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Abstract: The main objective of the present paper is to achieve the simulation of the long-term (e.g.,
annual) morphological evolution (bathymetry and shoreline) of a coastal area (Mastichari beach,
Greece) due to wind-generated waves in an accurate and cost-effective way. For this purpose, wave
climate schematization techniques are adopted in order to reduce the computational effort without
losing or distorting the crucial information. Referring to the current practice, the wave chronology
is not considered in detail in these acceleration techniques, and therefore, sea bottom and shoreline
evolution are not estimated as a function of time. To fill this gap, a novel and easy-to-use chronology-
based wave input reduction method is developed to produce representative wave time series of
different intensities and durations. The performance of all the applied techniques in the present study
is evaluated, and a comparative analysis is conducted. It is shown that the new chronology-based
wave input reduction method can achieve a model run-time reduction of about 70%, while at the
same time, it provides satisfactorily accurate results. In general, this research could be useful for
coastal engineering studies and coastal zone monitoring, and thus, it would be a valuable tool for
coastal engineers and marine scientists.

Keywords: long-term coastal evolution; coastal monitoring; model run-time reduction; wave chronology;
performance assessment

1. Introduction

Coastal environments, especially sandy beaches, are subject to erosion and accretion
processes affecting coastal communities. The accurate estimation of coastal evolution
is vital for protecting those areas, and it is also essential to illuminate the path towards
sustainable coastal development.

The short- (from hours to weeks), medium- (from weeks to months), and long-term
(from months to years) effects of waves on a beach, including nearshore, surf and swash
zones, and sea bottom evolution, are usually estimated through process-based morphody-
namic models. However, these complex models are computationally demanding, and thus,
a schematization (i.e., wave input reduction) is required in order to maintain a balance
between the model’s complexities, computational effort, and processing capacity [1].

The inherent constraint of the high computational time, which is a function of the
wave conditions and the corresponding numerical instabilities, becomes a greater issue in
the case of the long-term simulations of coastal processes [2]. Hence, wave input reduction
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techniques can significantly impact the simulated processes, such as the wave propagation
from deep waters towards inshore, coastal circulation, sediment transport, bathymetry,
and shoreline evolution. The rationale for those techniques [1,3,4] is the reduction of the
available wave climate data of a few representative wave conditions in an annual cycle,
which is defined as the benchmark or reference wave climate. Running a process-based
model, which is driven by the representative wave conditions in sequence for a smaller
period, is often accomplished through the use of a MORFAC (Morphological Acceleration
Factor) value, which is related to the frequency of the occurrence of each wave condition
or its weight in the overall wave climate [1]. Nevertheless, it is recommended in [5] that
the MORFAC values should not exceed a critical value due to the fact that large MORFAC
values could lead to erroneous and significantly biased results, especially in cases of coasts
that are exposed to highly varying wind and wave conditions [6,7].

For instance, in the analysis by Benedet et al. [1], an annual benchmark wave dataset
of a southeast coast in Florida, U.S.A., was transformed into four different numbers of
representative wave conditions. Particularly, the full wave climate was reduced to thirty,
twenty, twelve, and six representative wave cases in order to run the corresponding models
in sequence for a smaller period; these numbers were selected based on the sensitivity tests
carried out by the authors. According to the frequency of the occurrence of each wave
condition throughout an entire year, the sediment transport patterns were estimated for
each proposed technique, along with the simulation of the detailed wave climate, which
was used as a benchmark. The results obtained by each technique were compared with the
corresponding results of the benchmark wave climate in terms of the root mean square error.

Moreover, as demonstrated in [1], twelve wave conditions/scenarios extracted from a
sound wave schematization method can adequately represent the sea bottom evolution
induced by the annual wave climate. Such methods are binning methods, which are named:
the ‘Fixed Bins Method’, ‘Energy Flux Method’, ‘Energy Flux with Extreme Wave Condi-
tions Method’ [1], ‘Sediment Transport Bins Method’ [8], and ‘Opti-Routine Method’ [9–11],
and the clustering methods, e.g., ‘Maximum Dissimilarity algorithm’ [12], ‘Grouping with
Equal Sediment Influence method’ [13], and ‘Crisp K-Means method’ [14,15], etc. As shown
in [4], the binning methods that divide the wave conditions into bins, in most cases, use
a specific weight target, and they are more effective in inter-annual and annual morpho-
logical predictions than the clustering methods are. This is mainly due to the fact that
clustering methods rely significantly on the frequency of observations, leading thus to an
over-representation of most of the frequent low and mild wave conditions in the selection
of the representative wave scenarios, while the coastal morphology is primarily altered due
to energetic storm conditions. Additionally, based on the existing literature (e.g., [1,4]), the
most accurate binning methods are the Energy Flux Method and Sediment Transport Bins
Method, albeit the first one is the one that is most commonly used.

The wave scenarios, derived from the aforementioned wave input reduction tech-
niques, are then placed in a random order, and they drive the process-based coastal
morphology models. It is noted that in order to limit the effect of the random initial choice
on the performance of the technique, five replicates (e.g., [3,4]) of the random sequences of
the twelve wave scenarios are applied, and the average skill score of the five repetitions [16]
is estimated.

As far as the sequence, or equivalently, the chronology of wave events, is concerned,
it plays an essential role in assessing and predicting how coastlines and nearshore re-
gions evolve over medium and long timescales [17]. The only method that preserves the
chronology of the original wave dataset is the Representative Wave Approach (RWA),
which has been adapted from [18,19], which divides the wave data into bins over time. To
reduce the computational time and make the simulations compatible with the engineering
requirements, the number of simulated natural events needs to be reduced by selecting
a set of representative field conditions [17]. The aim of this technique, which is called
the ‘many representative wave’ approach [18,19], is to replace the actual wave climate
with a small number of representative conditions (cf. [20]). Their procedure combines the
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wave conditions over different sectors (directions) to create a single set of wave parameters.
Initially, the wave data are divided into seasons, and for each season and each sector, the
representative wave scenario is the average of the wave conditions in that bin. However, as
shown in the analysis by Queiroz et al. [4], in the many representative wave approaches
that have been applied, the average conditions of the seasons tend to be similar, resulting
in a poor selection of representative wave conditions.

