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Abstract: In this study, satellite-based measures of surface energy balance and the mapping evapo-
transpiration at high resolution with internalized calibration (METRIC) from Landsat imagery were
used to estimate the spatiotemporal distribution of actual evapotranspiration (ETa) in northern Thai-
land, constituting a procedure that has rarely been performed in southeast Asia. Subsequently, we
compared the ETa obtained from METRIC with that calculated using the FAO-56 dual-crop coefficient
method via the SIMDualKc software and found a strong correlation. An assessment of the accuracy
of all the sample plots revealed the R2, Root-Mean-Square Error (RMSE), and mean absolute error
(MAE) values to be 0.830, 0.730, and 0.575 mm d−1, respectively. Differences in the cumulative ETa

values derived from SIMDualKc and METRIC ranged in magnitude from 0.93–3.57% for rice and
3.08–7.99% for longan. The ETa values for forestland and waterbodies were higher than those for
agricultural areas and areas with other forms of land use. The spatiotemporal distribution of the
seasonal ETa during the dry season was consistent with the climate, vegetation, and anthropogenic
activity. Thus, our results indicate that METRIC is a reliable tool for estimating ETa for water resource
management under different environmental conditions and improving water use efficiency over
large areas.

Keywords: METRIC; evapotranspiration; surface energy balance; Landsat; water balance

1. Introduction

Southeast Asia is one of the world’s most vital agricultural regions, accounting for
15% of food production in Asia and 7.7% globally [1]. Thailand, located in the south-
eastern region of the continent of Asia, covers an area of 513,120 km2, with 43% of the
country devoted to agricultural land [2]. Thailand is the foremost longan-producing country
globally and produced approximately 0.98 million metric tons of longan from 2015–2017 [3].

At present, many parts of the world are affected by water scarcity, including Thailand.
Higher food demands and population growth have directly affected water use in the
agricultural and other sectors. Additionally, climate change has increased water scarcity
and drought, with potential impacts including increased evapotranspiration and decreased
water availability [4]. Consequently, the demand for water in agriculture and for irrigation
water use have increased.

Longan orchards occupy a considerable portion of the agricultural land area in north-
ern Thailand. Longan trees are susceptible to drought during the flowering and early fruit
development stages, which generally occur during the dry season from the end of October
to mid-May [5]. Premium fruit can only be produced under intensive water and nutrient
management. In addition to longan, rice is commonly cultivated in this area, and also
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requires a large amount of water during the dry season, especially in flooded paddies. The
Upper Ping River Basin, which is one of the headwaters of the Chao Phraya River Basin, is
located in northern Thailand. To understand crop water consumption over large areas and
achieve effective water resource management, it is necessary to estimate the spatiotemporal
distribution of actual evapotranspiration (ETa) in agricultural areas, especially in longan
orchards and paddy fields.

Evapotranspiration (ET) is an important component of water balance associated with
the hydrological cycle and biological processes [6] and represents the total water loss from
the Earth’s surface, including water evaporated from the soil surface and that has transpired
through plants. Therefore, the accurate estimation of the actual ET (ETa) rate is crucial for
understanding changes in water availability and sustainably managing water resources.

According to Allen et al. [7], ET data can be obtained using various measurement tech-
niques, such as lysimeters, the Bowen ratio, the eddy covariance, sap flow, root zone soil
water balance, and even satellite-based remote sensing, as well as direct modelling. Among
these techniques, direct measurement techniques necessitate extensive experimental care
and are susceptible to biases based on reported results [7]. Satellite imagery-based tech-
niques can be used to estimate ET using the energy balance and can potentially be applied
over large areas to identify regions characterised by ET reductions due to water stress [7].
The surface energy balance algorithm for land (SEBAL) [8] and mapping evapotranspira-
tion at high resolution with internalized calibration (METRIC) [9] models are two widely
used satellite-based surface energy balance techniques in which thermal infrared sensors
are utilised to estimate ETa. The METRIC model, which is a variant of the image-processing
tool SEBAL, is used to estimate ETa from the energy balance residual at the Earth’s surface.
Moreover, METRIC has been enhanced to provide better integration with ground weather
station data used to compute reference ET and has been applied to satellite images obtained
using thermal infrared sensors such as the moderate resolution imaging spectroradiometer
(MODIS) and Landsat [10]. Remote-sensing-based energy balance models have major
limitations, such as time gaps, because remote-sensing images can only be obtained at
a specific location on a periodic basis. Therefore, the effects of evaporation caused by
precipitation events that occur between these time gaps may be overlooked [7]. Another
technique that uses remote-sensing image data involves satellite-based vegetation indices
(VIs). In this method, VIs obtained from image data are used to estimate the crop coefficient
(Kc) and ‘basal’ crop coefficient (Kcb) by determining the relationship between the VI and
these coefficients. A typical VI is the normalised difference vegetation index (NDVI). The
‘basal’ Kcb condition is a condition under which the soil surface is dry enough to reduce
evaporation from the soil surface to relatively low levels compared with transpiration.
However, transpiration continues to occur [7]. A reliable soil water balance model would
be able to estimate soil water behaviour over time, thereby helping to overcome the majority
of the difficulties in estimating ET from observations of soil water via direct modelling [7].
The advantages and disadvantages of these ET measurement techniques have previously
been discussed by Allen et al. [7].

