
Citation: Alan, A.R.; Bayındır, C.;

Ozaydin, F.; Altintas, A.A. The

Predictability of the 30 October 2020
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Abstract: Although tsunamis occur less frequently compared to some other natural disasters, they can
be extremely devastating in the nearshore environment if they occur. An earthquake of magnitude
6.9 Mw occurred on 30 October 2020 at 12:51 p.m. UTC (2:51 p.m. GMT+03:00) and its epicenter
was approximately 23 km south of İzmir province of Turkey, off the Greek island of Samos. The
tsunami event triggered by this earthquake is known as the 30 October 2020 İzmir-Samos (Aegean)
tsunami, and in this paper, we study the hydrodynamics of this tsunami using some of these artificial
intelligence (AI) techniques applied to observational data. More specifically, we use the tsunami
time series acquired from the UNESCO data portal at different stations of Bodrum, Syros, Kos, and
Kos Marina. Then, we investigate the usage and shortcomings of the Long Short Term Memory
(LSTM) DL technique for the prediction of the tsunami time series and its Fourier spectra. More
specifically we study the predictability of the offshore water surface elevation dynamics, their spectral
frequency and amplitude features, possible prediction success and enhancement of the accurate early
prediction time scales. The uses and applicability of our findings and possible research directions are
also discussed.

Keywords: 30 October 2020 İzmir-Samos (Aegean) tsunami; deep learning; LSTM; time series analysis
and prediction

1. Introduction

Tsunamis are defined as surface water waves that can have a long-range and reach
thousands of kilometers from their source [1,2]. They are destructive since their energy
is concentrated close to a front moving at the maximum group velocity

√
gh, where h

(considered to be constant) is the water depth [3]. Tsunamis may occur with a displacement
of the water column due to reasons such as earthquakes, submarine or atmospheric events,
volcanic eruptions, etc. [4]. Throughout history, there has been great material damage and
loss of life due to tsunamis in coastal and inland regions [1]. Tsunamis, like other natural
disasters, are natural events that are almost impossible to prevent, but whose effects can be
minimized with some scientific studies. There are many studies in the literature on this
subject. To assess the changes in land use and land cover brought on by the great East Japan
earthquake disaster in 2011, a precise land use and land cover map for the years 2013 to
2015 post-disaster with a 30-m spatial resolution is generated in [5]. An analysis of assessing
and mapping the geographical and temporal consequences of the tsunami on land use and
land cover, as well as the availability of associated ecosystem services in the Thai province
of Phang Nga is presented in [6]. On an approximately 4.5 km shore-normal section on
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the shoreline region around Sendai, Japan; erosion, deposition, and related alterations to
the landscape are established as a result of the Tohoku-oki tsunami in 2011 in [7]. The
effects of a large tsunami on a low-lying coastal area in eastern Japan are determined using
a mix of time-series satellite images, aerial videos, and observation from the ground; and
an analysis is made between a shoreline with armored barriers and one without in [8].
The potential use of compressive sensing for the accurate measurement and modeling of
the tsunami parameters, namely, water surface fluctuation, velocity, and wave pressures
are examined in [9]. Despite being examined for tsunami disasters quite a lot of times
with traditional observation methods such as satellite imaging, newer and technological
methods have been preferred due to the inadequacy of the old methods and the demands
for more detailed and useful results. For example, remote sensing is a technique that makes
it possible to map and evaluate regions damaged or likely to be damaged by tsunami using
satellite images [10]. Because of the large size of tsunami impact areas, recent developments
in remote sensing and associated application technologies have made it feasible to use
remotely sensed image data for mapping catastrophe damage distribution and determining
an area’s risk [11]. Another recent tsunami event took place on 30 October 2020 at 12:51 p.m.
UTC (2:51 p.m. GMT+03:00) after an earthquake of 6.9 Mw, and this event is investigated
by some field surveys such as [12]. Although the magnitude of the earthquake and the
resulting 30 October 2020 İzmir-Samos (Aegean) tsunami flood characteristics such as the
tsunami height and maximum runup are not among the most devastating ones on the earth,
it was a remarkable milestone for the coastal communities along the Turkish coast of İzmir,
especially at the town of Sığacık [12] due to its catastrophic consequences. The 30 October
2020 İzmir-Samos (Aegean) tsunami and its effect on various surrounding regions became
and attraction of research in the recent years and many other field surveys and studies are
given in the literature. For example the another field survey is conducted at the Samos
island is presented in [13]. Relative sea level changes and morphotectonic implications
triggered by the tsunami event is analyzed in [14]. A statistical and criticality analysis of
the lower ionosphere prior to the earthquake event in performed in [15].

