Design Parameters Investigation on Sand Transportation Characteristics of V-Inclined Pipe Based on Eulerian–Eulerian Two-Phase Flow Model
Abstract
:1. Introduction
2. Mathematical Model
2.1. Eulerian–Eulerian Two-Phase Model
2.2. Turbulence Model
3. Simulation Method
3.1. Physical Model
3.2. Grid Independent Test
3.3. Solution Techniques
4. Results and Discussion
4.1. Pipe Inclination
4.2. Pipe Diameter
4.3. Inlet Sand Content
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
CFD | computational fluid dynamics |
DEM | discrete element method |
References
- Diniz, V.; Coiado, E.M. Two-phase (solid-liquid) flow in inclined pipes. In Proceedings of the 14th International Conference on Slurry Handling and Pipeline Transport, Maastricht, The Netherlands, 8–10 September 1999; Volume 36, pp. 555–566. [Google Scholar]
- Juez, C.; Sandra, S.; Javier, M.; Pilar, G. Experimental and numerical simulation of bed load transport over steep slopes. J. Hydraul. Res. 2017, 66, 455–469. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, J.L.; Bai, Y.C.; Fu, J. Study on characteristics of sediment transport and sorting in pressure pipe. J. Sediment Res. 2021, 46, 10–15, 27. [Google Scholar]
- Yue, J.W.; Huang, X.J.; Xing, X.X.; Zhao, L.M.; Kong, Q.M.; Yang, X.; Zhu, Y.D.; Zhang, J.W. Experimental Study on the Improvement of the Particle Gradation of the Yellow River Silt Based on MICP Technology. Adv. Eng. Sci. 2021, 53, 89–98. [Google Scholar]
- Dabirian, R.; Mohan, R.; Shoham, O.; Kouba, G. Critical sand deposition velocity for gas-liquid stratified flow in horizontal pipes. J. Nat. Gas Sci. Eng. 2016, 33, 527–537. [Google Scholar] [CrossRef]
- Shamlou, P.A. Hydraulic transport of particulate solids. Chem. Eng. Commun. 1987, 62, 233–249. [Google Scholar] [CrossRef]
- Doron, P.; Barnea, D. Flow pattern maps for solid-liquid flow in pipes. Int. J. Multiph. Flow 1996, 22, 273–283. [Google Scholar] [CrossRef]
- Gopaliya, M.; Kaushal, D.R. A Correlation for Pressure Drop Prediction for Solid-Liquid Slurry Flows through Horizontal Pipelines. Multiph. Sci. Technol. 2020, 32, 311–324. [Google Scholar] [CrossRef]
- Skudarnov, P.V.; Lin, C.X.; Ebadian, M.A. Double-species slurry flow in a horizontal pipeline. J. Fluids-Eng.-Trans. ASME 2004, 126, 125–132. [Google Scholar] [CrossRef]
- Soepyan, F.B.; Cremaschi, S.; Sarica, C.; Subramani, H.J.; Kouba, G.E. Solids transport models comparison and fine-tuning for horizontal, low concentration flow in single-phase carrier fluid. AICHE J. 2014, 60, 76–122. [Google Scholar] [CrossRef]
- Zhao, L.A.; Wang, T.L. Study on the flow of water sand slurry with sliding bed in inclined pipe. J. Exp. Fluid Mech. 2016, 30, 43–49. [Google Scholar]
- Ogunsesan, O.A.; Hossain, M.; Iyi, D.; Dhroubi, M.G. CFD Modelling of Pipe Erosion Due to Sand Transport. In Proceedings of the 1st International Conference on Numerical Modelling in Engineering, Ghent, Belgium, 28–29 August 2018; Springer: Singapore, 2019; pp. 274–289. [Google Scholar]
- Pereira, G.C.; de Souza, F.J.; de Moro Martins, D.A. Numerical prediction of the erosion due to particles in elbows. Powder Technol. 2014, 261, 105–117. [Google Scholar] [CrossRef]
- Mazumder, Q.H.; Shirazi, S.A.; Mclaury, B.S.; Shadley, J.R.; Rybicki, E.F. Development and validation of a mechanistic model to predict solid particle erosion in multiphase flow. Wear 2005, 259, 203–207. [Google Scholar] [CrossRef]
