Spatial-Temporal Dynamics of Anthropogenic Nitrogen Inputs in the Rapid Developing Chaohu Lake Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Method for NANI Estimation
2.3. Data Collection
3. Results
3.1. Temporal Variations in the NANI
3.2. Spatial Variations in the NANI
3.3. Driving Force for Analysis of the NANI in the Whole Basin
3.4. Characteristics and Driving Factors of Nitrogen Input in Three Sub-Catchments
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Howarth, V.R.W. Nitrogen Limitation on Land and in the Sea: How Can It Occur? Biogeochemistry 1991, 13, 87–115. [Google Scholar]
- Galloway, J.N.; Schlesinger, W.H.; Levy, H.; Michaels, A.; Schnoor, J.L. Nitrogen Fixation: Anthropogenic Enhancement-Environmental Response. Glob. Biogeochem. Cycle. 1995, 9, 235–252. [Google Scholar] [CrossRef] [Green Version]
- Esculier, F.; Noe, J.L.; Barles, S.; Billen, G.; Creno, B.; Garnier, J.; Lesavre, J.; Petit, L.; Tabuchi, J.P. The biogeochemical imprint of human metabolism in Paris Megacity: A regionalized analysis of a water-agro-food system. J. Hydrol. 2019, 573, 1028–1045. [Google Scholar] [CrossRef] [Green Version]
- Feng, W.L.; Liu, Y.S.; Qu, L.L. Effect of land-centered urbanization on rural development: A regional analysis in China. Land Use Pol. 2019, 87, 4072. [Google Scholar] [CrossRef]
- Xie, C.; Huang, X.; Mu, H.Q.; Yin, W. Impacts of Land-Use Changes on the Lakes across the Yangtze Floodplain in China. Environ. Sci. Technol. 2017, 51, 3669–3677. [Google Scholar] [CrossRef]
- Viaroli, P.; Soana, E.; Pecora, S.; Laini, A.; Naldi, M.; Fano, E.A.; Nizzoli, D. Space and time variations of watershed N and P budgets and their relationships with reactive N and P loadings in a heavily impacted river basin (Po river, Northern Italy). Sci. Total Environ. 2018, 639, 1574–1587. [Google Scholar] [CrossRef]
- Zhang, W.S.; Swaney, D.P.; Li, X.Y.; Hong, B.; Howarth, R.W.; Ding, S.H. Anthropogenic point-source and non-point-source nitrogen inputs into Huai River basin and their impacts on riverine ammonia–nitrogen flux. Biogeosciences 2015, 12, 4275–4289. [Google Scholar] [CrossRef] [Green Version]
- Huang, J.C.; Lee, T.Y.; Lin, T.C.; Hein, T.; Lee, L.C.; Shih, Y.T.; Kao, S.J.; Shiah, F.K.; Lin, N.H. Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island, Taiwan. Biogeosciences 2016, 13, 1787–1800. [Google Scholar] [CrossRef] [Green Version]
- Gold, A.C.; Thompson, S.P.; Piehler, M.F. The Effects of Urbanization and Retention-Based Stormwater Management on Coastal Plain Stream Nutrient Export. Water Resour. Res. 2019, 55, 7027–7046. [Google Scholar] [CrossRef]
- Zhang, Y.; Ni, H.; Bai, L.; Cheng, Q.; Zhang, H.; Wang, S.; Xie, M.; Zhao, D.; Su, H. The short-term association between air pollution and childhood asthma hospital admissions in urban areas of Hefei City in China: A time-series study. Environ. Res. 2019, 169, 510–516. [Google Scholar] [CrossRef]
- Pang, A.P.; Jiang, S.Y.; Yuan, Z.W. An approach to identify the spatiotemporal patterns of nitrogen flows in food production and consumption systems within watersheds. Sci. Total Environ. 2018, 624, 1004–1012. [Google Scholar] [CrossRef]