On the other hand, some applications of AI for tsunami data analysis are proposed in
the literature. Real-time prediction of tsunami magnitudes in Osaka Bay, Japan is performed
using an artificial neural network in [16]. An inverse modeling technique for the estimation
of tsunami characteristics from deposits using a deep-learning neural network is studied
in [17]. Early warning of tsunami inundation using convolutional neural networks and
some other machine learning algorithms is analyzed in some studies such as [18–20]. In
another paper, coastal tsunami prediction based on S-net observations using artificial neural
network for the Tohoku, Japan is studied [21].

As one of the very successful DL networks, LSTM attracted some attention for
tsunami disaster applications only very recently [22–24]. The performance of the LSTM,
bi-directional LSTM and convolutional neural network–LSTM networks in predicting
mean lower low water levels are analyzed in [22] where the data of two specific events
recorded in Arkansas and New England/Maryland are used. The performance of recurrent
neural network vs LSTM and gated recurrent units are studied in [23] where synthetic
tsunami data is used. The spatiotemporal extrapolation of population data in areas prone
to earthquakes and tsunamis in Lima, Peru are analyzed in [24].

This paper aims to examine the hydrodynamic characteristics and the predictability of
the 30 October 2020 İzmir-Samos tsunami by using the LSTM DL network applied to data
acquired using in situ and remote sensing techniques. For this purpose, we examine the
prediction of the tsunami water surface fluctuation time series at different stations obtained
by pressure gauges and radar and discuss their predictability using the LSTM deep learning
network. We discuss the time series dynamics, root-mean-square-error (RMSE), and the
spectral features of the predictions that are obtained by FFT routines. We also investigate
the effect of the training data set on the performance of tsunami time series prediction both
in the time as well as the spectral domain. Possible enhancement of the early warnings and
early warning time scales are also discussed.
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2. Methodology
2.1. Study Area

On 30 October 2020 at 12:51 p.m. UTC, an earthquake with a moment magnitude of
6.9 Mw with its epicenter off the Greek island of Samos, approximately 23 km south of İzmir
occurred [25–27]. The analysis carried after the kinematic rupture process of the earthquake
indicated the cascaded rupture of two fault planes, with slightly rotated strike angles, and
dominated by normal faulting and oblique faulting, respectively [27]. Not only seismic
and geodetic but also tsunami data was used to analyze earthquake characteristics [27].
The seismicity map shown in Figure 1 indicates the epicenter of the earthquake and the
locations of 5068 aftershocks recorded on that day [28]. The earthquake’s epicenter is
located on the İzmir-Balikesir Transfer Zone, which extends down to Samos Island [27]. The
primary seismogenic fault of the 2020 Samos earthquake is considered to be the Kaystrios
Fault [27]. Kaystrios Fault along with Ikaria, Fourni, and Pythagorio Faults in the vicinity,
compose a complex fault system [27]. Although the magnitude of this earthquake and
the resulting 30 October 2020 İzmir-Samos (Aegean) Tsunami was not very big compared
to their counterparts observed on other places on Earth, it was a major event and was
of critical importance to the region. The tsunami triggered by the earthquake caused
significant inundation and damage along the Turkish coastal town of Sığacık.

Figure 1. 30 October 2020 İzmir-Samos Earthquake seismicity map [28] (Figure courtesy of KOERI
and permission to reuse of this figure is obtained from Prof. Dr. Doğan Kalafat).

The study map of the 30 October 2020 İzmir-Samos tsunami, with its earthquake
epicenter and surrounding UNESCO tsunami observation stations, is depicted in Figure 2.
As the figure depicts, the closest UNESCO stations are located at Bodrum, Syros, Kos, and
Kos Marina [29]. The time series data used in this study are downloaded from the UNESCO
website at https://www.ioc-sealevelmonitoring.org/map.php (accessed on 29 November
2023) and it is publicly available.

https://www.ioc-sealevelmonitoring.org/map.php
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Figure 2. 30 October 2020 İzmir-Samos earthquake epicenter and surrounding UNESCO tsunami
observation stations: Bodrum, Syros, Kos and Kos Marina [29].

