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Abstract: Low impact development (LID) facilities are designed to maintain water circulation func-
tions on the surface and subsurface. LID facilities can be applied to various areas and are expected
to have both short-term and long-term effects, making them widely installed in urban areas. In this
study, our objective is to calculate the A-I-R (Area ratio-rainfall Intensity-Runoff reduction rate) curve
by applying design standards to tree filter boxes, garden plant pots, infiltration ditches, and rain
barrels among various LID facilities. The analysis was conducted by constructing a SWMM-LID
model and analyzing 209 items, considering the area ratio (A) and rainfall intensity (I) of the LID
facilities. The runoff reduction rate (R) varies by LID facility according to the A-I-R curve. It reaches
up to 100.0% for rain barrels, up to 30.0% for infiltration ditches, up to 20.0% for garden plant pot,
and up to 12.0% for tree filter boxes. If the A-I-R curve of the LID facility is applied to the design
standards, it is expected to facilitate the design of the facility’s size and inlet according to the target
reduction rate.

Keywords: low impact development (LID); reduction facility; A-I-R curve; design standards;
SWMM-LID

1. Introduction

Urbanization is progressing rapidly due to the construction of various social infras-
tructures [1,2]. Gray infrastructure constructed with impervious materials is disrupting the
natural water cycle process and increasing the surface runoff of rainwater [3]. To restore
a healthy water cycle process, both structural and non-structural measures are essential.
In the 1990s, the need for low-impact development was recognized in the United States
to manage rainwater and restore the natural water cycle. LID is a technique developed
to reinstate water circulation in impervious areas. By introducing LID facilities in a com-
prehensive manner, it is possible to reduce stormwater runoff and non-point pollutants
throughout the study area [4–9]. LID facilities offer various advantages, such as flexibility
in designing the facility size, a distributed layout, effectiveness, and improved aesthet-
ics [10]. Therefore, cities in developed countries, including New York City in the United
States, actively employ LID facilities [11,12]. The LID facility prevents floods by securing
storage time for the water purification system in case of rainfall. In addition, it reduces
environmental pollution by reducing the inflow of streams by storing non-point pollutants.

In Korea, the gradual introduction of LID facilities is underway under the leadership of
central and local governments. The establishment of a comprehensive non-point pollution
source management plan for LID facilities in 2004, the implementation of a non-point
pollution source installation reporting system in 2006, the initiation of a government
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subsidy project in 2006, and the development of the second comprehensive non-point
pollution source management plan in 2012 were carried out [13]. Through comprehensive
measures and institutional regulations, the introduction of LID facilities is being promoted
when developing urban areas and industrial complexes with high impervious rates. There is
a need for facilities that can reduce the initial rainfall due to the short time of concentration
in urban areas. If the LID facility that can reduce the outflow of rainfall in the initial
stormwater is used, both the maximum outflow and the damage will be reduced.

Godeok New Town, situated in Pyeongtaek, Gyeonggi-do, planned to install LID facili-
ties, including infiltration channels, retention ponds, and permeable pavements, covering a
total area of 82,000 m2. Recently, the “Zero Rainwater Runoff Complex Construction Project
Maintenance and Effectiveness Evaluation” project targeted the Ochang Science Industrial
Complex in Cheongju, Chungcheongbuk-do [13,14]. Jeonju City in Jeollabuk-do introduced
low-impact development techniques in all urban development projects to preserve natural
waterways as much as possible [15]. The introduction of an LID facility can reduce complex
stormwater runoff across the entire watershed beyond the individual facility’s impact.

In addition to installing LID facilities, various studies are being conducted to verify the
effectiveness of reducing stormwater runoff. Initially, studies were conducted to verify the
effectiveness of LID facilities through experiments [16–20]. Furthermore, as LID facilities
were applied to the Storm Water Management Model, verification of the LID facility
using modeling and validation of the effectiveness of the facility’s reduction effect were
studied [5,21–23]. It analyzed the effect of watershed reduction following the installation
of an LID facility in the Brooklyn area of New York, USA. Additionally, a review was
conducted on the cost-effectiveness of installing LID facilities [24]. Moreover, the adequacy
of LID facilities was assessed by evaluating the reduction effect on the watershed unit or a
small drainage area [22,25,26].