In Thailand, several approaches have been used to estimate ET with satellite-based
remote sensing at spatial resolutions from regional to global scales. Zheng et al. [11]
estimated ET with satellite-based Earth observation datasets as the primary inputs to derive
daily ET in north-eastern Thailand. Sriwongsitanon et al. [12] validated ET values from
seven global remote-sensing products used for water resource management in Thailand.
Furthermore, other researchers have applied satellite-based surface energy balance using
the SEBAL model to estimate ETa from MODIS and Landsat-7 images in the Chao Phraya
River Basin [13] and from Landsat-5 images in the Lam Ta Kong Basin [14]. However, to
date, no studies using high-resolution satellite-based images and employing the METRIC
model, which can provide better integration with data from ground weather stations than
SEBAL for ETa estimation at the field scale, have been conducted in Thailand. Therefore, it
is of interest to study the accuracy of ETa estimation using METRIC and Landsat-8 images
in this region.
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To our knowledge, few researchers have studied the accuracy of satellite-based ETa
values obtained using the soil water balance method. However, Paço et al. [15] analysed
and compared the ET and crop coefficients of olive orchards obtained using the SIMDualKc
and METRIC algorithms. They reported that the ETa values obtained from the SIMDualKc
and METRIC algorithms were similar, and that the crop coefficients derived from each
model showed comparable patterns throughout the year. Thus, although the SIMDualKc
and METRIC algorithms represent different approaches, their results appear to be compa-
rable and complementary with respect to spatiotemporal scale. Furthermore, Tasumi [16]
compared the ETa value obtained from METRIC to that estimated independently using the
FAO-56 single-crop approach. However, ETa estimation based on surface energy balance
using the METRIC model with a 30 m spatial resolution has rarely been performed in
Southeast Asia, and the dual-crop coefficient method and SIMDualKc model have seldom
been utilised for the evaluation of ETa, especially in Thailand.

Herein, we focus on the estimation of ET over a large area for water management
purposes using two approaches. First, we combine the METRIC algorithm and NDVI
to overcome the time gap limitation and use Landsat images, which currently represent
the highest resolution (a spatial resolution of 30 m) over a large area with a revisit time
of 16 d. Thermal Landsat imagery can be used to evaluate vegetation phenology in the
growing period and observe changes in the water stress of plants [17]. In the second
approach, we apply direct soil water balance modelling using SIMDualKc. The SIMDualKc
model employs the FAO-56 dual-crop coefficient method to estimate the crop ET. Then, we
compare the results obtained with the two approaches.

The objectives of this study are as follows: (1) to estimate ETa during each crop growth
period using the METRIC model and Landsat-8 satellite data; (2) to evaluate the ETa
obtained from the METRIC model relative to the ETa calculated from the FAO-56 dual-crop
coefficient method; and (3) to study the spatiotemporal distribution of the ETa for various
land-use types in order to enhance water resource management in northern Thailand.

The ETa obtained from the satellite-based surface energy balance data derived from
Landsat imagery can be applied in water management schemes based on appropriate
technology at field to regional scales, thereby covering a large area. These data are beneficial
with respect to monitoring crop water use and stress. Furthermore, ETa estimates based
on the METRIC model can be used for water resource management planning and the
localisation of water to meet irrigation water requirements in the dry season, especially in
cultivation areas on both sides of the Ping River in the Chiang Mai and Lamphun provinces.
The accurate estimation of the spatiotemporal distribution of ETa in the Upper Ping Basin
will allow for the establishment of better irrigation strategies, enhanced water use efficiency,
and increased crop production yields.

2. Materials and Methods
2.1. Study Area

The research area was divided into two sections: the study area, which was the entire
area used to study the spatiotemporal distribution of the ETa across various land-use types,
and the testing area, which was used to compare the ETa obtained from the METRIC model
and the FAO-56 dual-crop coefficient method (Figure 1).

The study area (~12,900 km2 located in the plains of the upper northern region of
Thailand along the Ping River (Figure 1b)), includes a variety of land utilisation areas, espe-
cially agricultural zones in irrigated areas, such as government, private, and community
irrigation systems, and non-irrigated agricultural areas in the Chiang Mai and Lamphun
provinces. Most of the agricultural portions consist of longan orchards and paddy fields.
The general climate of this area is affected by southwest and northeast monsoons, and
the annual climate is influenced by depression from the South China Sea between July
and September, causing heavy rain from May to October. The mean annual temperature
is 26.1 ◦C. The highest and lowest temperatures are 30 ◦C (in April) and 21.3 ◦C (in De-
cember), respectively. The average annual precipitation is 993.2 mm [18]. Types of land
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use in the study area include forestland, orchards, urban and built-up land, paddy fields,
miscellaneous land, field crops, perennial trees, waterbodies, and horticulture, accounting
for 65.88%, 10.20%, 7.02%, 6.95%, 4.49%, 2.61%, 1.10%, 1.08%, and 0.67% of the entire
area, respectively.
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Figure 1. Study and testing areas: (a) general location of the study area in Thailand; (b) location of the
study areas in the Chiang Mai and Lamphun provinces, which are situated in the plains of the upper
northern region of Thailand along the Ping River; (c) testing area, which forms part of the Muang
Luang Irrigation Project located in the Chom Thong District, Chiang Mai Province, downstream of
the Muang Luang Weir.