Daily data from 30 October 2020-00:00 a.m. to 31 October 2020-00:00 a.m. UTC are
obtained from all of the 4 stations mentioned above. It is useful to mention that the sampling
time at the Bodrum Station is 0.5 min, whereas the sampling time for all remaining 3 stations
are all 1 min. The recordings at the Bodrum Station and Syros Station are acquired by an
acoustic echo sounder and a pressure gauge, respectively. The recordings at the Kos and
Kos Marina Stations are acquired by radar.

The predictability of the tsunami event, its dynamics, and spectral features is the
subject of this paper. More specifically, one of the very successful time series prediction
tools of DL is the LSTM network, and it is studied as a possible candidate for the successful
prediction of 30 October 2020 İzmir-Samos tsunami hydrodynamics. In the next section,
we give a brief review of the LSTM network, and in further sections, we analyze the
predictability of the 30 October 2020 İzmir-Samos tsunami using the LSTM DL network.

2.2. Review of the LSTM

Recurrent neural networks (RNN) which remain the most effective deep learning
algorithms were created in the 1980s [30,31]. Forecasts can be made utilizing sequential
data sets using RNN. One of those neural networks is the LSTM, and its structure is shown
in Figure 3 [30,31].

Figure 3. LSTM network structure indicating input and output times series, gates and activation
functions [31].
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Up to the present, numerous studies include the utilization of RNN to analyze time
series [30,31]. Nevertheless, if long data sets are being used it is known that gradient disap-
pearance or gradient burst cases take place [30,31]. LSTM architecture was first developed
in 1997 to overcome these problems [30]. Data flow is provided simply thanks to the forget
gate, input gate, and output gate and additionally the memory cell outside of the input,
which decides that the information will be forgotten, retained, and transferred [30,31]. The
mathematical formulations of these gates reads:

(a) Forget Gate:

f (t)i = σ(b f
i + ∑

y
U f

i,jx
(t)
j + ∑

y
Wi,jh

(t−1)
j ), (1)

(b) State Unit:

s(t)i = f (t)i s(t−1)
i + gt

i σ(b
f
i + ∑

y
Uix

(t)
j + ∑

y
Wih

(t−1)
j ), (2)

(c) Input Gate:

g(t)i = σ(bg
i + ∑

y
Ug

i x(t)j + ∑
y

Wg
i h(t−1)

j ), (3)

(d) Output Gate:

q(t)i = σ(bo
i + ∑

y
Uo

i,jx
(t)
j + ∑

y
Wo

i,h
(t−1)
j ), (4)

(e) The Output:
h(t)i = q(t)i tanh(s(t)i ), (5)

In these formulations bias values in the input, output, and forget gates are represented
as b f

i , bg
i , bo

i [30,31]. The input weights belonging to the gates are shown as U f
i,j, Ug

i,j, Uo
i,j,

Ui,j [30,31]. The recurrent weights of the gate to which they belong to are denoted as

W f
i,j, Wg

i,j, Wo
i,j, Wi,j. The letter A indicates a chunk of the deep neural net. The input time

series is shown as X parameter [30,31]. In all of our simulations we use 250 epochs with
1 iteration per epoch. The learning rate is selected to be 0.001 and the learning rate schedule
is piecewise. A detailed discussion and analysis of the LSTM network and its applications
can be seen in [30,31]. While it can be used for many different purposes including but not
limited to speech and image recognition, and retrieval of transfer functions in systems
theory, we use LSTM as a tsunami time series analysis tool in this study.