- Ekambara, K.; Sanders, R.S.; Nandakumar, K.; Masliyah, J.H. Hydrodynamic Simulation of Horizontal Slurry Pipeline Flow Using ANSYS-CFX. Ind. Eng. Chem. Res. 2009, 48, 8159–8171. [Google Scholar] [CrossRef]
- Kaushal, D.R.; Kaushal, D.R.; Tomita, Y.; Kuchii, S.; Tsukamoto, H. CFD modeling for pipeline flow of fine particles at high concentration. Int. J. Multiph. Flow 2012, 43, 85–100. [Google Scholar] [CrossRef]
- Yang, Y.; Peng, H.P.; Wen, C. Sand Transport and Deposition Behaviour in Subsea Pipelines for Flow Assurance. Energies 2019, 12, 4070. [Google Scholar] [CrossRef]
- Li, M.Z.; He, Y.P.; Liu, Y.D.; Huang, C. Analysis of transport properties with varying parameters of slurry in horizontal pipeline using ANSYS fluent. Part. Sci. Technol. 2020, 38, 726–739. [Google Scholar] [CrossRef]
- Li, M.Z.; He, Y.P.; Liu, Y.D.; Huang, C. Hydrodynamic simulation of multi-sized high concentration slurry transport in pipelines. Ocean. Eng. 2018, 163, 691–705. [Google Scholar] [CrossRef]
- Zhang, M.D.; Kang, Y.; Wei, W.; Li, D.; Xiong, T. CFD investigation of the flow characteristics of liquid-solid slurry in a large-diameter horizontal pipe. Part. Sci. Technol. 2021, 39, 712–725. [Google Scholar] [CrossRef]
- Xiong, T.; Chen, Q.Y.; Wu, Q.; Zhang, M.D.; Wang, X. The numerical simulation on pipeline transport of coarse particles based on Eulerian-Lagrangian model. Chin. J. Hydrodyn. 2018, 33, 461–469. [Google Scholar]
- Capecelatro, J.; Desjardins, O. An Euler-Lagrange strategy for simulating particle-laden flows. J. Comput. Phys. 2013, 238, 1–31. [Google Scholar] [CrossRef]
- Zhang, Y.; Ren, W.L.; Li, P.; Zhang, X.H.; Lu, X.B. Flow regimes and characteristics of dense particulate flows with coarse particles in inclined pipe. Powder Technol. 2023, 428, 118859. [Google Scholar] [CrossRef]
- Januario, J.R.; Maia, C.B. CFD-DEM Simulation to Predict the Critical Velocity of Slurry Flows. J. Appl. Fluid Mech. 2020, 13, 161–168. [Google Scholar] [CrossRef]
- Liu, L.; Li, X.; Tian, X.l.; Zhang, X.T.; Xu, X.L.; Zhang, X.Z. Numerical Investigation on Inclined Hydraulic Transport of Large Particles for Deepsea Mining. China Ocean Eng. 2023, 37, 420–432. [Google Scholar] [CrossRef]
- Kesely, M.; Matoušek, V.; Vlasak, P. Settling slurry flow near deposition velocity in inclined pipe of negative slope. EPJ Web Conf. 2019, 213, 02040. [Google Scholar] [CrossRef]
- Matousek, V.; Kesely, M.; Vlasak, P. Modelling approaches for pipe inclination effect on deposition limit velocity of settling slurry flow. EPJ Web Conf. 2018, 180, 02062. [Google Scholar] [CrossRef]
- Matousek, V.; Krupicka, J.; Kesely, M. A layered model for inclined pipe flow of settling slurry. Powder Technol. 2018, 333, 317–326. [Google Scholar] [CrossRef]
- Matousek, V.; Kesely, M.; Konfrst, J.; Vlasak, P. Effect of pipe inclination on settling slurry flow near deposition velocity. ASME Fluids Eng. Div. Meet. 2018, 3, V003T19A008. [Google Scholar]
- Vlasak, P.; Chara, Z.; Matousek, V.; Konfrst, J.; Kesely, M. Effect of pipe inclination on flow behaviour of fine-grained settling slurry. EPJ Web Conf. 2019, 213, 02094. [Google Scholar] [CrossRef]
- Vlasak, P.; Chara, Z.; Matousek, V.; Konfrst, J.; Kesely, M. Experimental investigation of fine-grained settling slurry flow behaviour in inclined pipe sections. J. Hydrol. Hydromech. 2019, 67, 113–120. [Google Scholar] [CrossRef]
- Archibong-Eso, A.; Aliyu, A.; Yan, W.; Okeke, N.; Baba, Y.; Fajemidupe, O.; Yeung, H. Experimental Study on Sand Transport Characteristics in Horizontal and Inclined Two-Phase Solid-Liquid Pipe Flow. J. Pipeline Syst. Eng. Pract. 2020, 11, 04019050. [Google Scholar] [CrossRef]