- Li, Y.; Yen, H.; Lei, Q.; Qiu, W.; Luo, J.; Lindsey, S.; Qin, L.; Zhai, L.; Wang, H.; Wu, S.; et al. Impact of human activities on phosphorus flows on an early eutrophic plateau: A case study in Southwest China. Sci. Total Environ. 2020, 714, 136851. [Google Scholar] [CrossRef]
- Liu, J.G.; Yang, H.; Savenije, H.H.G. China’s move to higher-meat diet hits water security. Nature 2008, 454, 397. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gao, W.; Howarth, R.W.; Hong, B.; Swaney, D.P.; Guo, H.C. Estimating net anthropogenic nitrogen inputs (NANI) in the Lake Dianchi basin of China. Biogeosciences 2014, 11, 4577–4586. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Howarth, R.W.; Swaney, D.P.; Hong, B.G.; Guo, H.C. Enhanced N input to Lake Dianchi Basin from 1980 to 2010: Drivers and consequences. Sci. Total Environ. 2015, 505, 376–384. [Google Scholar] [CrossRef] [PubMed]
- Zhao, W.; Zou, Y. Hefei: An emerging city in inland China. Cities 2018, 77, 158–169. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Xiao, Q.; Li, X. Urban rivers are hotspots of riverine greenhouse gas (N(2)O, CH(4), CO(2)) emissions in the mixed-landscape chaohu lake basin. Water Res. 2021, 189, 116624. [Google Scholar] [CrossRef]
- Cheng, H.; Lin, C.; Wang, L.; Xiong, J.; Peng, L.; Zhu, C. The Influence of Different Forest Characteristics on Non-point Source Pollution: A Case Study at Chaohu Basin, China. Int. J. Environ. Res. Public Health 2020, 17, 1790. [Google Scholar] [CrossRef] [Green Version]
- Hong, B.; Swaney, D.P.; Mccrackin, M.; Svanbäck, A. Advances in NANI and NAPI accounting for the Baltic drainage basin: Spatial and temporal trends and relationships to watershed TN and TP fluxes. Biogeochemistry 2017, 133, 245–261. [Google Scholar] [CrossRef] [Green Version]
- Hayakawa, A.; Woli, K.P.; Shimizu, M.; Nomaru, K.; Kuramochi, K.; Hatano, R. Nitrogen budget and relationships with riverine nitrogen exports of a dairy cattle farming catchment in eastern Hokkaido, Japan. Soil Sci. Plant Nutr. 2009, 55, 800–819. [Google Scholar] [CrossRef] [Green Version]
- Swaney, D.P.; Hong, B.; Selvam, A.P.; Howarth, R.W.; Ramesh, R.; Purvaja, R. Net anthropogenic nitrogen inputs and nitrogen fluxes from Indian watersheds: An initial assessment. J. Mar. Syst. 2015, 141, 45–58. [Google Scholar] [CrossRef]
- Borbor-Cordova, M.J.; Boyer, E.W.; McDowell, W.H.; Hall, C.A. Nitrogen and phosphorus budgets for a tropical watershed impacted by agricultural land use: Guayas, Ecuador. Biogeochemistry 2006, 79, 135–161. [Google Scholar] [CrossRef]
- Howarth, R.W.; Billen, G.; Swaney, D.; Townsend, A.; Jaworski, N.; Lajtha, K.; Downing, J.A.; Elmgren, R.; Caraco, N.; Jordan, T.; et al. Regional nitrogen budgets and riverine N&P fluxes for the drainages to the North Atlantic Ocean: Natural and human influences. Biogeochemistry 1996, 35, 75–139. [Google Scholar]
- Howarth, R.W. Human acceleration of the nitrogen cycle: Drivers, consequences, and steps toward solutions. Water Sci. Technol. 2004, 49, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Han, H.J.; Allan, J.D.; Scavia, D. Influence of Climate and Human Activities on the Relationship between Watershed Nitrogen Input and River Export. Environ. Sci. Technol. 2009, 43, 1916–1922. [Google Scholar] [CrossRef]