3. Results and Discussion

The data used in this study is downloaded from the UNESCO website mentioned
above, and it is de-tided using a spectral approach to filter out the astronomical tidal
effect. For this purpose, after zeroing out the mean, an FFT-IFFT procedure is used.
The water surface fluctuation spectra are obtained via FFT, and the spectral amplitudes
corresponding to central frequencies between ±1% frequencies around central frequency
0 giving approximately [−3 × 10−4 Hz, 3 × 10−4 Hz] are zero-padded. Then, this filtered
spectrum is inverted using an IFFT routine to construct the de-tided tsunami water surface
fluctuation time series. The de-tided water surface fluctuation indicates a tsunami wave
height on the order of approximately 8 cm at Bodrum station which is located at [latitude:
37.03217, longitude: 27.423453]; and is sheltered by mainland and islands. The de-tided
water surface fluctuation, its prediction by the LSTM network, and RMSE error between
observations and predictions are depicted in Figure 4. The 70% of the daily data set recorded
at the Bodrum station is used as the training set, thus the training data set not only includes
the pre-tsunami but also some of the post-tsunami recordings. The computation time for
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this data set is 63.93 s, whereas the computation time of the LSTM DL network is 52.00 s.
These times are measured on a personal machine with an Intel Core i5 processor with 16
GB RAM and 512 GB SSD. The computation times for other data sets analyzed throughout
this study are similar.
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Figure 4. Time series of the İzmir-Samos tsunami water surface fluctuation recorded at Bodrum
station [29] on 30 October 2020 and its prediction by LSTM DL network-without updates.

As shown in the figure, the predictions performed by LSTM can resolve the cyclic
behavior. However, some shifts are present in the angular frequency of the oscillations
compared to the actual recordings. The amplitude of the predictions is a better match for
this data set compared to the frequencies. When an LSTM network with no updates is
used, it means that only the training data set determines the success of predictions, thus
actual recordings after predictions do not affect the further predictions. However, when
an updated LSTM network is used, the predictions are updated according to the actual
recordings of the prediction phase, thus the prediction time reduces to a one-time step. For
the Bodrum Station data, this time step is 0.5 min. The results of the LSTM predictions with
updates are depicted in Figure 5.

As these figures confirm, the LSTM network with updates is much more successful in
predicting the Bodrum station data in terms of matching the waveform of the oscillations
of the water surface fluctuations, and the RMSE is significantly enhanced compared to the
not-updated case. For the majority of the time series investigated in this paper, we observe
a similar tendency, however, some exceptions can also be observed. To better visualize the
matching of the time series of predictions with the time series of observations, again we
employ a spectral approach and obtain the Fourier spectrum via FFT routines. The spectra
of the predictions for not-updated and updated cases are depicted in Figure 6.

Next, we repeat a similar analysis for the next station, which is Syros station located at
[latitude: 37.438, longitude: 24.9411]. Compared to the Bodrum stations, Syros station is
more prone to tsunami inundation since it is less sheltered by some islands as the station
location map confirms. Thus, the tsunami wave height observed from the de-tided water
surface fluctuation time series depicted in Figure 7 is larger compared to its Bodrum
counterpart, being approximately 0.17 cm.
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Figure 5. Time series of the İzmir-Samos tsunami water surface fluctuation recorded at Bodrum
station [29] on 30 October 2020 and its prediction by LSTM DL network-with updates.
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Figure 6. Comparison of Fourier spectra of time series predictions performed by LSTM DL network
at Bodrum Station on 30 October 2020 (left) without updates (right) with updates.

In Figure 7, we present the recorded water surface elevation time series of the 30
October 2020 Tsunami at the Syros station and its prediction with the LSTM DL network
with no updates. The same predictions with the updated LSTM network are presented in
Figure 8. Comparing Figures 7 and 8 it is possible to realize that again LSTM predictions
become significantly better when an updated network is used. Better performance can
be observed by checking the RMSE as well as the comparisons of the spectra depicted in
Figures 9 and 10.
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Figure 7. Time series of the İzmir-Samos tsunami water surface fluctuation recorded at Syros
station [29] on 30 October 2020 and its prediction by LSTM DL network-without updates.
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Figure 8. Time series of the İzmir-Samos tsunami water surface fluctuation recorded at Syros
station [29] on 30 October 2020 and its prediction by LSTM DL network-with updates.

It is interesting and useful to recognize that LSTM with updates is more successful
in predicting the lower frequency components for the tsunami time series recorded at
Syros station, however, for higher frequency components (shorter waves) an increase in the
mismatch of the spectral amplitudes can be observed. One possible way to minimize such
effects is to develop an LSTM DL network with some frequency band filters using FFT or
similar routines.
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Figure 9. Comparison of Fourier spectra of time series predictions performed by LSTM DL network
at Syros station on 30 October 2020 (left) without updates (right) with updates.
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Figure 10. Time series of the İzmir-Samos tsunami water surface fluctuation recorded at Kos sta-
tion [29] on 30 October 2020 and its prediction by LSTM DL network-without updates.