In countries such as Germany, Italy, India and China, LID facilities have been installed
on school campuses to evaluate their effectiveness [27–33]. Installed facilities include
permeable pavements and parking lots, green roofs and vertical greening, wet ponds,
sunken green spaces, bioretention, rain gardens, vegetative swales, green walls, and more
that can be used in urban construction [34]. Numerous computational models have been
developed and utilized to simulate the construction of the sponge city and LID facilities,
including SWMM, MIKE Urban and InfoWorks ICM, among others [35,36].

Prior research used experiments and modeling to verify and evaluate the reduction
effect from the development of LID facilities. In addition, a continuous reduction effect and
maintenance plan for the LID facility was proposed through continuous monitoring [37,38].
The design standards of LID facilities at home and abroad provide facility specifications,
design drawings, and reduction rates [39–43]. Some design standards suggest reduction
efficiency for simple rainfall, but there are no design standards for the target reduction
rate or installable capacity. However, the runoff reduction rate (R) of an LID facility
increases as the capacity of the facility increases. Even if the installed capacity is the same, it
varies depending on the rainfall intensity, and as the rainfall intensity increases, the runoff
reduction rate (R) decreases.

In this study, we intend to analyze the runoff reduction rate (R) according to the area
ratio (A) and rainfall intensity (I) for four types of LID facilities installed in the study area.
The runoff reduction rate (R) is the ratio of the runoff after installation to the difference
between the runoff before and after the installation of LID facilities. The area ratio (A) is
defined as the ratio of the LID facility surface area to the catchment area of the LID facility.
The LID facility selected is a tree filter box, garden plant pot, infiltration ditch, and rain
barrel, and it proposes appropriate design standards by analyzing the reduction effect
according to various rainfall intensities.
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2. Materials and Methods
2.1. SWMM-LID Facility

The SWMM (Storm Water Management Model) was developed in 1971 by Metcalf
& Eddy in collaboration with the University of Florida and W.R.E. with the support of
the United States Environmental Protection Agency (USEPA) to simulate flow rates and
water quality in urban sewerage systems [44]. SWMM is based on a series of processes
that simulate the effluent and pollutant loads generated by rainfall in the drainage area in
consideration of the physical characteristics of the hydraulic structure. It has the advantage
of enabling tracking and comparison of runoff generation and transport processes, which
can significantly contribute to urban watershed management [45,46].

SWMM-LID is a model in which the LID facility management function is added to the
existing model, and it continues to perform the distributed rainfall runoff function. The
LID technology elements provided by SWMM-LID are listed in Table 1. LID technology
elements can analyze a total of eight types of LID facilities, and the drainage functions
of four vertical layers for surface, soil, storage, and pavement can be set to consider the
installed land conditions.

Table 1. LID facility of each technical content.

Type LID Facility Surface Soil Storage Pavement

(a) Bio-Retention Cell O O O -
(b) Rain Garden O O - -
(c) Green Roof O O - -
(d) Infiltration Trench O - O -
(e) Permeable Pavement O O O O
(f) Rain Barrel - - O -
(g) Rooftop Disconnection O - - -
(h) Vegetative Swale O - - -

The characteristics of each LID technology element provided by SWMM-LID are as
follows. (a) The bio-retention cell retains, infiltrates, and detains runoff water through
vegetation and soil mixing. (b) The rain garden is composed of a surface layer and a
soil layer, with functions for rainwater infiltration, retention, and storage within the soil
layer. (c) The green roof is a technical element specialized for rooftop greening and has
functions for rainwater infiltration, retention, storage, and drainage. (d) The infiltration
trench is a technical element consisting of a surface layer and a storage layer, primarily
serving to store and drain rainwater. (e) The permeable pavement is a technical element
specialized for roads and sidewalks where permeable pavement materials are applied. It
is composed of a surface layer, pavement layer, soil layer, and storage layer. (f) The rain
barrel is a representative rain barrel primarily used for storing precipitation. (g) The rooftop
disconnection is a rainwater conduit installed in a general building, one of the technical
elements applied to improve stormwater drainage function. (h) The vegetative swale is a
technical element composed solely of the ground layer, and its function can be influenced
by the ground layer’s covering condition.

2.2. Study Area and LID Facilities

The study area for this research is the Ochang Science Industrial Complex, situated in
Cheongwon-gun, Cheongju-si, Chungcheongbuk-do, South Korea. The total watershed
area of the study region covers 411,183 m2, divided into 180,003 m2 in the A zone on the
left and 231,180 m2 in the B zone on the right, centered on the road (Figure 1a). This
study area is an industrial complex with wide roads, sidewalks, and various infrastructure
elements such as plazas and parks distributed across the area, making it conducive for
the application and installation of LID facilities. In total, four types of LID facilities were
installed, with two types in the A zone and four types in the B zone, considering land use
plans and watershed characteristics.
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Figure 1. Study area.