The acceleration techniques mentioned above need to consider, in detail, wave chronol-
ogy in the prediction of the sea bottom, coastline, and shoreline evolution, since the results
are obtained at the end of specific time intervals, e.g., 1 year, (see, e.g., [1,3,4,21]). This
information at the end of specific time intervals is vital for coastal engineering studies that
are aiming to assess the potential sediment transport patterns in a study area, hence they
could be inadequate for coastal zone monitoring. The latter element necessitates assessing
coastal zone evolution as a function of time, e.g., before and after extreme coastal storm
events that can induce severe sea bottom and shoreline changes, but also during mild
weather conditions that can result in the recovery of beaches.

More recently, Malliouri et al. [22] developed a wave input reduction method that
extracts sequences of wind-wave events and swell events from wind and wave time series.
Their method is capable of extracting the time series of events of different durations and
wave intensities. Thus, it can accelerate the process of estimation of long-term coastal
morphodynamics by reducing the events’ duration through the use of a MORFAC. In
addition, their method [22] can assess the sea bottom and shoreline evolution as a time
function via process-based morphodynamic models.

The methodology proposed by Malliouri et al. [22] needs waves, but it also needs the
wind time series of the same period to extract a sequence of wind-wave and swell events,
which implies a limitation regarding the properties of the source data that can be used.
Except for this, it would be an advantage if the wave events could be derived from wave
time series only since the main objective of the present paper, as well as of a variety of
research and coastal engineering studies (e.g., [1,3,4,21]), is to estimate the wave-induced
coastal morphodynamics. As for swells and coastal long-period waves, many studies
have shown that they have a significant impact on the coastal geomorphology processes
(e.g., [23,24])

Being motivated by the lack of estimations of the evolution of coastal morphology as a
function of time and the need to accelerate this process, a novel methodology is developed
in the present study for extracting the time series of wave events of different wave intensities
and variable time intervals. This method derives those wave event sequences exclusively
from wave time series, irrespective of the type of wave events (wind-wave, young, mature,
or old swell ones) by applying three different approaches in a 2 km long sandy beach on
Kos island, Greece.

2. Materials and Methods
2.1. Physiographic Setting

The area of interest is the sandy beach of Mastichari, which is located on the northwest
coast of Kos Island (Figure 1) in the southeast of the Aegean Sea, Greece. The coastline of
Mastichari beach is northwest-oriented (Figure 1), and it has a length of approximately
2 km. It comprises mainly of fine sand with a median diameter of 0.2 mm, which is used
as an input parameter for the sediment in our simulations. At a distance of 4 km from the
coast, the depths reach up to 45 m. The Mastichari beach and its surroundings have been a
target of tourist activities since 1970. The small port in the northeastern side of Mastichari
beach offers a frequent ferry service to the island of Kalymnos, which is opposite to it, and
it is about 7.8 nautical miles away.
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Figure 1. The study area of the coast of Mastichari and the offshore wind and wave data extraction
point in Kos island, Greece.

The beach of Mastichari is selected as a case study for the estimation of the long-
term coastal evolution, since it combines a variety of properties that makes it suitable
for these kinds of applications. Particularly, it consists mostly of fine sand, it has a wide
nearshore zone, and it is exposed to wave conditions that attack the beach from a wide
range of directions.

2.2. Bathymetry and Topography

In order to simulate the morphological evolution of the sea bottom and shoreline of
Mastichari coast, an unstructured finite element mesh has been constructed. Three mesh
density levels are applied, with a coarser area (Figure 2, Zone 1) being near the offshore
boundary, a denser one (Zone 3) in the shallow and shoreline area, and an intermediate
one (Zone 2) is implemented in the area between the other two mesh density level zones.
Additionally, a high resolution (5–20 m) mesh has been applied within the closure depth
and the shoreline to allow us to obtain high-resolution, significant bathymetric features
in the coastal waters, while a coarser grid resolution (up to 250 m) has been applied
offshore to reduce the computational cost. The intermediate mesh density level has a
medium resolution (20–100 m). Additionally, a filled contour map of the bathymetry and
topography information in the computational domain is presented in Figure 3.
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Water depth data have been collected during two oceanographic surveys of the R/V
Alcyon (H.C.M.R.) in 2019 and 2021. During the cruises, the data were acquired in real-time
by an RTK GPS system, achieving horizontal and vertical accuracies of less than 10 cm
concerning the local reference GPS station. The multi-beam survey was conducted by a
Teledyne Seabat T50 echo sounder following the Special Order standard of IHO. The tidal
range was less than 24 cm, while the sound velocity along the water column varied between
1515 and 1522 m/s. The collected data (water depths of 7–40 m) were post-processed by the
Teledyne Reson PDS-2000 software package, including the removal of spurious soundings,
noise filtering, and tide and sound velocity profile corrections, and a digital terrain model
(DTM) with a 2 m cell size was produced. The shallow waters (depths of 0.5–10 m) were
collected along 125 nm tracks using a single beam echo sounder (Humminbird HELIX 9
CHIRP SI GPS G2N) operating in the frequency of 200 kHz. The acquisition step was one
sounding per second (~195,000 soundings), and the horizontal accuracy was 2.5 m.

The Hellenic Cadastre provided a 2 m cell size elevation gridded dataset of the
terrestrial part of the coastal area [25]. Both bathymetric and hypsometric data were
reprojected in ETRS89/UTM zone 35N (EPSG:25835) and resampled in the resolution of
5 m by using a Geographic Information System Software Suite (ERSI ArcGIS®,v.10.8).

It is noted that the foreshore of Mastichari beach consists mainly of sand, while the
small port of Mastichari is constructed of rocks and concrete materials. Therefore, the port
has been excluded from the computational domain, and it has been set as a “hard” land
boundary since it cannot be altered due to coastal processes.

2.3. Wind and Wave Climate

The time series of the wind and wave data used for the current analysis are obtained
from the reanalysis dataset of ERA5 hourly data at single levels from 1959 to the present
day [26], and these were downloaded from the Copernicus database (https://cds.climate.
copernicus.eu/ accessed on 5 December 2022). The wave and wind reanalysis data used
in the present paper cover the annual period from 1 January 2021 to 31 December 2021
(see Figure 4), and the offshore wind and wave data extraction point have the spatial
coordinates of 36◦51′23.5” N, 27◦02′51.2” E (see Figure 1). The time resolution of the
reanalysis data is 1 h, while the spatial resolutions are 0.25◦ × 0.25◦ (atmosphere) and
0.5◦ × 0.5◦ (ocean waves).