- Galloway, J.N.; Townsend, A.R.; Erisman, J.W.; Bekunda, M.; Cai, Z.C.; Freney, J.R.; Martinelli, L.A.; Seitzinger, S.P.; Sutton, M.A. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science 2008, 320, 889–892. [Google Scholar] [CrossRef] [Green Version]
- Duce, R.A.; LaRoche, J.; Altieri, K.; Arrigo, K.R.; Baker, A.R.; Capone, D.G.; Cornell, S.; Dentener, F.; Galloway, J.; Ganeshram, R.S.; et al. Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science 2008, 320, 893–897. [Google Scholar] [CrossRef] [Green Version]
- Li, S.S.; Zhang, L.; Du, Y.; Liu, H.B.; Zhuang, Y.H.; Liu, S.Z. Evaluating Phosphorus Loss for Watershed Management: Integrating a Weighting Scheme of Watershed Heterogeneity into Export Coefficient Model. Environ. Model. Assess. 2016, 21, 657–668. [Google Scholar] [CrossRef]
- Jia, Y.; Wang, Q.; Zhu, J.; Chen, Z.; He, N.; Yu, G. A spatial and temporal dataset of atmospheric inorganic nitrogen wet deposition in China (1996–2015). China Sci. Data 2019, 4, 1. [Google Scholar]
- Gao, W.; Swaney, D.P.; Hong, B.; Howarth, R.W.; Liu, Y.; Guo, H. Evaluating anthropogenic N inputs to diverse lake basins: A case study of three Chinese lakes. Ambio 2015, 44, 635–646. [Google Scholar] [CrossRef] [Green Version]
- Fei, C.; Hou, L.; Min, L.; Zheng, Y.; Jiang, X. Net anthropogenic nitrogen inputs (NANI) into the Yangtze River basin and the relationship with riverine nitrogen export. J. Geophys. Res. Biogeosci. 2016, 121, 451–465. [Google Scholar]
- Han, Y.G.; Fan, Y.T.; Yang, P.L.; Wang, X.X.; Wang, Y.J.; Tian, J.X.; Xu, L.; Wang, C.Z. Net anthropogenic nitrogen inputs (NANI) index application in Mainland China. Geoderma 2014, 213, 87–94. [Google Scholar] [CrossRef]
- Zhang, W.; Li, X.; Swaney, D.P.; Du, X. Does food demand and rapid urbanization growth accelerate regional nitrogen inputs? J. Clean. Prod. 2016, 112, 1401–1409. [Google Scholar] [CrossRef]
- Min, P.; Lu, G. The influence of socio-economic development on water quality in the Dianchi Lake. Eng. Sci. 2010, 12, 117–122. [Google Scholar]
- Xinru, Z.; Sien, S.; Weixi, Y.; Fenzhu, H.; Xiufen, L.; Dali, W. Classification and Pollution Characteristic Analysis for Inflow Rivers of Chaohu Lake. J. Environ. Sci. 1992, 4, 112–113. [Google Scholar]
- Ho, K.C.; Teow, Y.H.; Sum, J.Y.; Ng, Z.J.; Mohammad, A.W. Water pathways through the ages: Integrated laundry wastewater treatment for pollution prevention. Sci. Total Environ. 2021, 760, 143966. [Google Scholar] [CrossRef]
- Xi, S.-S.; Zhou, C.-C.; Liu, G.-J.; Wu, L.; Wang, P.-H. Spatial and Temporal Distributions of Nitrogen and Phosphate in the Chaohu Lake. Environ. Sci. 2016, 37, 542–547. [Google Scholar]
- Ying, G.U.; Dongbao, S.U.N.; Qingsuo, W. Studies on Groundwater Nitrate Nitrogen Distribution and its Affecting Factors in Chao Lake Watershed. J. Agric. Sci. Technol. 2011, 13, 68–74. [Google Scholar]
- Yang, C.; Yang, P.; Geng, J.; Yin, H.; Chen, K. Sediment internal nutrient loading in the most polluted area of a shallow eutrophic lake (Lake Chaohu, China) and its contribution to lake eutrophication. Environ. Pollut. 2020, 262, 114292. [Google Scholar] [CrossRef]
- Zhong, F.; Wu, J.; Dai, Y.; Xiang, D.; Deng, Z.; Cheng, S. Responses of water quality and phytoplankton assemblages to remediation projects in two hypereutrophic tributaries of Chaohu Lake. J. Environ. Manag. 2019, 248, 109276. [Google Scholar] [CrossRef]