- Yang, D.; Xia, Y.M.; Wu, D.; Chen, P.; Zeng, G.Y.; Zhao, X.Q. Numerical investigation of pipeline transport characteristics of slurry shield under gravel stratum. Tunn. Undergr. Space Technol. 2018, 71, 223–230. [Google Scholar] [CrossRef]
- Tebowei, R.; Hossain, M.; Islam, S.Z.; Droubi, M.G.; Oluyemi, G. Investigation of sand transport in an undulated pipe using computational fluid dynamics. J. Pet. Sci. Eng. 2018, 162, 747–762. [Google Scholar] [CrossRef]
- Yao, R.; Qi, D.Z.; Zeng, H.Y.; Huang, X.X.; Li, B.; Wang, Y.; Bai, W.Q.; Wang, Z.W. Study on Critical Velocity of Sand Transport in V-Inclined Pipe Based on Numerical Simulation. Water 2022, 14, 2627. [Google Scholar] [CrossRef]
- Alihosseini, M.; Thamsen, P.U. Analysis of sediment transport in sewer pipes using a coupled CFD-DEM model and experimental work. Urban Water J. 2019, 16, 259–268. [Google Scholar] [CrossRef]
- Stevenson, P.; Thorpe, R.B.; Kennedy, J.E.; McDermott, C. The transport of particles at low loading in near-horizontal pipes by intermittent flow. Chem. Eng. Sci. 2001, 56, 2149–2159. [Google Scholar] [CrossRef]
- Stevenson, P.; Thorpe, R.B.; Davidson, J.F. Incipient motion of a small particle in the viscous boundary layer at a pipe wall. Chem. Eng. Sci. 2002, 57, 4505–4520. [Google Scholar] [CrossRef]
- Goharzadeh, A.; Rodgers, P.; Wang, L. Experimental Characterization of Slug Flow on Solid Particle Transport in a 1 Deg Upward Inclined Pipeline. J. Fluids-Eng.-Trans. ASME 2013, 135, 081304. [Google Scholar] [CrossRef]
Parameters | V-Inclined Pipe | Horizontal Pipe |
---|---|---|
Pipe inclination | , , | \ |
Pipe length | 80 m | 80 m |
Pipe diameter | 2600 mm | 2600 mm |
Liquid density | 998.2 | 998.2 |
Solid density | 2300 | 2300 |
Particle size | 0.02 mm | 0.02 mm |
Inlet sand content | 0.42% | 0.42% |
S1 | S2 | S3 | S4 | S5 | |
---|---|---|---|---|---|
8.3% | 11.7% | 34.7% | 23.1% | 13.1% | |
3.6% | 5.1% | 21.4% | 13.6% | 10.9% | |
3.2% | 4.4% | 19.5% | 10.8% | 8.6% |
Parameters | V-Inclined Pipe |
---|---|
Pipe inclination | |
Pipe length | 80 m |
Pipe diameter | 1200 mm, 1600 mm, 2600 mm |
Liquid density | 998.2 |
Solid density | 2300 |
Particle size | 0.02 mm |
Inlet sand content | 0.42% |
Parameters | V-Inclined Pipe |
---|---|
Pipe inclination | |
Pipe length | 80 m |
Pipe diameter | 2600 mm |
Liquid density | 998.2 |
Solid density | 2300 |
Particle size | 0.02 mm |
Inlet sand content | 0.42%, 1%, 5% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, R.; Wang, Z.; Huang, X. Design Parameters Investigation on Sand Transportation Characteristics of V-Inclined Pipe Based on Eulerian–Eulerian Two-Phase Flow Model. Water 2023, 15, 4266. https://doi.org/10.3390/w15244266
Yao R, Wang Z, Huang X. Design Parameters Investigation on Sand Transportation Characteristics of V-Inclined Pipe Based on Eulerian–Eulerian Two-Phase Flow Model. Water. 2023; 15(24):4266. https://doi.org/10.3390/w15244266
Chicago/Turabian StyleYao, Rao, Zhengwei Wang, and Xingxing Huang. 2023. "Design Parameters Investigation on Sand Transportation Characteristics of V-Inclined Pipe Based on Eulerian–Eulerian Two-Phase Flow Model" Water 15, no. 24: 4266. https://doi.org/10.3390/w15244266
APA StyleYao, R., Wang, Z., & Huang, X. (2023). Design Parameters Investigation on Sand Transportation Characteristics of V-Inclined Pipe Based on Eulerian–Eulerian Two-Phase Flow Model. Water, 15(24), 4266. https://doi.org/10.3390/w15244266