To evaluate the ETa obtained from the METRIC model, the FAO-56 dual-crop coeffi-
cient method was used. The testing area used for ETa evaluation is part of the Muang Luang
Irrigation Project located in the Chom Thong District, Chiang Mai Province (Figure 1c). The
Mueang Luang Weir is located upstream of this area. Paddy fields and longan orchards
cover ~ 68% and 26% of the total area, respectively, and the Tae Sam Nga diversion weir,
which splits into three irrigation canals, occupies the northern boundary. The testing area
covers 2.12 km2 and is located between the Na Sai and Na Ngu ditches [19].

2.2. Data
2.2.1. Satellite Imagery

In this study, Landsat-8 Operational Land Imager (OLI) and Thermal Infrared Sensor
(TIRS) images with a 30 m spatial resolution were collected from level-1 products with
terrain precision correction (L1TP) using U.S. Geological Survey (USGS) Earth Explorer. In
total, 41 Landsat-8 OLI/TIRS images (Path 131/Row 47) were collected under cloud-free
conditions throughout the crop growth period in the dry season from October 2017 to May
2020 as shown in Table 1 (12, 14, and 15 images for 2018, 2019, and 2020, respectively).
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Table 1. Landsat-8 OLI/TIRS images (Path 131/Row 47) for the study area.

Dry Season in Year 2018 Dry Season in Year 2019 Dry Season in Year 2020

Date
Day of

Year
(DOY)

Time of
Acquisition
(hh:mm:ss)

[UTC+7]

Date
Day of

Year
(DOY)

Time of
Acquisition
(hh:mm:ss)

[UTC+7]

Date
Day of

Year
(DOY)

Time of
Acquisition
(hh:mm:ss)

[UTC+7]

22 Oct 2017 295 10:49:14 9 Oct 2018 282 10:48:44 12 Oct 2019 285 10:49:19
9 Dec 2017 343 10:49:04 25 Oct 2018 298 10:48:49 28 Oct 2019 301 10:49:19

25 Dec 2017 359 10:49:07 26 Nov 2018 330 10:48:51 13 Nov 2019 317 10:49:17
10 Jan 2018 10 10:49:01 28 Dec 2018 362 10:48:48 29 Nov 2019 333 10:49:15
26 Jan 2018 26 10:48:52 13 Jan 2019 13 10:48:46 15 Dec 2019 349 10:49:13
11 Feb 2018 42 10:48:45 29 Jan 2019 29 10:48:42 31 Dec 2019 365 10:49:09
27 Feb 2018 58 10:48:39 14 Feb 2019 45 10:48:40 16 Jan 2020 16 10:49:06
15 Mar 2018 74 10:48:30 2 Mar 2019 61 10:48:36 1 Feb 2020 32 10:49:01
31 Mar 2018 90 10:48:23 18 Mar 2019 77 10:48:31 17 Feb 2020 48 10:48:57
16 Apr 2018 106 10:48:14 3 Apr 2019 93 10:48:28 4 Mar 2020 64 10:48:52
18 May 2018 138 10:47:54 19 Apr 2019 109 10:48:22 20 Mar 2020 80 10:48:45
3 Jun 2018 154 10:47:43 5 May 2019 125 10:48:23 5 Apr 2020 96 10:48:35

21 May 2019 141 10:48:33 21 Apr 2020 112 10:48:29
6 Jun 2019 157 10:48:42 7 May 2020 128 10:48:20

23 May 2020 144 10:48:22

2.2.2. Meteorological Data

Meteorological data for this study were obtained from the closest weather station in
order to compute the standardised alfalfa reference ET equation (ETr) and provide the
inputs required for METRIC computations. The weather station records meteorological
data every 10 min, including precipitation, air temperature, wind speed, relative humidity,
and atmospheric pressure. Data were collected at the Lamphun station using the Automatic
Weather System (AWS) of the Thailand Meteorological Department. The only climate data
not available at this station were solar radiation data. Therefore, solar radiation data
were derived from the air temperature difference using the Hargreaves–Samani radiation
formula, which is an option available for calculating solar radiation on the REF-ET software.
These meteorological data, except for precipitation, were also used to compute the daily
standardised grass reference ET (ETo) for the Muang Luang testing area. Precipitation
data for this area were collected at Chom Thong station. The ETo and precipitation data
were then used as inputs for SIMDualKc. Precipitation data were obtained from different
stations. For the study area (red square in Figure 1a), precipitation data from Lamphun
station were chosen for METRIC computations. For the testing area, precipitation data
from Chom Thong station were used.