Water 2023, 15, 389 6 of 24 
 

 

Water depth data have been collected during two oceanographic surveys of the R/V 
Alcyon (H.C.M.R.) in 2019 and 2021. During the cruises, the data were acquired in real-
time by an RTK GPS system, achieving horizontal and vertical accuracies of less than 10 
cm concerning the local reference GPS station. The multi-beam survey was conducted by 
a Teledyne Seabat T50 echo sounder following the Special Order standard of IHO. The 
tidal range was less than 24 cm, while the sound velocity along the water column varied 
between 1515 and 1522 m/s. The collected data (water depths of 7–40 m) were post-pro-
cessed by the Teledyne Reson PDS-2000 software package, including the removal of spu-
rious soundings, noise filtering, and tide and sound velocity profile corrections, and a 
digital terrain model (DTM) with a 2 m cell size was produced. The shallow waters 
(depths of 0.5–10 m) were collected along 125 nm tracks using a single beam echo sounder 
(Humminbird HELIX 9 CHIRP SI GPS G2N) operating in the frequency of 200 kHz. The 
acquisition step was one sounding per second (~195,000 soundings), and the horizontal 
accuracy was 2.5 meters. 

The Hellenic Cadastre provided a 2 m cell size elevation gridded dataset of the ter-
restrial part of the coastal area [25]. Both bathymetric and hypsometric data were repro-
jected in ETRS89/UTM zone 35N (EPSG:25835) and resampled in the resolution of 5 m by 
using a Geographic Information System Software Suite (ERSI ArcGIS®,v.10.8). 

It is noted that the foreshore of Mastichari beach consists mainly of sand, while the 
small port of Mastichari is constructed of rocks and concrete materials. Therefore, the port 
has been excluded from the computational domain, and it has been set as a “hard” land 
boundary since it cannot be altered due to coastal processes. 

2.3. Wind and Wave Climate 
The time series of the wind and wave data used for the current analysis are obtained 

from the reanalysis dataset of ERA5 hourly data at single levels from 1959 to the present 
day [26], and these were downloaded from the Copernicus database (https://cds.cli-
mate.copernicus.eu/ accessed on 5 December 2022). The wave and wind reanalysis data 
used in the present paper cover the annual period from 1 January 2021 to 31 December 
2021 (see Figure 4), and the offshore wind and wave data extraction point have the spatial 
coordinates of 36°51′23.5″ N, 27°02′51.2″ E (see Figure 1). The time resolution of the rea-
nalysis data is 1 hr, while the spatial resolutions are 0.25° × 0.25° (atmosphere) and 0.5° × 
0.5° (ocean waves). 

 
Figure 4. Rose diagram of wind velocity 𝑈௪ (left) and significant wave height 𝐻 (right) in the 
year 2021. 
Figure 4. Rose diagram of wind velocity Uw (left) and significant wave height Hm0 (right) in the
year 2021.

https://cds.climate.copernicus.eu/
https://cds.climate.copernicus.eu/


Water 2023, 15, 389 7 of 22

The prevailing winds come from the NW direction, and they usually have an intensity
of 10–30 knots (for 75% of the winds), while the waves usually come from the NW direction,
having an average significant wave height of about 1.0 m and a maximum value of 2.8 m.
The strongest winds and waves come from north, and they are rarer than the mild wind
and wave conditions. Moreover, the waves coming from north have an average significant
wave height of 1.4 m and a maximum value of 4.3 m.

2.4. Wave Input Reduction Techniques

Since the objective of the present study is the long-term (≥1 year) simulation of the
coastal morphodynamics due to wind-generated waves, wave climate schematization
techniques have been adopted and applied. For this purpose, the time series of the offshore
spectral wave data, namely, the significant wave height Hm0, the peak wave period Tp, and
mean wave direction (MWD), are used as input data for the process-based numerical modelling.

First, the available wave time series are filtered, excluding the sea states that propagate
out of the computational domain, namely, the coastal area of interest, and also those having
an Hm0 lower than 0.5 m. This 0.5 m threshold is applied based on earlier simulations
by the authors, showing that wave heights of less than 0.5 m cannot contribute in the sea
bottom evolution of the study area, which is in agreement with [1,2,27]. Therefore, this
filtered time series of the triplets’ Hm0, Tp, and MWD comprises the reference wave climate,
e.g., of 1 year.

2.4.1. The Energy Flux Method

After the derivation of the reference wave climate, a well-known and widely accepted
wave input reduction technique, the energy flux wave schematization method [1,28], has
been applied that separates the “equal energy flux intervals” of the reference wave climate.

The wave energy flux of each wave record in a time series is calculated via the
following equation:

E f =

(
ρgHm0

2

8

)
Cg (1)

E f stands for the wave energy flux, ρ is the seawater density (1025 kg/m3), g is the
gravity acceleration (9.81 m2/s), Hm0 is the significant wave height of the wave record, and
Cg is the group wave celerity in deep water, which is estimated as gTp/4π, depending on
the Tp of the wave record.

In order to accelerate the long-term morphological evolution simulations, the energy
flux method divides the wave climate into wave classes (e.g., twelve wave bins with four
directions and three height classes). It is noted that each wave class is then represented by
one wave condition, which has a duration that is equal to the sum of the frequencies of
occurrence of all the wave conditions that belong in the class. Each representative wave
condition corresponds to the mean values of Hm0, Tp, and MWD of all the wave conditions
of the class. Furthermore, by imposing a MORFAC, the duration of each representative
wave scenario is further reduced. The reduced duration is the actual duration divided by
the MORFAC value.

2.4.2. A Wind and Wave Chronology-Based Input Reduction Technique

As mentioned above, the wave input reduction method [22] uses the wind and wave
chronology, extracting the time series of the wind-wave events and swell events from the
wind and wave datasets. Specifically, this method results in a time series of events of
different wave intensities and durations. Moreover, it can accelerate the estimation of the
long-term coastal morphodynamics by using a MORFAC.

To accomplish the greatest acceleration by applying this method, the time series is
shortened so that a uniform MORFAC value is imposed. In particular, the initial durations
of the events are divided by the MORFAC value to estimate the new durations. It is noted
that the time step of the input time series can be variable, and it does not have to be the
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same as the time step of the hydrodynamic simulation since a type of interpolation can be
applied [29].