To analyze the reduction effect of the LID facilities, a pipe network diagram was
constructed for SWMM-LID modeling (Figure 1b) [47]. The study area is composed of a
total of 100 conduits and 140 manholes, with an average conduit length of around 60.6 m
and an average slope of approximately 1.2%. For spatial analysis, a digital elevation model
(DEM) was assessed using ArcGIS, and elevation and slope data were applied.

The LID facilities installed in this study area include a tree filter box, a garden plant
pot, an infiltration ditch, and a rain barrel. The design drawings are shown in Figure 2. A
zone has a tree filter box and a garden plant pot. B zone has a tree filter box, a garden plant
pot, an infiltration ditch and a rain barrel.

Water 2023, 15, x FOR PEER REVIEW 4 of 13 
 

 

installed, with two types in the A zone and four types in the B zone, considering land use 
plans and watershed characteristics. 

 

 

 

 
(a) Watershed area (b) SWMM-LID model 

Figure 1. Study area. 

To analyze the reduction effect of the LID facilities, a pipe network diagram was con-
structed for SWMM-LID modeling (Figure 1b) [47]. The study area is composed of a total 
of 100 conduits and 140 manholes, with an average conduit length of around 60.6 m and 
an average slope of approximately 1.2%. For spatial analysis, a digital elevation model 
(DEM) was assessed using ArcGIS, and elevation and slope data were applied. 

The LID facilities installed in this study area include a tree filter box, a garden plant 
pot, an infiltration ditch, and a rain barrel. The design drawings are shown in Figure 2. A 
zone has a tree filter box and a garden plant pot. B zone has a tree filter box, a garden plant 
pot, an infiltration ditch and a rain barrel. 

  
(a) Tree filter box (b) Garden plant pot 

  
(c) Infiltration ditch (d) Rain barrel 

Figure 2. LID facility.

The LID facility in the study area has a total area of 141,688 m2, accounting for
approximately 34.5% of the total watershed area. The facility area of the LID facility
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catchment area is 46,984 m2 in zone A and 94,704 m2 in zone B (Table 2). The LID facilities
installed in zone A consist of a tree filter box and a garden plant pot. A total of seven tree
filter boxes were installed, covering an area of 22,777 m2. Additionally, six garden plant
pots were installed, covering an area of 24,207 m2. In zone B, the LID facilities include a
tree filter box, garden plant pot, an infiltration ditch, and a rain barrel. A total of 10 tree
filter boxes were installed, covering an area of 62,733 m2. Four garden plant pots were
installed, covering an area of 23,418 m2. Two infiltration ditches were installed, covering an
area of 8474 m2. Additionally, two rain barrels were installed, covering an area of 79 m2.

Table 2. Specifications of LID facility.

Zone Element of LID Technique LID Facility Catchment Area (m2) LID Facility Surface Area (m2) Count

A

Watershed Area 180,003 - -
Facility Area 46,984 182

Tree Filter Box 22,777 94 7
Garden Plant Pot 24,207 88 6
Infiltration Ditch - - -

Rain Barrel - - -

B

Watershed Area 231,180 - -
Facility Area 94,704 253 -

Tree Filter Box 62,733 70 10
Garden Plant Pot 23,418 46 4
Infiltration Ditch 8474 136 2

Rain Barrel 79 1 2

3. Results
3.1. Calibration for SWMM-LID Installation

Monitoring data and the SWMM-LID model were verified and adjusted for the LID
facility installed in this study area. Monitoring took place from June 2015 to December 2015
to assess whether the installed LID facility had a reduction effect. Based on the rainfall
and flow data recorded during the monitoring period, verification and adjustments were
carried out by incorporating these data into the SWMM-LID model. Among the monitored
data, five rainfall events were selected, as shown in Table 3. These rainfall events had
characteristics that included a total rainfall ranging from 8.3 mm to 34.1 mm, a rainfall
duration between 4 h and 18 h, and an average rainfall intensity ranging from 0.5 mm/h to
3.5 mm/h.

Table 3. Characteristics of rainfall events.