The similar prediction analysis for the tsunami time series recorded at Kos station
located at [latitude: 36.898362, longitude: 27.287792] is repeated the results obtained using
the LSTM network with no updates are depicted in Figure 11. The maximum tsunami wave
height in this time series was recorded to be around 20cm which remains in the training
data part, for the predicted part it is around 16cm as time series depicted in Figure 11 and
one-sided (half-amplitude) Fourier spectra depicted in Figure 12 confirms. The highest
RMSE among all data sets is depicted in Figure 11, mainly due to phase mismatch between
actual recordings and predictions. It can be observed that the spectral features of the Kos
station time series differ from their counterparts analyzed before. Some of the reasons for
this fact are the recordings are carried out by radar which is more sensitive compared to
pressure gauge, as well as tsunami asymptotics can change with barriers and distance [3].
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Figure 11. Time series of the İzmir-Samos tsunami water surface fluctuation recorded at Kos sta-
tion [29] on 30 October 2020 and its prediction by LSTM DL network-with updates.
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Figure 12. Comparison of Fourier spectra of time series predictions performed by LSTM DL network
at Kos Station on 30 October 2020 (left) without updates (right) with updates.

It is again useful to observe that LSTM with updates leads to spectral amplitude
mismatch at higher wavenumbers; however, it predicts the lower frequency components
with higher amplitudes better, as before. This can lead to the development of filtered LSTM
networks for the removal and isolation of such components.

The last data set analyzed is recorded at the Kos Marina station located at [latitude:
36.891013, longitude: 27.303632] which is very close to the Kos station mentioned above.
Similarly, the maximum tsunami wave height in this time series was recorded to be around
20 cm which remains in the training data part, for the predicted part it is around 14 cm as the
time series depicted in Figure and one-sided (half-amplitude) Fourier spectra depicted in
Figure confirms. The highest RMSE among all data sets is depicted in Figure 11, mainly due
to phase mismatch between actual recordings and predictions. The characteristics of the
time series are more similar to the time series recorded at the Kos station discussed above.
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Figures 13–15 confirm that prediction by the LSTM network with no updates is better
compared to the case of Kos station, however, a similar high wavenumber spectral ampli-
tude mismatch pattern can still be observed. Again, such features may be suppressed by
using spectral filters to allow for specific bandwidth of predictions.
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Figure 13. Time series of the İzmir-Samos tsunami water surface fluctuation recorded at Kos Marina
station [29] on 30 October 2020 and its prediction by LSTM DL network-without updates.
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Figure 14. Time series of the İzmir-Samos tsunami water surface fluctuation recorded at Kos Marina
station [29] on 30 October 2020 and its prediction by LSTM DL network-with updates.

Lastly, we turn our attention to the analysis of the effect of the length of the training
data set on prediction results. For all the simulations reported above, we use 70% of the
daily tsunami time series to predict the remaining 30%. The training data set includes both
the pre-earthquake and post-earthquake recordings. Now, as an illustrative example we set
the length of the training data set to be 85% of the daily tsunami time series recorded at the
Kos Marina, thus re-perform the last analysis with these values.

Checking Figures 16–18 and comparing them with Figures 13–15, one can realize that
increasing the length of training data has a significant effect on reducing RMSE error and
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phase mismatch, however, in our simulations, we observe that although this is generally
the case, there is not always a monotonic relation. Thus, the training data set must be
selected with care. Additionally, by comparing the Fourier spectra of the last two analyses,
one can realize that spectral amplitude mismatch between observations and predictions at
higher wavenumbers is unlikely to be reduced by increasing the length of the training data
set. Thus, a filtering approach may be developed.
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Figure 15. Comparison of Fourier spectra of time series predictions performed by LSTM DL network
at Kos Marina Station on 30 October 2020 (left) without updates (right) with updates.
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Figure 16. Time series of the İzmir-Samos tsunami water surface fluctuation recorded at Kos Marina
station [29] on 30 October 2020 and its prediction by LSTM DL network using 85% training data-
without updates.
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Figure 17. Time series of the İzmir-Samos tsunami water surface fluctuation recorded at Kos Marina
station [29] on 30 October 2020 and its prediction by LSTM DL network using 85% training data-
with updates.
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Figure 18. Comparison of Fourier spectra of time series predictions performed by LSTM DL net-
work using 85% training data at Kos Marina Station on 30 October 2020 (left) without updates
(right) with updates.