2.2.3. Geographic Information System (GIS) Data

The GIS data required for this study consisted of land-use, irrigated area, and digital
elevation model (DEM) data. Land-use data were obtained from the Land Development
Department, whereas data regarding the irrigated area were obtained from the Royal
Irrigation Department. For the DEM, Shuttle Radar Topography Mission (SRTM) data with
30 m spatial resolution were used, which were obtained from the USGS Earth Resources
Observation and Science (EROS) Centre. The DEM was then used to calculate the slope and
aspect of the area. The slope and aspect were later combined with the latitude, declination,
hour angle, and solar incidence to obtain solar angles, which were then utilised to calculate
the incoming shortwave radiation (RS↓) and net radiation (Rn), respectively.

2.2.4. Soil Sampling

Soil samples were taken from five plots to obtain soil texture information. The main
soil type in most plots (A2_Rice, A5_Rice, and A6_Longan) was sandy loam, while the soil
types of the A1_Rice and A4_Longan plots were loam and sandy clay loam, respectively.
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These soil properties were necessary for the soil water balance calculation and estimation
of ETa using the FAO-56 dual-crop coefficient method. The sampling locations and soil
properties are summarised in Table 2.

Table 2. Summary of soil properties for each plot in testing area.

Plot Name Soil Texture Sand (%) Silt (%) Clay (%) Rock (%) Location

A1_Rice Loam 49.3 33.7 17 7.87 18◦24′48.1” N, 98◦40′44.1” E
A2_Rice Sandy Loam 64 19 17 18.24 18◦24′16.2” N, 98◦41′01.1” E

A4_Longan Sandy Clay Loam 45.8 25 29.2 15.4 18◦23′48.2” N, 98◦41′24.3” E
A5_Rice Sandy Loam 64 22.8 13.2 0.14 18◦23′51.4” N, 98◦41′11.0” E

A6_Longan Sandy Loam 67.9 20.6 11.5 0.77 18◦23′17.4” N, 98◦41′05.4” E

2.2.5. Water Use and Water Measurement in the Testing Area

According to the data obtained by Supriyasilp and Pongput [20], water from various
sources is used in the dry season in the testing area, including rainfall, irrigation water
supplied from the upstream Muang Luang Irrigation Scheme, irrigation water supplied
from two pumping stations on the Ping River, and ponds. The proportions of the total
amounts of water derived from each source are 11%, 15%, 57%, 16%, and 1%, respectively.
The flow data observed in the dry season were measured from 21 March to 15 May 2019. The
agricultural water supply for this testing area is jointly managed by the water management
committee and farmers.

Descriptions and sources of the datasets used in this study are summarised in Table 3.

Table 3. Datasets used in this study.

Dataset Description Source

Satellite imagery

Landsat-8 Operational Land Imager (OLI) and
Thermal Infrared Sensor (TIRS) images with 30 m

spatial resolution were collected from level-1
products with terrain precision correction (L1TP)

USGS Earth Explorer
(https://earthexplorer.usgs.gov/)

(accessed on 3 January 2013)

Meteorological data

The Automatic Weather System (AWS) from the
Lamphun station records meteorological data every
10 min, including the precipitation, air temperature,

wind speed, relative humidity, and atmospheric
pressure. In addition, precipitation data were

collected at the Chom Thong station.

Thailand Meteorological Department

Digital Elevation Model (DEM) Shuttle Radar Topography Mission (SRTM) data
with 30 m spatial resolution

USGS Earth Resources Observation
and Science (EROS) Centre

Land Use GIS data regarding land-use classification at 1:25,000
scale

Land Development Department,
Thailand

Irrigated Area GIS data of irrigated area at 1:50,000 scale Royal Irrigation Department,
Thailand

Soil Sampling Soil properties for each plot in testing area Soil samples were taken from sample
plots in testing area

Water Use and Water
Measurement

Water supplied from various sources and the flow
data observed in the dry season were measured from

21 March to 15 May 2019 in testing area

According to Supriyasilp and
Pongput [20]

2.3. Software

Four software products were used in this study. Their capabilities are presented in
Table 4.

https://earthexplorer.usgs.gov/
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Table 4. Software used in this study.

Software Capabilities

ArcGIS 10.3.1 Image processing, spatial analysis, spatial statistics, mapping, visualisation, and exploration for
estimation of satellite-based ETa.

SIMDualKc Estimation of ETa using the FAO-56 dual-crop coefficient method.
REF-ET Calculation of the reference ET.

DATimeS Fill data gaps and generate the time series of daily ETrF and NDVI image using the cubic spline
interpolation method.

2.4. Overview of Methods

An outline of the methods, procedures, and subsequent workflow used in this study
is presented in Figure 2.
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Figure 2. Frameworks and workflow for estimating actual evapotranspiration (ETa) during each crop
growth period using the METRIC model and Landsat-8 satellite data; evaluating the ETa obtained
from the METRIC model relative to the ETa calculated using the FAO-56 dual-crop coefficient method;
and studying the spatiotemporal distribution of the ETa for various land-use types to improve water
resource management in northern Thailand.