Rainfall Events
(dd/mm/yyyy)

Number of Antecedent Days
with no Rain (Day)

Total Rainfall
(mm)

Duration
(Hour)

Mean Intensity
(mm/h)

12 July 2015 3 9.2 17 0.5
29 July 2015 4 8.3 4 2.1

25 August 2015 2 24.1 18 1.3
1 October 2015 18 34.1 18 1.9
27 October 2015 15 27.7 8 3.5

For watershed-level verification and adjustment, cases that simulate flow rates similar
to the observed data are chosen for each heavy rainfall event by fine-tuning parameters
related to the direct runoff volume (such as impervious, slope, width of overland flow path,
and Manning (n)). The parameter characteristics of each watershed in the study area are
shown in Table 4.
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Table 4. Parameter characteristics by watershed area.

Zone Impervious
(%)

Slope
(%)

Width of Overland
Flow Path (m)

Manning
(n)

A 81.53 2.89 20–50 0.013
B 86.61 2.71 50 0.013

The ultimate parameters were determined by averaging the overall outcomes. By
comparing the monitoring data with the verification and correction results, as illustrated in
Figure 3, it was observed that the simulation results appropriately captured the outflow
characteristics of the actual watershed. CMS is the flow rate unit and it is the same as that
of m3.
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To verify the calibration results, this study employed various error indices to evaluate
the model’s performance against the observed data. The correlation coefficient (CC), Nash–
Sutcliffe efficiency coefficient (NSE), bias (B), percent bias (PBIAS), RMSE-observations
standard deviation ratio (RSR), root-mean-square error (RMSE), and R-squared are used
as the error indices. For the specific formulations of these error indices, readers can refer
to [37].

The average value of the error index in both the A zone and B zone of the study area
was 0.82, confirming that the analysis results of the constructed model were suitable for
simulation. The error indices of the NSE and PBIAS in the B zone were not satisfactory,
although most of the calibrated results demonstrated that the model’s performance was
adequate for simulating runoff flow (Table 5).

Table 5. Error indices to verify the calibration results.

Error Indices A B

Correlation Coefficient (CC) 0.80 0.84
Nash–Sutcliffe Efficiency Coefficient (NSE) 0.64 0.43

Bias(B) 0.96 0.74
Percent Bias (PBIAS) −4.40 −35.6

RMSE-observations Standard Deviation Ratio (RSR) 0.60 0.75
Root-mean-square Error (RMSE) 0.03 0.04

R-squared 0.65 0.71
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3.2. Derivation and Utilization of A-I-R Curve for Each LID Facility

For LID facilities, the runoff reduction rate (R) improves as the facility capacity in-
creases within the same watershed area. Additionally, as the rainfall intensity increases,
the inflow increases and the runoff reduction rate (R) decreases. To evaluate the outflow
reduction effect of this LID facility, it is necessary to assess the reduction effect under
various rainfall intensities and facility capacities. Inflow is the inflow by the watershed
area according to rainfall occurrence, runoff is the outflow of the LID facility, and outflow
is the outflow of the watershed area.

The purpose of this study is to evaluate the runoff reduction rate (R) concerning the
area ratio (A) and rainfall intensity (I) of the LID facility. The area ratio (A) is defined as the
ratio of the LID facility’s surface area (SA) to the catchment area (CA) of the LID facility.
The area ratio (A) was set to 19 conditions, ranging from 0.1% to 1.0% (0.1% intervals),
and from 2.0% to 10.0% (1.0% intervals), considering the water collection area and surface
area of each LID facility installed in the study area. Rainfall intensity (I) was established
at 11 rainfall conditions, including 5 mm/h, and intervals from 10 mm/h to 100 mm/h
(10 mm/h intervals), to account for the various design frequencies of the study area.
Rainfall intensity for the frequency of 500 years in the study area was 100.4 mm/h, and a
maximum analysis range of 100 mm/h was set. In the evaluation of the reduction effect by
the LID facility, a total of 209 analyses were conducted, encompassing 19 conditions for the
area ratio and 11 conditions for rainfall intensity (I) (Table 6).

Table 6. Analysis conditions for area ratio (A) and rainfall intensity (I).