To describe the wave chronology-based input reduction technique, the swell criterion
is initially applied to the datasets according to the Thompson et al. [30] classification that
separates swell seas from wind seas. This criterion is implemented because the two wave
types have distinct characteristics [31], which in turn, produce different effects on the sea
bottom and the beach profile. Wind seas usually have an offshore peak wave steepness
that is higher than 0.025. This steepness is defined as the ratio of the offshore significant
wave height (Hm0) and the wavelength (Lp) based on peak wave period Tp. The swell
steepness diminishes as the waves move away from the fetch region [32]. Swell seas with
steepness values of 0.010–0.025, 0.004–0.010, and <0.004 are classified as young, mature,
and old ones, respectively.

Additionally, since the sea bottom morphological changes are mainly caused by wave-
induced currents and short-crested waves generated by wind, the wind characteristics
and their time history can be used to extract representative wave scenarios for wind seas.
The primary aim of the present analysis is the derivation of wind-wave events that are
defined here as the consecutive wave data of wind seas corresponding to the approximately
constant wind. It is noted that these wind-wave events could be of different types, such as
fetch-limited or duration-limited growing seas, or fully developed seas (e.g., [33,34]). It is
also noteworthy that the definition of constant wind is commonly used for the estimation
and prediction of offshore wave conditions based on the wind data.

Following the above two conditions of approximately constant wind, each wind-wave
event in the present study is determined by a segment of non-overlapped consecutive wind
data that satisfy the statement below:

∀t ∈ [t1, t2] :
∣∣Uw(t)−Uw

∣∣ < 2.5 ms−1 and
∣∣Dw(t)− Dw

∣∣ < 15o (2)

where t is the time variable, [t1, t2] the time interval covered by a certain wind-wave event,
and where Uw and Dw are the mean values of the successive and acceptable (e.g., hourly)
wind speed Uw,i and direction Dw,i data, respectively.

In the method developed in [22], each swell and wind-wave event is represented by a
characteristic wave condition. Referring now to linear data, such as the wave height and
wave period, the representative wave characteristics of each wind-wave and swell event
are the arithmetic mean values of the corresponding consecutive wave data, as follows:

Hm0 =
∑N

i=1 Hi

N
, Hi = Hm0(t), t ∈ [t1, t2] (3)

Tp =
∑N

i=1 Ti

N
, Ti = Tp(t), t ∈ [t1, t2] (4)

D = ∑N
i=1 dt (5)

where Hm0, and Tp, are the mean values of the successive data of the significant wave
heights Hi and the peak wave periods Ti included in each event, respectively, N is the
number of successive data, and t is a discrete variable for time. Additionally, D is the
duration of the event.

The circular variable MWD has been estimated by the following formula (referenced
in, e.g., [35–37]).

MWD =


atan

(
sa
ca

)
, i f sa > 0 and ca > 0

atan
(

sa
ca

)
+ π, i f ca < 0

atan
(

sa
ca

)
+ 2π, i f sa< 0 and ca >0

(6)
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where

sa =
∑N

i=1 sin(Di)

N
, Di = MWD(t), t ∈ [t1, t2] (7)

ca =
∑N

i=1 cos(Di)

N
, Di = MWD(t), t ∈ [t1, t2] (8)

where MWD is the mean value of the successive data of the mean wave direction Di
included in each event.

The methodology of Malliouri et al. [22] needs a wave series, but it also needs a wind
time series of the same time period in order to extract a sequence of wind-wave and swell
events, which implies a limitation regarding the properties of the used source data. Except
for this, it would be an advantage if the wave events could be derived from the wave time
series only since the main objective of the present paper is to estimate the wave-induced
coastal mophodynamics.

2.4.3. A Wave Chronology-Based Input Reduction Technique

The lack of current studies which thoroughly consider the wave chronology in wave
input reduction techniques creates the necessity to develop a novel and easy-to-use method-
ology for extracting the time series of wave events of different wave intensities and variable
time intervals (meaning durations). This method derives those wave events sequences
exclusively from the time series of wave data, irrespective of the type of wave events
(wind-wave, young, mature, or old swell ones), by applying three specific conditions.

Following the three conditions of similar consecutive wave characteristics, each wave
event in the present paper is determined by a segment of non-overlapped successive wave
data which satisfies the statement noted below:

∀t ∈ [t1, t2] :
Hm0(t)− Hm0 < ∆h and

∣∣Tp(t)− Tp
∣∣ < ∆t and

∣∣MWD(t)−MWD
∣∣ < ∆d

(9)

where t is the time variable, [t1, t2] is the time interval covered by a particular wave event,
and ∆h, ∆t, and ∆d are the maximum acceptable values of the absolute differences of
Hm0(t), Tp(t), and MWD(t) from their mean values Hm0, Tp, and MWD, respectively.

The values of the ∆h, ∆t, ∆d parameters are determined after conducting earlier
simulations runs using the MIKE 21 Coupled Model FM software package and by using
the events parameters Hm0, Tp, and MWD as input data, while attempting to find an
equilibrium solution between the need to increase the duration of the wave events to
accelerate the process by using a high MORFAC value and the accuracy limitation. The
latter one requires that each wave event should be comprised of consecutive wave data of
similar wave characteristics so that they can be properly represented by one wave condition.

From a statistical point of view, specific ∆h, ∆t, and ∆d values are selected based on the
degree of variability of the wave data of the derived events with respect to their mean wave
characteristics. It is expected that lower ∆h, ∆t, and ∆d values imply less dispersed wave
data for the corresponding events, namely, lower coefficients of variation. Moreover, the
fact that uniform ∆h, ∆t, and ∆d values are applied for the whole time series, irrespective
of the wave intensity of each wave event, necessitates that the resulting coefficient of
variation of the produced events, and especially their Hm0 values, are not correlated to a
significant degree.

2.4.4. Simulations

Using all the above information, the following six simulations have been performed:

1. A simulation consisting of the full time series at the offshore boundary, which is
denoted as the reference/benchmark simulation.

2. Five repetitive simulations using the 12 representatives in random order, which were
calculated by the energy flux input reduction method and are denoted as the energy
flux simulation with five repetitions. The average of 5 repetitions is in accordance
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with [4], the authors of which used the same approach for estimating the average
performance score of the Energy Flux Method. In this study, the average result of the
5 repetitions was estimated as the expected result, considering the uncertainty of the
random order of the 12 representative scenarios and its effect on the final result.