2.4.1. METRIC Model

The METRIC model was used to estimate the ETa from remote-sensing data including
satellite images at the time of image acquisition. The resulting ETa value is called instan-
taneous ET. As part of the surface energy balance method, energy consumed by the ET
process was calculated as the residual from the surface energy balance equation [9]:

LE = Rn − G− H, (1)
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where LE is the latent heat flux consumed by ET (W·m−2), Rn is the net radiation (W·m−2),
G is the soil heat flux conducted into the ground (W·m−2), and H is the sensible heat flux
transferred to the atmosphere (W·m−2).

The parameter Rn was calculated from the surface reflectance and temperature at the
time of satellite image acquisition by summing incoming and outgoing shortwave and
longwave radiation, including solar and thermal radiation [9]:

Rn = RS↓ − αRS↓ + RL↓ − RL↑ − (1− εo)RL↓ (2)

where Rn is the net radiation (W·m−2), RS↓ is the incoming shortwave radiation (W·m−2),
α is the surface albedo (dimensionless), RL↓ is the incoming longwave radiation (W·m−2),
RL↑ is the outgoing longwave radiation (W·m−2), and εo is the surface thermal emissivity
(dimensionless).

Soil heat flux (G) is the magnitude of the soil energy stored or convected into the
ground and can be computed as follows [21]:

G
Rn

= 0.05 + 0.18e−0.521LAI , (3)

LAI ≥ 0.5;

G
Rn

=
180 (Ts − 273.16)

Rn + 0.084
, (4)

LAI < 0.5,

where LAI is the leaf area index (dimensionless) and Ts is the land surface temperature
(Kelvin).

Sensible heat flux transferred to the atmosphere (H) was calculated from the aero-
dynamic function-based heat transfer. The METRIC model was estimated based on a
calibration using inverse modelling under extreme conditions (CIMEC) [22]. This method
involves the selection of pixels with near-extreme conditions (hot and cold anchor pixels)
on whose basis ETa can be estimated and assigned. The sensible heat flux was calculated
as follows:

H = ρairCp
dT
rah

(5)

where ρair is the air density (kg·m−3), Cp is the specific heat of air under constant pressure
(1004 ·J·kg−1·K−1), dT is the near-surface temperature difference between the two near-
surface heights z1 (0.1 m) and z2 (2 m; Kelvin), and rah is the aerodynamic resistance to heat
transport (s·m−1).

Note that dT was solved using linear regression between dT and Ts of hot and cold
anchor pixels selected from different areas under two extreme conditions. Cold and hot
conditions were selected for the full vegetation canopy area and empty agricultural fields
without vegetation cover, respectively.

Based on the calculation of the LE process as the residual from the surface energy
balance equation, LE was calculated as the ETa during the time of satellite image acquisition:

ETinst = 3600× LE
λρw

, (6)

where ETinst is the instantaneous ETa at the moment of satellite image acquisition (mm·h−1),
3600 is the factor for the conversion from seconds to hours, ρw is the density of water
(100 kg·m−3), and λ is the latent heat of vaporisation (J·kg−1), which is calculated as
λ = [2.51− 0.00236 (Ts − 273.15)]× 106.

In this step, the daily ETa (ET24) of each pixel was calculated as follows:

ET24 =
ETinst
ETr

∗ ETr24, (7)
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where ETinst is the instantaneous ETa at the time of the satellite image acquisition (mm·h−1);
ETr is the alfalfa reference ET at the moment of satellite image acquisition, which is calcu-
lated at the weather station (mm·h−1); ETr24 is the daily alfalfa reference ET (mm·day−1);
and ET24 is the daily ETa (mm·day−1).

The ETinst/ETr ratio is the reference ET fraction (ETrF) and is the same as the well-
known Kc [9].

The ETrF at the date of the image acquisition was interpolated with the cubic spline
interpolation method to obtain the time series of the daily ETrF. Subsequently, the daily
ETa (ET24) was calculated by multiplying the daily ETrF by ETr.

The cumulative ETa can be calculated for any period, such as a month or season, using
the time series of the daily ETa (ET24) and the following equation:

ETperiod =
n

∑
i=m

ETrFi × ETr24i, (8)

where ETperiod is the cumulative ETa for the period starting on day m and ending on day n,
ETrFi is the reference evapotranspiration fraction for day i, and ETr24i is the daily ETa for
day i.