Parameter Case Total

Area ratio
(%)

0.1% 0.2% 0.3% 0.4% 0.5% 0.6% 0.7% 0.8% 0.9% 1.0%
19 case2.0% 3.0% 4.0% 5.0% 6.0% 7.0% 8.0% 9.0% 10.0% -

Rainfall intensity
(mm/h)

5 mm/h 10 mm/h 20 mm/h 30 mm/h 40 mm/h 50 mm/h
11 case60 mm/h 70 mm/h 80 mm/h 90 mm/h 100 mm/h -

The A-I-R curve was analyzed for the LID facilities of a tree filter box, garden plant
pot, infiltration ditch, and rain barrel installed in the study area. The analysis method
fixed the installation conditions of the LID facilities in the study area and assessed the
runoff reduction rate (R) for changes in the area and rainfall intensity (I) for each facility.
The analysis results of the A-I-R curve provided design standards for each LID facility for
rainfall intensity (I) and the area ratio reduction rate (R).

The analysis results of the tree filter box are depicted in Figure 4, showing the runoff
reduction rate (R) based on area ratio (A) and rainfall intensity (I). The runoff reduction
rate (R) of the tree filter box increased linearly as the area ratio (A) increased, reaching
a maximum of about 11%. When the area ratio (A) was 5% or more, the difference in
the runoff reduction rate (R) due to variations in rainfall intensity was less than 0.1%,
indicating a minimal effect. The runoff reduction rate (R) ranged from 2.5% to 11.3%
concerning the area ratio (A) to rainfall intensity (I). As the area ratio (A) increased, the
runoff reduction rate (R) also increased, but depending on the rainfall intensity (I), the
change was determined to be not significantly different.

The analysis results for the garden plant pots are depicted in Figure 5, displaying the
runoff reduction rate (R) based on the area ratio (A) and rainfall intensity (I). The runoff
reduction rate (R) for garden plant pots continued to increase as the area ratio (A) increased,
reaching a maximum of about 16%. When the area ratio (A) is less than 5%, there is a
difference in the slope depending on the rainfall intensity, but the runoff reduction rate (R)
consistently increases, with a maximum of about 16% observed.
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For area ratios (A) of 5% or more, the impact of rainfall intensity (I) on the runoff
reduction rate (R) was found to be minimal. The runoff reduction rate (R) regarding the
area ratio (A) to rainfall intensity (I) decreased as it increased in the range of 0.1% to 1.0%.
However, the change in the area ratio (A) from 2.0% to 10.0% with respect to rainfall
intensity (I) was small, and the runoff reduction rate (R) was analyzed to be within the
range of 10.0% to 20.0%.

The analysis results of the infiltration ditch are presented in Figure 6, showing the
runoff reduction rate (R) in relation to the area ratio (A) and rainfall intensity (I). The
runoff reduction rate (R) for the infiltration ditch continued to increase as the area ratio
(A) increased, reaching a maximum of about 25.0%. While there are differences based on
the rainfall intensity (I), the slope gradually increases when the runoff reduction rate (R)
reaches 20.0%. It was observed that the runoff reduction rate (R) significantly decreased
as the area ratio (A) decreased. When the rainfall intensity (I) was less than 20 mm/h, a
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runoff reduction rate of approximately 5.0% was observed, depending on the area ratio
(A). However, as rainfall intensity (I) increases, the disparity in the area ratio (A) widens,
resulting in a maximum runoff reduction rate (R) of about 25.0%.
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The analysis results for the rain barrel are displayed in Figure 7, illustrating the runoff
reduction rate (R) in relation to the area ratio (A) and rainfall intensity (I). The runoff
reduction rate (R) for the rain barrel was observed to continuously increase, reaching
100.0% as the area ratio (A) increased. As the rainfall intensity (I) increased, the slope
concerning the area ratio (A) decreased, but the runoff reduction rate (R) continued to rise
steadily. It was determined that the runoff reduction rate (R) decreased with a decreasing
area ratio (A). When the area ratio (A) was less than 0.5% or more than 5.0%, the runoff
reduction rate (R) was found to be in the range of 20.0% to 50.0%. However, when the area
ratio (A) was between 0.5% and 5.0%, a significant runoff reduction rate (R) was observed.
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4. Discussion