3. A simulation consisting of a time series of representatives of wind-wave events and
swell events, which have been extracted by the wave input reduction technique of
Malliouri et al. [22], which is denoted hereafter as the wind and wave chronology-
based input reduction technique.

4. A set of three simulations consisting of isolated sequences of the representative
scenarios of wave events with similar characteristics based on the three criteria (see
Equation (8)) for specific ∆h, ∆t, and ∆d values and specific morphological acceleration
factors (MORFAC), which are denoted hereafter as the wave chronology- based input
reduction techniques.

2.5. Numerical Model Setup

The process-based numerical model used in the present study for the detailed de-
scription and estimation of the hydrodynamic conditions, waves, sediment transport, sea
bottom and shoreline evolution on the beach in Mastichari is the MIKE 21 Coupled Model
FM [29]. The same numerical coupled model has been applied in a plethora of relevant
recent studies such as [2,38–41].

The MIKE 21 Coupled Model FM software package is composed of several interrelated
modules, and four of them have been implemented in the present study: (i) the hydro-
dynamic (HD) module, (ii) the spectral wave (SW) module, (iii) the sand transport (ST)
module, and (iv) the shoreline morphology module (SM). SW is a 3rd generation spectral
wave model that simulates the growth, decay, and transformation of wind-generated waves
and swell in offshore and coastal areas. HD is a depth-averaged hydrodynamic model
that uses the Navier–Stokes equations of motion, and it is suitable for the estimation of
the nearshore circulation. Moreover, ST is a sand transport and morphology dynamic
model that is used to calculate the transport of non-cohesive materials based on the mean
horizontal flow conditions assessed in the HD module. Furthermore, the SM module is
a complementary module that can be included in ST module during dynamic numerical
modeling. SM combines a one-line model for the shoreline with a 2D model for the wave,
current, and sediment transport. The incorporation of SM for the long-term estimation
of sea bottom evolution eliminates the effect of cross-shore transport on the morphology,
thereby increasing the stability for long-term simulations. Without this module (SM), the
ST module updates the bottom level of each mesh element based on the local sediment
continuity equation, which could lead to instabilities in the long-term simulations.

Focusing on the SM module in the present paper, the combined 2D and shoreline
morphology option, which is defined by an active profile, has been selected to be used in
the morphological calculations. Particularly, the SM module solves a modified version of
the one-line equation for the shoreline (see [42]), whereby the direction of the shoreline
is transformed to be perpendicular to the local orientation of a baseline. The baseline is
defined by a set of points forming a polyline (see Figure 2), the position of which is fixed,
and the local orientation of the baseline is defined by the user during the model setup.

Additionally, the coastline (see Figure 2) defines the initial position of the local shore-
line, which is subject to erosion and deposition. The grid points along the coastline represent
a shoreline edge that can move onshore and offshore. The sediment volume deposited on
the strip of the foreshore zone and within the active profile will contribute to the movement
of the shoreline edge. The profile defines a representative cross-shore profile that moves
forth and back with the shoreline edge at the given location. It is noted that two parameters
are predefined concerning the active profile; these are the closure depth and the shoreline’s
top elevation level. This means that when the shoreline erodes, the elevation level of the
2D computational domain will decrease accordingly, including any section of the profile
that is above the top elevation level, but it will not include those that are below the closure
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depth. Moreover, when the shoreline is subject to accretion, the elevation level of the 2D
computational domain will increase accordingly, including any section of the profile that
is below the closure depth, but it will not include those that are above the top elevation
level [29].

In our case study, the closure depth is estimated by Houston’s approach [43] at 6.2 m.
The top z-level coincides with 1.6 m, which is the average, maximum active beach height of
several profiles perpendicular to the shoreline in the study area. This is considered to be
the limit of the permanent vegetation or the limit of the constructions. The depth of closure
is the seaward limit of the active coastal zone, of which there are no significant sea bottom
morphological changes and no significant net sediment transport which occurs between
the offshore and the nearshore. Both the closure depth and the top elevation of the active
coastal zone are site specific.

In the reference simulation from 2021 and the Energy Flux Method simulations, the
applied time step is 1 h, but they have different MORFAC values. As for the wind and
wave chronology-based reduction method and the wave chronology-based ones, they all
are combined with the time step (dt) of 1800 s (see Table 1). The time step in these cases is
lower than those in the first two simulations due to the fact that the event time series have
a non-equidistant calendar axis and also because the events have variable durations, which
are not necessarily multiples of MORFAC. Additionally, in this way, the coastal morphology
has milder alterations from one time step to another than those in cases of larger times
steps, thus increasing the results’ accuracy and the simulations’ stability. Referring to the
wave chronology-based input reduction technique, three simulations are presented here. In
the first one, relatively low values of the ∆h, ∆t, and ∆d parameters are combined with a
MORFAC of 5, while in the other two cases, higher values of these three parameters, as
well as of the MORFAC values, are utilized (see Table 1).

Table 1. Input parameters of the different simulations.

s/n Reduction Technique MORFAC dt (s)

1 Reference simulation 1 3600
2 Energy Flux (5 rep.) 15 3600
3 Wind and wave chronology 5 1800
4 Wave chronology: ∆h = 0.2 m, ∆t = 0.5 s, ∆d = 10 deg. 5 1800
5 Wave chronology: ∆h = 0.5 m, ∆t = 1.0 s, ∆d = 15 deg. 10 1800
6 Wave chronology: ∆h = 0.8 m, ∆t = 1.5 s, ∆d = 20 deg. 15 1800

It is noteworthy that various MORFAC values have been derived after the statistical
analysis of the wave events based on the ∆h, ∆t, and ∆d criterion and depending on the
events’ frequency of occurrence in the examined period. Particularly, the ∆h, ∆t, and ∆d
values determine the derived events’ duration, as well as the coefficient of variation of the
events’ data and the accuracy of their representation by the mean values. However, the
MORFAC value determines the degree of reduction of the model run time and the accuracy
of the results [6,7].

It is noteworthy that the time step mentioned above (dt) in each of the various modules
is an overall time step. Specifically, the hydrodynamic, the sand transport, and the spectral
wave calculations also use internal time intervals, which are dynamic and determined in
order to meet the stability criteria (e.g., the Courant stability condition).