2.4.2. Reference Evapotranspiration Calculation

The standardised Penman–Monteith equation for ETref has been proposed by the
American Society of Civil Engineers (ASCE) for both the grass reference (ETo) and alfalfa
reference (ETr) according to the format adopted in FAO-56 [6,17]

ETre f =
0.408∆(Rn − G) + γ Cn

(T+273)u2(es − ea)

∆ + γ(1 + Cdu2)
, (9)

where ETref is the reference ET (mm·day−1 or mm·h−1), Rn is the net radiation (MJ m−2 d−1

or MJ m−2 h−1), G is the soil heat flux transferred to the ground (MJ m−2 d−1 or MJ m−2 h−1),
T is the mean daily or hourly air temperature (◦C), u2 is the mean daily or hourly wind
speed at a height of 2 m (m·s−1), es is the saturation vapour pressure (kPa), ea is the actual
vapour pressure (kPa), ∆ is the slope vapour pressure curve (kPa ◦C−1), γ is the psychro-
metric constant (kPa ◦C−1), and Cn and Cd are coefficients that change depending on the
calculation time step (hourly or daily) and reference vegetation type (ETo for grass or ETr
for alfalfa).

2.4.3. Dual-Crop Coefficient Approach

The dual-crop coefficient approach is based on the standard method for estimating
the crop ET (ETc), which is calculated from ETo and the crop coefficient (Kc). The FAO-
56 dual-crop coefficient approach is based on crop transpiration and soil evaporation
components [6,23]. The basal crop coefficient (Kcb) and soil evaporation coefficient (Ke) are
considered in the dual-crop coefficient approach. In this study, ETc values for paddy rice
and longan in the testing area were determined using SIMDualKc software. SIMDualKc is a
soil water balance model that estimates ETc using the dual-crop coefficient approach [15,24].
Consequently, the ETc value was calculated as follows:

ETc = (Ks ∗ Kcb + Ke)× ETo, (10)

where Kcb is the basal coefficient, Ke is the soil evaporation coefficient, and Ks is the water
stress coefficient. Ks ranges from 0 and 1 depending on the soil water content in the root
zone. The Kcb of rice varies between 0.15 and 1.15, as suggested by Allen et al. [6] and
Pereira et al. [23], and the Kcb of fruit trees varies between 0.75–1.15, as suggested by Allen
et al. [6]. Date of each growing stage was obtained from the crop phenology identified by
the NDVI. For the computation of Ke, soil data and soil evaporable layer data are required
to compute the soil water balance in the root zone and the surface soil layer. As suggested
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by Allen et al. [6], the SIMDualKc model provides values for the total available soil water,
soil water content at field capacity, wilting point, and bulk density based on soil texture to
assist users in selecting appropriate values for these parameters.

2.4.4. Estimation of Actual Evapotranspiration Based on the METRIC Model
Calculation of the Reference ET

In this step, weather data from the AWS at the Lamphun station were quality-assessed
and quality-controlled before being used for the ET calculation. The weather data were then
used as input for the REF-ET software to obtain the ETref equation at the time of satellite
image acquisition, with hourly (for ETr) and daily (for ETr and ETo) time steps.

METRIC Model Processing

The METRIC model was applied to estimate the ETa from Landsat-8 images taken
between October 2017 and May 2020, which covers the growth period in the dry season.
Cloud masking was the first process applied to the satellite images in each scene. Hot
pixels, representing empty agricultural fields without vegetation cover, and cold pixels,
representing areas with full vegetation canopy, were selected for the study area. METRIC
corresponds to the satellite-based surface energy balance. Thus, the latent heat flux (LE)
was computed by subtracting the soil heat flux (G) and sensible heat flux (H) from the net
radiation (Rn). The LE was computed for each pixel at the instant the satellite overpassed
the monitored location and converted to ETinst [9]. The ETrF was then calculated as the ratio
of ETinst to ETr at the time the satellite overpassed the monitored location and assumed to
be equivalent to the 24 h average. Finally, ET24 was calculated by multiplying ETrF by ETr
using the ETref equation.

Filling Image Gaps and Interpolation of the Daily Image

ETrF and NDVI were used to fill data gaps due to cloud cover, provide missing values,
and generate the daily ETrF image between two dates of satellite image captures using the
cubic spline interpolation method. Time series of daily ETrF images was used to calculate
the daily ETa, and the NDVI was applied to extract crop phenology data and identify crop
development stages, including initial, developing, middle, and late stages.

Spatiotemporal Distribution of ETa for Various Land Use Types

Spatiotemporal distributions of ETa for various land-use types were generated by
multiplying the daily image of ETrF by ETr for each day. The output was ETa, which was
then accumulated over the period from October to May, covering the dry seasons in 2018,
2019, and 2020.

2.4.5. Evaluation of the Actual Evapotranspiration

In this study, the Muang Luang Irrigation Project was used as the field site for the
testing area. Within this testing area, soil samples were collected, and soil properties were
used as inputs for the SIMDualKc software, in addition to climate, crop, and irrigation data.
For the crop data, each crop’s planting date and crop growth period were required. This
information was obtained from the crop phenology identified by the NDVI. The ETa values
obtained from METRIC and SIMDualKc were used for the evaluation. Finally, the accuracy
of the ETa values obtained from the METRIC and FAO-56 dual-crop coefficient methods was
assessed using statistical analysis methods and the following quality measures: coefficient
of determination (R2), Root-Mean-Square Error (RMSE), and Mean Absolute Error (MAE).