LID facilities are installed and operated as measures to minimize environmental im-
pacts and prevent disasters resulting from urban development. The development and
installation of LID facilities are increasing through urban water circulation policies both do-
mestically and internationally [15,24]. Numerous studies have been conducted to develop
LID facilities and demonstrate their reduction efficiency.
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One study aimed to verify the outflow reduction effect by installing and monitoring an
LID facility [3,5,16,18,21,22]. Previous studies have verified the reduction effect of rainfall
observed in LID facilities compared to before installation. Only the reduction effect of LID
facilities on rainfall events was presented as a percentage (%), while the application of
design frequency was not studied. Furthermore, modeling was analyzed using SWMM-LID
to assess the varied reduction effects based on the installed capacity for the LID facility in
the study area. In the analysis, adequacy was demonstrated through various assessments
of LID facility parameters and rainfall conditions [2,24–26]. In the modeling analysis
using SWMM-LID, the optimal installation conditions that can be installed according to
the parameters and rainfall conditions of the study area were studied. However, various
rainfall intensities for design standards could not be applied to all LID facilities or terrain
conditions. Design standards for LID facilities have been proposed in numerous prior
studies [37–43]. However, some studies only provide design drawings for LID facility
installations or offer reduction effects for a single installation capacity.

The installation of an LID facility can be applied in various fields, and it is essential
to determine the facility size based on the desired reduction efficiency. Naturally, as the
scale of the LID facility increases, the reduction efficiency will also rise. Conversely, with
increasing rainfall intensity, the reduction efficiency of the LID facility tends to decrease.
Given the recent climate changes that have led to abnormal rainfall patterns and increased
localized rainfall occurrences, researching the reduction efficiency concerning the LID
facility area and rainfall intensity is imperative.

Studying the reduction efficiency related to the facility area and rainfall intensity (I)
through monitoring after the LID facility installation requires long-term rainfall events.
Therefore, in this study, we selected a study area, conducted verification and calibration
of the LID facility, and presented the runoff reduction rate (R) based on the area ratio and
rainfall intensity (I) for four types. The A-I-R curve developed in this study can serve as a
design standard for determining the capacity and design rainfall intensity (I) of the LID
facility. When the area ratio (A) and rainfall intensity (I) of the LID facility are known,
the target runoff reduction rate (R) can be predicted from the A-I-R curve. Furthermore,
to calculate the annual runoff reduction rate (R), it can be estimated by considering the
expected rainfall intensity (I), the number of rainfall events, and the reduction rate.

The A-I-R curves for the four types of LID facilities proposed in this study have limita-
tions as they are modeling analysis results and cannot be used for calculating quantitative
reduction effects. However, it is anticipated that highly practical design standards will be
attainable if monitoring is applied to detect and correct various rainfall intensity (I) events.

5. Conclusions

In this study, we analyzed the runoff reduction rate (R) using the area ratio (A) and
rainfall intensity (I) for LID facilities and investigated the calculation of appropriate design
standards from the A-I-R curve. The study area selected was the Ochang Science Industrial
Complex in Korea, and the LID facility is equipped with a tree filter box, garden plant pot,
infiltration ditch, and rain barrel.

We constructed a SWMM-LID model to analyze the runoff reduction rate (R) of the
LID facility. For verification and model correction, parameters were selected using five
rainfall events. The model’s performance was assessed using seven types of error indices,
resulting in a high correlation coefficient of 0.82, confirming the model’s adequacy. To
analyze the A-I-R curve for each LID facility, we established analysis conditions for the
area ratio and rainfall intensity (I).

The A-I-R curve primarily determined the design standards for the area ratio (A) and
rainfall intensity (I) for each LID facility. Among the four LID facilities, the rain barrel
showed the highest runoff reduction rate (R). Although it varied depending on the area
ratio (A), it was found that for a rainfall intensity (I) of about 60 mm/h or less and an area
ratio (A) of 0.8% or more, a 100% reduction was achieved. Additionally, the LID facility
was found to achieve a runoff reduction rate (R) of up to 30.0% for the infiltration ditch, up
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to 20.0% for the garden plant pot, and up to 12.0% for the tree filter box, depending on the
area ratio (A) and rainfall intensity (I).

In this study, we presented the A-I-R curve as design standards that can be used in
the planning and design of LID facilities. Using the A-I-R curve, one can calculate the area
ratio (A) of the LID facility and predict the runoff reduction rate (R) for rainfall events.
Furthermore, by determining the target reduction rate and the capacity of the LID facility,
it is possible to design an appropriate inlet according to rainfall intensity (I). If the A-I-R
curve is applied in the LID facility, the runoff reduction rate can be evaluated for the rainfall
intensity occurring at the maximum frequency of 500 years. The runoff reduction rate can
be used to secure the budget for the installation of LID facilities. It is believed that the
A-I-R curve for each LID facility, when used as a design standard, can facilitate the easy
application and effective planning of LID facilities.
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