- Zhang, M.; Zhang, Y.; Yang, Z.; Wei, L.; Yang, W.; Chen, C.; Kong, F. Spatial and seasonal shifts in bloom-forming cyanobacteria in Lake Chaohu: Patterns and driving factors. Phycol. Res. 2015, 64, 44–55. [Google Scholar] [CrossRef]
- Cleveland, W.S. Robust Locally Weighted Regression and Smoothing Scatterplots. Am. Stat. Assoc. 1979, 74, 829–836. [Google Scholar] [CrossRef]
- Katz, D. Water use and economic growth: Reconsidering the Environmental Kuznets Curve relationship. J. Clean. Prod. 2015, 88, 205–213. [Google Scholar] [CrossRef]
- Mao, Y.; Zhang, H.; Tang, W.; Zhao, J.; Wang, Z.; Fan, A. Net anthropogenic nitrogen and phosphorus inputs in Pearl River Delta region (2008–2016). J. Environ. Manag. 2021, 282, 111952. [Google Scholar] [CrossRef]
- Lian, H.S.; Lei, Q.L.; Zhang, X.Y.; Haw, Y.; Wang, H.Y.; Zhai, L.M.; Liu, H.B.; Jr-Chuan, H.; Ren, T.Z.; Zhou, J.G.; et al. Effects of anthropogenic activities on long-term changes of nitrogen budget in a plain river network region: A case study in the Taihu Basin. Sci. Total Environ. 2018, 645, 1212–1220. [Google Scholar]
- Li, J.; Ma, R.; Xue, K.; Loiselle, S. Drivers to spatial and temporal dynamics of column integrated phytoplankton biomass in the shallow lake of Chaohu, China. Ecol. Indic. 2020, 109, 105812. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Xiao, Q.; Jiang, S.; Li, X. Surface nitrous oxide (N(2)O) concentrations and fluxes from different rivers draining contrasting landscapes: Spatio-temporal variability, controls, and implications based on IPCC emission factor. Environ. Pollut. 2020, 263, 114457. [Google Scholar] [CrossRef]
- Zhang, W.; Li, H.; Li, Y. Spatio-temporal dynamics of nitrogen and phosphorus input budgets in a global hotspot of anthropogenic inputs. Sci. Total Environ. 2019, 656, 1108–1120. [Google Scholar] [CrossRef]
- Jw, A.; Wza, B.; Stap, C.; Wy, A.; Wl, A. A multiscale analysis of urbanization effects on ecosystem services supply in an urban megaregion. Sci. Total Environ. 2019, 662, 824–833. [Google Scholar]
- Zou, L.; Liu, Y.; Wang, Y.; Hu, X. Assessment and analysis of agricultural non-point source pollution loads in China: 1978-2017. J. Environ. Manag. 2020, 263, 110–400. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, F.; Li, H.; Zhang, W.; Pang, J.; Li, Y. Spatial-Temporal Dynamics of Anthropogenic Nitrogen Inputs in the Rapid Developing Chaohu Lake Basin. Water 2023, 15, 414. https://doi.org/10.3390/w15030414
Zhang F, Li H, Zhang W, Pang J, Li Y. Spatial-Temporal Dynamics of Anthropogenic Nitrogen Inputs in the Rapid Developing Chaohu Lake Basin. Water. 2023; 15(3):414. https://doi.org/10.3390/w15030414
Chicago/Turabian StyleZhang, Fuxiang, Hengpeng Li, Wangshou Zhang, Jiaping Pang, and Ying Li. 2023. "Spatial-Temporal Dynamics of Anthropogenic Nitrogen Inputs in the Rapid Developing Chaohu Lake Basin" Water 15, no. 3: 414. https://doi.org/10.3390/w15030414
APA StyleZhang, F., Li, H., Zhang, W., Pang, J., & Li, Y. (2023). Spatial-Temporal Dynamics of Anthropogenic Nitrogen Inputs in the Rapid Developing Chaohu Lake Basin. Water, 15(3), 414. https://doi.org/10.3390/w15030414