for Sensitive Detection of R6G. Talanta 2022, 249, 123676. [Google Scholar] [CrossRef]
- Chen, Q.; Jiang, H.; Chen, R. Synthesis of ZIF-67 Derived Co-Based Catalytic Membrane for Highly Efficient Reduction of p-Nitrophenol. Chem. Eng. Sci. 2022, 248, 117160. [Google Scholar] [CrossRef]
- Chen, H.; Kong, L.; Wang, Y. Enhancing the Hydrophilicity and Water Permeability of Polypropylene Membranes by Nitric Acid Activation and Metal Oxide Deposition. J. Membr. Sci. 2015, 487, 109–116. [Google Scholar] [CrossRef]
- Ostadi, M.; Kamelian, F.S.; Mohammadi, T. Superhydrophilic Micro/Nano Hierarchical Functionalized-CuO/PVDF Nanocomposite Membranes with Ultra-Low Fouling/Biofouling Performance for Acetate Wastewater Treatment: MBR Application. J. Membr. Sci. 2023, 676, 121591. [Google Scholar] [CrossRef]
- Liu, C.; Wang, Z.; He, Q.; Jackson, J.; Faria, A.F.; Zhang, W.; Song, D.; Ma, J.; Sun, Z. Facile Preparation of Anti-Biofouling Reverse Osmosis Membrane Embedded with Polydopamine-Nano Copper Functionality: Performance and Mechanism. J. Membr. Sci. 2022, 658, 120721. [Google Scholar] [CrossRef]
- Isawi, H. Evaluating the Performance of Different Nano-Enhanced Ultrafiltration Membranes for the Removal of Organic Pollutants from Wastewater. J. Water Process Eng. 2019, 31, 100833. [Google Scholar] [CrossRef]
- Lu, D.; Zhang, T.; Gutierrez, L.; Ma, J.; Croué, J.-P. Influence of Surface Properties of Filtration-Layer Metal Oxide on Ceramic Membrane Fouling during Ultrafiltration of Oil/Water Emulsion. Environ. Sci. Technol. 2016, 50, 4668–4674. [Google Scholar] [CrossRef] [PubMed]
- Lin, C.-F.; Lin, A.Y.-C.; Sri Chandana, P.; Tsai, C.-Y. Effects of Mass Retention of Dissolved Organic Matter and Membrane Pore Size on Membrane Fouling and Flux Decline. Water Res. 2009, 43, 389–394. [Google Scholar] [CrossRef] [PubMed]
- Standard Methods for the Examination of Water and Wasterwater, 23rd ed. Available online: https://www.wef.org/publications/publications/books/StandardMethods/ (accessed on 23 October 2023).
- Wang, S.; Tian, J.; Wang, Q.; Xiao, F.; Gao, S.; Shi, W.; Cui, F. Development of CuO Coated Ceramic Hollow Fiber Membrane for Peroxymonosulfate Activation: A Highly Efficient Singlet Oxygen-Dominated Oxidation Process for Bisphenol a Degradation. Appl. Catal. B Environ. 2019, 256, 117783. [Google Scholar] [CrossRef]
- Wang, S.; Tian, J.; Jia, L.; Jia, J.; Shan, S.; Wang, Q.; Cui, F. Removal of Aqueous Organic Contaminants Using Submerged Ceramic Hollow Fiber Membrane Coupled with Peroxymonosulfate Oxidation: Comparison of CuO Catalyst Dispersed in the Feed Water and Immobilized on the Membrane. J. Membr. Sci. 2021, 618, 118707. [Google Scholar] [CrossRef]
- Sathiyavimal, S.; Vasantharaj, S.; Veeramani, V.; Saravanan, M.; Rajalakshmi, G.; Kaliannan, T.; Al-Misned, F.A.; Pugazhendhi, A. Green Chemistry Route of Biosynthesized Copper Oxide Nanoparticles Using Psidium Guajava Leaf Extract and Their Antibacterial Activity and Effective Removal of Industrial Dyes. J. Environ. Chem. Eng. 2021, 9, 105033. [Google Scholar] [CrossRef]
- Thandapani, G.; Arthi, K.; Pazhanisamy, P.; John, J.J.; Vinothini, C.; Rekha, V.; Santhanalakshmi, K.; Sekar, V. Green Synthesis of Copper Oxide Nanoparticles Using Spinacia Oleracea Leaf Extract and Evaluation of Biological Applications: Antioxidant, Antibacterial, Larvicidal and Biosafety Assay. Mater. Today Commun. 2023, 34, 105248. [Google Scholar] [CrossRef]
- Habibi, M.H.; Karimi, B. Application of Impregnation Combustion Method for Fabrication of Nanostructure CuO/ZnO Composite Oxide: XRD, FESEM, DRS and FTIR Study. J. Ind. Eng. Chem. 2014, 20, 1566–1570. [Google Scholar] [CrossRef]
- Chen, Q.; Yu, Z.; Li, F.; Yang, Y.; Pan, Y.; Peng, Y.; Yang, X.; Zeng, G. A Novel Photocatalytic Membrane Decorated with RGO-Ag-TiO2 for Dye Degradation and Oil–Water Emulsion Separation. J. Chem. Technol. Biotechnol. 2018, 93, 761–775. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, Q.; Gao, M.; Shao, C.; Sun, S.; Liu, Y.; Zhang, H. Copper Nanoparticles Coupled with Fine-Powdered Active Carbon-Modified Ceramic Membranes for Improved Filtration Performance in a Membrane Bioreactor. Water 2023, 15, 4141. https://doi.org/10.3390/w15234141
Qiu Q, Gao M, Shao C, Sun S, Liu Y, Zhang H. Copper Nanoparticles Coupled with Fine-Powdered Active Carbon-Modified Ceramic Membranes for Improved Filtration Performance in a Membrane Bioreactor. Water. 2023; 15(23):4141. https://doi.org/10.3390/w15234141
Chicago/Turabian StyleQiu, Qi, Mingchang Gao, Changtao Shao, Shaofang Sun, Yusen Liu, and Huawei Zhang. 2023. "Copper Nanoparticles Coupled with Fine-Powdered Active Carbon-Modified Ceramic Membranes for Improved Filtration Performance in a Membrane Bioreactor" Water 15, no. 23: 4141. https://doi.org/10.3390/w15234141
APA StyleQiu, Q., Gao, M., Shao, C., Sun, S., Liu, Y., & Zhang, H. (2023). Copper Nanoparticles Coupled with Fine-Powdered Active Carbon-Modified Ceramic Membranes for Improved Filtration Performance in a Membrane Bioreactor. Water, 15(23), 4141. https://doi.org/10.3390/w15234141