2.6. Evaluation of Wave Input Reduction Techniques

The results obtained by implementing the alternative wave input reduction techniques
and the process-based model MIKE21 Coupled Model FM are compared. In order to evalu-
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ate the performance of these techniques, the most commonly used criterion (e.g., [44,45]),
the Brier Skill Score (BSS), is calculated for each method via the following relationship:

BSS = 1− 〈(Y− X)2〉
〈(B− X)2〉

(10)

where Y denotes the estimated, modelled output quantity, X denotes a measured quantity
corresponding to the benchmark wave climate simulation for the present study, and B is a
baseline prediction, usually referring to the initial bathymetry, assuming that there is no
sea bottom alteration. Moreover, the square brackets denote average quantities over the
whole computational domain.

Following Sutherland et al. [45] (2004), in order to evaluate the performance of a
specific morphological evolution model, a classification is proposed for the BSS, i.e., an
excellent performance corresponds to a BSS range that is between 0.5 and 1, while good,
reasonable, poor, and bad performances correspond to BSS ranges of (0.2, 0.5), (0.1, 0.2),
(0, 0.1), and <0, respectively.

3. Results
3.1. Representative Wave Conditions

The 12 representative scenarios of the 12 bins of the Energy Flux Method are derived
in order that all the bins have equal energy fluxes, which are estimated as the sum of the
energy flux of each bin’s included sea states, regardless of the sea states’ chronology. Each
representative wave condition (red circles in Figure 5) corresponds to the mean values
of Hm0, Tp, and MWD of all the wave conditions of the class. As it can be seen, the bins,
including the highly energetic sea states, tend to include fewer wave conditions in the class.
Furthermore, in contrast to the Fixed Bins Method, the bins of the Energy Flux Method
have unequal sizes.
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Figure 5. The 12 equal Energy Flux bins (rectangles) and the 12 representative wave conditions (red
circles) derived from the Energy Flux Method (1 January 2021–31 December 2021).

In addition to the Energy Flux Method, the wind and wave chronology-based reduc-
tion technique has also been applied, which produces the time series with a larger number
of representative wave events (see the rhombus in Figure 6) than that of the Energy Flux
Method. These wave events preserve the original sequence of the sea states. They are either
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swell events, which have been extracted based on their wave steepness, or wind-wave
events, whose data follow the condition of approximately constant wind. The estimated
swell events can consist of swell data of different characteristics, while the wind-wave
events consist of more similar wind and wave characteristics.
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As for the chronology-based wave input reduction method, the number of the es-
timated wave events in the first 120 h, presented in Figure 6, varies between 10 and 38,
with the smallest number occurring in the case of the largest values (∆h = 0.8 m; ∆t = 1.5 s;
∆d = 20 deg.) and the largest number occurring in the case of the lowest (∆h = 0.2 m;
∆t = 0.5 s; ∆d = 10 deg.) applied maximum acceptable values of the absolute differences
between Hmo(t), Tp(t), and MWD(t) and their mean values Hmo, Tp, and MWD, respec-
tively. In the case of the medium applied values for the ∆h, ∆t, and ∆d parameters, 16 wave
events are extracted in the first 120 h.

In a larger subset of the time series, e.g., 3 months of 2021 presented in Figure 7, than
that in Figure 6, all the applied chronology-based simulations seem to follow the time
series concerning Hm0, MWD, and Tp, and similar differences are observed in terms of the
number of the extracted events and their durations.

At this point, the dispersion of the wave data within the related events is estimated for
the four chronology-based reduction techniques. Particularly, the coefficients of variation
(CV), i.e., the standard deviations of Hm0 and Tp of the produced wave events’ data from
their mean values, are displayed in Figure 8, showing that higher ∆h, ∆t, and ∆d values
allow for greater dispersion, and vice versa. In the reduction technique that uses the wind
and wave chronology, the CVs of Hm0 are less than 0.4, while for Hm0, they are less than
2 m, and they are lower than 0.025 for the Hm0 and greater than 3 m. The wave chronology-
based reduction technique using ∆h = 0.2 m, ∆t = 0.5 s, and ∆d = 10 deg. produced the
lowest dispersion of the wave data, with CVs that are lower than 0.1 for Hm0, less than



Water 2023, 15, 389 14 of 22

2 m, and lower than 0.025 for Hm0, and they are greater than 3 m. Moreover, the wave
chronology-based reduction technique with the intermediate ∆h, ∆t, and ∆d values has
CVs that are lower than 0.18 for Hm0, less than 2 m, and lower than 0.05 for Hm0, and they
are greater than 3 m, while the one with the largest ∆h, ∆t, and ∆d values has CVs that are
lower than 0.21 for Hm0, less than 2 m, and lower than 0.08 for Hm0, and they are greater
than 3 m.
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In addition to Hm0, the coefficient of variation of Tp is also calculated, presenting
similar behavior, but not to the same extend as that for Hm0. Specifically, the dispersion
of the Tp data in the produced events is usually lower than that of Hm0 in the four cases.
Additionally, the estimated Kendall correlation coefficient presents a degree of dependence
between the CVs of Hm0 and Tp and their mean values. The Kendall correlation coefficient
of the CVs of Hm0 and Hm0 varies from −0.09 to 0.30 for the four techniques, whereas the
one that corresponds to Tp lies within the range from −0.33 to −0.19. Thus, it does not
show a high degree of dependence between the corresponding elements in the four cases.
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3.2. Numerical Models Results

The present section presents the morphological bottom and shoreline evolution of the
area of interest using the dataset of 365 days (see Figure 9). The first simulation that is
displayed in Figure 9 is the benchmark one, which is used to validate the wave chronology-
based input reduction methods developed in the present paper. The most dominant wave
direction turned out to be the northern one, as shown by the representative wave conditions
in Figures 4 and 5. Consequently, the prevailing longshore sediment transport’s direction
is from northeast to the southwest, as shown in Figure 9, resulting mainly in accretive
patterns on the beach face from the center of Mastichari beach to the southwest cape.
Additionally, erosion patterns are observed in the shoreface and the sea bottom in front of
the port structure within 450 m southwest of the port of Mastichari. The mean values of
the sea bottom evolution are estimated to be −2.1 m and 1.1 m in the erosion and accretion
areas, respectively.