The results of our paper are promising to enhance the predictions of tsunami events
and hydrodynamics. Even when the LSTM network with updates is used, although the
predictions are valid for a one-time step, the time steps investigated in this paper are
either 0.5 min or 1 min. Such time scales can be quite beneficial to save lives and avoiding
damage and loss by more precise mapping of possible tsunami inundation and run-up time
series, which exhibit nonlinear features that can be modeled using nonlinear equations
such as those in [3,32]. Besides this, there are many different tsunami early warning
systems [33]. The majority of these systems rely on techniques such as measuring and
estimating the tsunamigenic potential of an earthquake using seismic data, or detection of
Tsunami Waves using Sea-level Networks after a tsunami occurs in deep water. Bottom
pressure recorders, coastal tide-gauge stations, current meters, buoys, or radars are used for
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the latter systems [33]. According to the National Oceanic and Atmospheric Administration
(NOAA), the early warning time scale for tsunamis ranges from five minutes to two hours,
depending on the distance between its source and the nearest Deep-ocean Assessment and
Reporting of Tsunami (DART) system or coastal water-level station. Such time scales can be
significantly developed (same order of magnitude) using the proposed methodology in this
paper, which depends on LSTM or similar DL networks. Also, not only the early warning
time scales would be enhanced using our findings, but also more accurate predictions of
tsunami hydrodynamic parameters such as water surface level, run-up, or run-up volume
can be made [34,35].

4. Conclusions

In this article, we have looked at the potential application of the LSTM deep learning
network for predicting tsunami hydrodynamics. For this purpose, we analyzed the daily
water surface fluctuation time series data of the 30 October 2020 İzmir-Samos Tsunami
recorded at various UNESCO stations. We have demonstrated that a successful prediction
of such a time series using LSTM, both with and without updates, is possible. Even only
utilizing an LSTM network without updates produced good results especially for the
Bodrum station, we demonstrated that the LSTM with updates is more successful and
consistent in prediction. Prediction time scale of the post-event accurate hydrodynamics
are on the order of a few hours for the case with no updates, however, when an updated
network is used it is restricted to one time step which is either 0.5 min or 1 min for the data
investigated in this paper. We have also discussed the spectral features of the predictions,
showing that although some mismatch at higher frequencies can be observed, the LSTM
network can predict the tsunami time series spectrum reasonably well.

Our findings can be used to enhance tsunami early warning times on the order of
minutes to hours depending on the location and size of the event. This feature would be
especially helpful when the event at an offshore location is detected. After the recording
of the event, secondary waves and tsunami asymptotics can be predicted at the offshore
stations, thus the early warning time scale can be enhanced for the coastal regions and
more accurate mapping of the inundation at the shore can be performed. Also, our results
can be easily extended to predict tsunami parameters such as the horizontal and excursion
velocities, and run-up time series. In the near future, we plan to extend our findings to other
DL networks and time series prediction tools such as compressive sensing of nonlinear
processes [36,37]. Additionally, tsunami run-up, inundation characteristics, as well as the
determination of seismic behavior using tsunami data, will be investigated using the DL
and some other AI techniques, where other observational data or analytical/numerical
approaches such as the one discussed in [38] can be utilized.
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Abbreviations
The following abbreviations are used in this manuscript:

AI Artifical Intelligence
DART Deep-ocean Assessment and Reporting of Tsunami
DL Deep Learning
FFT Fast Fourier Transform
GMT Greenwich Mean Time
IFFT Inverse Fast Fourier Transform
KOERI Boğaziçi University Kandilli Observatory and Earthquake Research Institute
LSTM Long-short term memory
NOAA National Oceanic and Atmospheric Administration
RMSE Root Mean Square Error
RNN Recurrent Neural Networks
UTC Universal Time Coordinated
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