3. Results and Discussion
3.1. Evaluation of the Actual Evapotranspiration
3.1.1. Analysis of the Crop Growth Period in the Testing Area during the Dry Season

Analysis of Landsat-8 satellite imagery collected between 1 November 2018 and 31
May 2019 showed that areas in which rice was cultivated accounted for 0.53 km2 of the
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testing area during this period. The rice-planting periods in each area differed due to the
joint allocation of water. Farmers generally started planting rice in the southern part of
the study area, followed by the northern part, with the period from the beginning of rice
cultivation to harvest being ~120 days in length. The amplitudes of the NDVI values of
each sampling plot were analysed during the growth period in the testing area. Typically,
the peak NDVI occurs in the middle of the rice season. Thus, the start date of rice planting
can be specified by counting back ~90 days from the date with the highest NDVI value, as
shown in the NDVI graph of each area (Figure 3). In addition, the NDVI curve corresponds
to Kcb, which was used at each stage of plant growth; this indicated that Kcb was the lowest
in the initial stage, increased in the development stage, and peaked in the mid-season stage.
The NDVI did not vary significantly for areas covered with longan as a perennial tree,
with values ranging from ~0.4–0.6. Supriyasilp et al. [19] interviewed longan farmers and
reported that the flowering period in this area ranges from February to May (dry season).
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The farmers working on the land in the testing area first started cultivating rice in
the A5_Rice sample plot, followed by the plots A2_Rice and A1_Rice (Figure 3). The
highest NDVI values for these plots were observed on 26 November 2018, 13 January
2019, and 19 April 2019, respectively. Using these data, we identified the crops’ planting
dates and the crop growth periods of each sample plot. The Kcb and specific date of each
plant growth stage were used as inputs for the crop section of the SIMDualKc. For the
Kcb of rice, the values recommended by Allen et al. [6] and Pereira et al. [23] were used.
A recommended value for the Kcb of longan was not available. Therefore, the Kcb value
of fruit trees recommended by Allen et al. [6] was used. The SIMDualKc model was then
utilised to estimate an ETa value for comparison with the ETa output of the METRIC model
based on Landsat-8 satellite data.

3.1.2. Comparison of Actual Evapotranspiration Obtained from the METRIC Model and
FAO-56 Method

The spatial distribution of the daily ETa was obtained from the METRIC model based
on Landsat-8 images with a resolution of 30 m in the testing area covering the dry season
(1 October 2018 to 31 May 2019; Figure 4). The daily ETa exhibited a significant spatial
distribution and temporal changes across various land-use types and sample plots. The
spatial distribution and temporal changes in ETa during the dry season showed that the
ETa started to increase in February and reached its peak in April, corresponding to the
crop growth period in irrigated agricultural areas. The spatial distribution and temporal
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changes in the ETr showed the same patterns as those of the ETa. Figure 4 shows the ETa
estimate obtained with METRIC, indicating that the ETa was highest on 19 April 2019.
Further, an average ETa > 7 mm/day was observed in the A1 and A2 areas when rice was
in its mid-season stage, and in the A4 and A6 areas, which contain longan orchards.
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Figure 4. Daily actual evapotranspiration (ETa) estimates for the testing area in the Chom Thong
District, Chiang Mai Province, downstream of the Muang Luang Weir, Thailand, based on the
mapping evapotranspiration at high resolution with internalized calibration (METRIC) model.

The spatiotemporal distribution obtained for the testing area is consistent with that
reported by Supriyasilp et al. [19]: longan is mainly planted in A4 and A6. The amount of
water required by longan trees is very high during March and April, i.e., the middle of the
longan season. Farmers near the Ping River pump water from the river and directly supply
it to the longan area.
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Five sample plots in the testing area, including rice and longan plots, were used to
evaluate the ETa values obtained with the METRIC model relative to those obtained with
the FAO-56 dual-crop coefficient method. Correlations between the daily ETa from METRIC
and SIMDualKc for each crop and all sample plots at the satellite acquisition date were
evaluated (Figure 5). During the dry season in 2019, 34 observations (N = 34) were used
to analyse the correlation between the ETa from the METRIC model and that obtained
from the SIMDualKc model (Figure 5). The data plots of the linear regression indicate that
the ETa estimates obtained from the METRIC model were strongly correlated with those
obtained from SIMDualKc. The ETa values based on METRIC and SIMDualKc were in good
agreement. For the rice sample plots, the R2, RMSE, and MAE values were 0.827, 0.827, and
0.711 mm d−1, respectively. For the longan sample plots, the R2, RMSE, and MAE values
were 0.847, 0.631, and 0.455 mm d−1, respectively. A comparison of the R2, RMSE, and MAE
values between the rice and longan plots showed that the accuracy obtained for the longan
plots was higher than that of the rice plots. The overall R2, RMSE, and MAE values of all
sample plots (including rice and longan) were 0.830, 0.730, and 0.575 mm d−1, respectively.
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Figure 5. Correlation between the actual evapotranspiration (ETa) values derived from the mapping
evapotranspiration at high resolution with internalized calibration (METRIC) model and SIMDualKc
at the satellite acquisition date for all sample plots from the testing area in the Chom Thong District,
Chiang Mai Province, downstream of the Muang Luang Weir, Thailand.