The second one is the average simulation based on the Energy Flux Method used to
conduct five repetitions of the 12 characteristic scenarios’ random sequences. In the energy
flux simulation, the predicted bottom evolution in the area of interest is of a lower order
than that of the reference simulation. Precisely, the mean values of the sea bottom evolution
are estimated to be −1.6 m and 0.8 m in the erosion and accretion areas, respectively.
Additionally, the erosion area has a shorter length on the beach face than it does in the
reference simulation, namely 280 m, while in the reference simulation, the erosion pattern
has a length of 450 m.

Regarding the third simulation based on the reduction method that uses the wind and
wave chronology information, the erosion and accretion patterns have similar extends to
those of the benchmark simulation. In particular, the mean values of the sea bottom evolu-
tion are estimated to be −1.9 m and 1.0 m in the erosion and accretion areas, respectively,
and the erosion area has a length of 420 m in front of the shoreface near the port structure.
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In the fourth simulation, corresponding to the lowest applied values of the ∆h, ∆t,
and ∆d parameters, the predicted bottom evolution of the key study is of the same order
as it is in the reference simulation. Precisely, the mean values of the sea bottom evolution
are estimated to be −2.0 m and 1.0 m in the erosion and accretion areas, respectively.
Additionally, the erosion area has the same extent as it does in the reference simulation. In
the fifth simulation, i.e., the one with the medium values of the ∆h, ∆t, and ∆d parameters,
the predicted bottom evolution in the area of interest is again of the same order as that
of the reference simulation. However, the erosion area has a slightly shorter length of
405 m in front of the beach face near Mastichari port. Moreover, the mean values of the sea
bottom evolution are estimated to be −2.0 m and 1.0 m in the erosion and accretion areas,
respectively. In the sixth simulation that uses the largest applied values of the ∆h, ∆t, and ∆d
parameters, the differences are greater than those in the benchmark simulation. The erosion
area in the sixth simulation has the smallest length among the other five simulations, which
is estimated to be 210 m, and the mean values of the sea bottom evolution are estimated to
be −1.7 m in the erosion area and 0.8 m in the accretion area.

Referring at this point to the model’s run-time, the run-time reduction, as well as the
Brier score (see Table 2), the benchmark simulation has the longest duration of 14.65 h,
the wave input reduction simulation with the shortest duration (3.23 h) is the sixth one,
but it has the lowest BSS value. Additionally, the wave input reduction simulation with
the largest duration (8.42 h) is the sixth one, and it has the highest BSS value. The other
acceleration techniques’ simulations have intermediate BSS values, and they achieved
moderate model run-time reductions than the already mentioned ones did.

Table 2. Performance assessment of the wave input reduction techniques.

s/n Reduction Technique Morfac dt (s) Model Run-Time (hr) Run-Time
Reduction BSS

1 Referrence simulation 1 3600 14.65 - -
2 Energy Flux (5 rep.) 15 3600 4.82 67% 0.70
3 Wind and wave chronology 5 1800 6.71 54% 0.87

4 Wave chronology: ∆h = 0.2 m,
∆t = 0.5 s, ∆d = 10 deg. 5 1800 8.42 43% 0.96

5 Wave chronology: ∆h = 0.5 m,
∆t = 1.0 s, ∆d = 15 deg. 10 1800 4.07 72% 0.85

6 Wave chronology: ∆h = 0.8 m,
∆t = 1.5 s, ∆d = 20 deg. 15 1800 3.23 78% 0.69

4. Discussion

As far as the obtained representative wave scenarios of the wave input reduction tech-
niques are concerned, a total of 12 representative wave conditions (see Figure 5) for the Energy
Flux Method are selected to represent the data of 1 year (1 January 2021–31 December 2021),
following [1]. It is noted that in order to limit the effect of the random initial choice on the
performance of the technique, i.e., on the accuracy of the morphology prediction, five repli-
cates [3,4] of the random sequences of the twelve wave scenarios are applied, displaying
the average result (see Figure 9 (2)). This is in compliance with [16], which estimated
the average skill score of the five repetitions in order to assess the performance of the
binning methods.

Nevertheless, in the above method, which is the most commonly used one for long-
term coastal zone evolution studies, the wave chronology is not considered in detail, and
the evolution of sea bottom, coastline, and shoreline are not predicted as a function of
time. Therefore, the results are obtained at the end of long time intervals, e.g., of 1 year,
(e.g., [1,3,4,21]). Hence, in order to tackle the lack of estimations of the evolution of coastal
morphology as a function of time and the need to accelerate this process, two methodologies
are described in the present study for extracting the time series of wave events of different
wave intensities and variable durations. The first one is the wave input reduction method
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by Malliouri et al. [22] that extracts the sequences of wind-wave events and swell events
from wind and wave time series (see Figure 6 (up)). In the second one, wave events
sequences are exclusively derived from wave time series (see Figure 6 (below)), irrespective
of the type of wave events (wind-wave, young, mature, or old swell ones), by applying
three specific conditions.

The two methods thoroughly consider the wave chronology or wind and wave chronol-
ogy, producing time series of the sea bottom and shoreline evolution. This information is
vital for assessing the coastal zone evolution as a function of time, e.g., before and after
extreme coastal storm events that can induce severe sea bottom and shoreline changes,
but also during mild weather conditions that can result in the recovery of the beaches.
Moreover, the two methods could also predict sea bottom and shoreline evolution in the
future if they are applied to climate data of future projections, and thus, they could be used
for coastal zone monitoring.

Additionally, the reference time series and the wave events time series extracted by
the four chronology-based reduction techniques’ time series, namely, the wind and wave
chronology-based input reduction method and the three wave chronology-based input
reduction methods with different values for the ∆h, ∆t, and ∆d parameters, are compared
in terms of specific time periods (Figures 6 and 7).

Through these comparisons, it is observed that the lower the ∆h, ∆t, and ∆d values
are, the less data that are reduced, albeit the time series of the obtained wave events tend to
represent the benchmark time series more accurately than the other methods do, and vice
versa. As for the wind and wave chronology-based input reduction method, its produced
time series does not precisely follow the benchmark time series. This is probably due to
the complexity of nature that makes the assumptions adopted somewhat simplified, i.e.,
that the approximately constant wind corresponds over time to approximately constant
wave conditions. To be more specific, the observed offshore wave conditions can be a
combination of a variety of generating factors, e.g., wind coming from multiple directions
and swells of different age classes. Moreover, grouping consecutive swell data by one swell
event implies another simplification, since they might have different characteristics or come
from different weather systems.

The obtained process-based numerical model results acquired by using the bench-
mark simulation are then compared with the wave input reduction methods’ simulations
regarding the methods’ performance, meaning the accuracy of their results in combination
with the acceleration of the model run, namely, the reduction of the model run-time. A
significant advantage of the wave and wind or wave chronology-based wave input reduc-
tion techniques compared to those techniques that do not consider wave chronology is
that the first ones can estimate sea bottom and shoreline evolution as a function of time
(see Figure 10). This information could illuminate the path for the accurate forecasting of
coastal evolution and coastal monitoring.

The accuracies of the different techniques are evaluated through the Brier Skill Score
(BSS), which is calculated for each method (see Table 2) via Equation (10). All the simu-
lations achieved a score of “excellent” (Table 2), according to the classification proposed
by Sutherland et al. [45]. However, some distinct differences are identified, especially in
the Energy Flux Method’s results and those of the sixth simulation compared with those
of the reference simulation ones. These two simulations seem to underestimate the sea
bottom evolution to a greater extent than the other wave-input reduction methods do. This
is attributed to the fact that the Energy Flux Method does not consider wave chronology,
which is in contrast to the wind and wave- or wave chronology-based wave input reduction
methods. Moreover, the sixth simulation, i.e., the wave input reduction method using the
wave chronology with the largest maximum acceptable values of the absolute differences
of Hm0(t), Tp(t), and MWD(t) from their mean values Hm0, Tp, and MWD (∆h = 0.8 m,
∆t = 1.5 s, ∆d = 20 deg.), has the lowest BSS value, but this value is very close to the Energy
Flux Method’s BSS value. This is due to the relatively large values of ∆h, ∆t, and ∆d, which
can result in grouping of less similar sequential wave data to the same wave events than
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the techniques of lower values of those parameters. From a similar perspective, the most
accurate results are produced by the wave chronology based-wave input reduction method
with the lowest applied ∆h, ∆t, and ∆d values.
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The higher accuracy of a wave input reduction method’ results is usually combined
with a higher model run-time, and thus, less data reduction occurs. For example, the
sixth simulation presents less accurate results despite it having an excellent BSS value like
all the other tested methods do, but it achieved the most significant acceleration of the
simulation’s model run. Similarly, the fourth simulation has the longest run-time compared
to those of the other wave input reduction methods, and it achieved a run-time reduction
of 43%, but it presents the highest BSS value, which is significantly high and close to unity.

5. Conclusions

The simulation of the long-term (≥1 year) morphological evolution (bathymetry and
shoreline) of Mastichari beach is based on three wave climate schematization techniques
used to determine the temporal succession of wind-generated waves.

The first simulation is the benchmark one consisting of the full time series of 2021.
The second one is the average simulation based on the Energy Flux Method of five repe-
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titions of the twelve characteristic scenarios’ random sequences. Additionally, the third
simulation follows the wind and wave chronology-based input reduction method, whereas
the fourth, fifth, and sixth ones are the simulations based on the wave chronology-based
input reduction method using different values for the maximum absolute differences of
Hm0(t), Tp(t), and MWD(t) from their mean values Hm0, Tp, and MWD (∆h, ∆t, and ∆d
parameters, respectively).

In the second simulation, which uses the most common wave input reduction method
for the long-term coastal zone evolution study, the wave chronology is not considered in
detail, and sea bottom, coastline, and shoreline evolution are not predicted as a function of
time. Therefore, the results are obtained at the end of considerable time intervals, e.g., of
1 year. On the contrary, the two new methodologies presented in the present study preserve
the information about the wave chronology, extract time series of wave events of different
wave intensities and variable durations, and estimate the coastal evolution as a function
of time. The first wave input reduction method extracts sequences of wind-wave events
and swell events from wind and wave time series, and in the second one, the wave events
sequences are exclusively derived from the wave time series by applying three specific
wave conditions.

All the applied methods achieve a BSS rating of “excellent” in this case study. Nev-
ertheless, some distinct differences are identified concerning the methods’ performance.
Specifically, the Energy Flux Method’s results and those of the wave chronology-based
reduction techniques with the largest values of ∆h, ∆t, an d ∆d parameters (∆h = 0.8 m;
∆t = 1.5 s; ∆d = 20 deg.) are the less accurate ones. However, they present a higher acceler-
ation of the model run compared to the rest of the methods. The other three chronology-
based input reduction methods have satisfactory accuracy (BSS value≥ 0.85), but they have
significantly different model run-time reductions. Remarkably, the highest model run-time
reduction accomplished by these three methods is that of the wave chronology-based wave
input reduction method with the medium ∆h, ∆t, and ∆d values (∆h = 0.5 m; ∆t = 1.0 s;
∆d = 15 deg.), and thus, this the one most highly recommended one. The wind and wave
chronology-based wave input reduction method has slightly more accurate results than
the wave chronology based on the medium ∆h, ∆t, and ∆d values does, but the model
run is slower. Moreover, the most accurate method is the wave chronology-based wave
input reduction method with the lowest ∆h, ∆t, and ∆d values (∆h = 0.2 m; ∆t = 0.5 s;
∆d = 10 deg.). However, it does not achieve the most proper equilibrium between the need
to decrease the duration of the model run and to meet the accuracy limitation.

Therefore, the accuracy of the model results is a function of the ∆h, ∆t, and ∆d
values and the MORFAC value. Specifically, the ∆h, ∆t, and ∆d values determine the
durations of the derived events and the accuracy of the events’ data representation as per
the mean values.

It is noted that higher ∆h, ∆t, and ∆d values can produce higher MORFAC values in
the simulations than lower ∆h, ∆t, and ∆d values can, hence they can reduce the model
run-time to a greater degree. Nevertheless, the higher these parameters are, the lower the
accuracy is, and vice versa. Hence, the ∆h, ∆t, and ∆d values and the MORFAC value are
interrelated, affecting both the results’ accuracy and the model run time.

In short, the new wave chronology-based wave input reduction method can produce
a time series of wave events, hence it can predict coastal evolution as a function of time.
The performance of this novel technique is evaluated in the present study. It is shown that
it can achieve a model run-time reduction of about 70%, providing satisfactorily accurate
results at the same time. This research could be useful for coastal engineering studies
and for coastal zone monitoring, and it could be a reliable tool for coastal engineers and
marine scientists.
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