The cumulative ETa values derived from METRIC and SIMDualKc for each sample
plot covering the dry season in 2019 were used to assess the accuracy of the seasonal ETa
(Table 5). Generally, rice was ready to be harvested 120 days after planting. Furthermore,
the planting dates of the rice plots in the A2_Rice and A5_Rice plots did not significantly
differ (Table 5). Both rice plots were planted in October and harvested from late January to
mid-February. The A1_Rice plot was planted later than the other two plots. It was planted
in mid-January and harvested in mid-May, with peak growth in April. We also found that
ETr was generally higher during March and May than in other months. Therefore, the
cumulative ETa of the rice plot in A1_Rice in the dry season was higher than that of the rice
plots in A2_Rice and A5_Rice.
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Table 5. Cumulative actual evapotranspiration (ETa) values derived from the mapping evapotran-
spiration at high resolution with internalized calibration (METRIC) model and SIMDualKc for each
sample plot in the testing area in the Chom Thong District, Chiang Mai Province, downstream of the
Muang Luang Weir in Thailand, covering the dry season in 2019.

Plot Name Seasonal Duration Cumulative ETa
(SIMDualKc)

Cumulative ETa
(METRIC)

Percentage
Difference (%)

A1_Rice 11/01/2019 to 11/05/2019 549.96 530.68 3.57
A2_Rice 17/10/2018 to 14/02/2019 328.14 318.85 2.87
A5_Rice 02/10/2018 to 29/01/2019 313.68 310.78 0.93

A4_Longan 01/11/2018 to 31/05/2019 817.99 755.14 7.99
A6_Longan 01/11/2018 to 31/05/2019 872.40 845.93 3.08

Sum 2882.17 2761.38 4.28

The difference between the cumulative ETa derived from SIMDualKc and that from
the METRIC model ranged in magnitude from 0.93–3.57% for the rice and 3.08–7.99% for
the longan sample plots. In all plots, the cumulative ETa derived from METRIC was lower
(4.28%) than that from SIMDualKc.

Tasumi [16] estimated the ET of the western Urmia Lake Basin using METRIC with
Landsat satellite images from 2014–2016 for irrigated apple orchards, grape fields, and
non-irrigated bare soil. The ET estimates obtained from METRIC (ETMETRIC) and the
FAO-56 single-crop coefficient method (ETFAO56) at the satellite image acquisition dates
for the irrigated agricultural plots were in good agreement. The ETFAO56 and ETMETRIC
differences for apple-planted, grape-planted, and bare soils were indicated by the RMSE,
MAE, and Mean Bias Error (MBE), with values of 0.73, 0.84, and 0.68 mm d−1 (positive
numbers represent an overestimation); 0.57, 0.72, and 0.59 mm d−1; and 0.20, 0.16, and
0.36 mm d−1, respectively. Overall, the ET estimate from ETMETRIC was greater than that
related to ETFAO56. The error range indicated that wet apple fields had a high relative
accuracy, while dry bare soil surfaces had a low relative accuracy. Similarly, Paço et al. [15]
compared the ET at the dates of image acquisition derived from the METRIC model
(ETMETRIC) and FAO-56 dual-crop coefficient method with that based on the SIMDualKc
model (ETsim). They reported that ETMETRIC and ETsim had similar patterns. The overall
MBE, defined as (ETMETRIC − ETsim)/ETsim), between the ET derived from METRIC and that
from SIMDualKc was 18% (the ET from METRIC was greater than the ET from SIMDualKc),
corresponding to a mean absolute difference of 0.4 mm/d. Our results agree with previous
reports [15,16], apart from the fact that the ET derived from METRIC was smaller than
the ET derived from SIMDualKc. It is possible that ETa was underestimated due to a
lack of vegetation cover during the initial stage of crop growth [25,26], especially in the
rice plots used in this study. In addition, METRIC uses a constant ETrF to estimate the
daily ETa; as a result, water stress conditions may be underestimated. [7]. Furthermore,
an underestimation of ETa might have occurred due to an underestimation of the daily
average Rn computed by empirical equations when upscaling the instantaneous ETa to
daily ETa [26]. In addition, satellite pixels over small, cultivated fields may cause vegetation
types and densities to mix, resulting in mixed surface temperature signals [7]. Therefore, it
is difficult to interpret ET retrievals.

3.2. Spatiotemporal Distribution of the Actual Evapotranspiration for Various Land Use Types
3.2.1. Temporal Variation of the Actual Evapotranspiration

The ET variation and trends in northern Thailand are affected by rainfall and weather
conditions. The average rainfall and humidity are lower during the dry season. Each year,
the air temperature decreases to its minimum in December and increases to its maximum in
April. The average ETr from the AWS in the study area depends on the weather conditions.
The average daily ETa was obtained from the METRIC model for nine land-use types
between October and May during the dry seasons in 2018–2020 (Figure 6). The average ETr
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decreased from October–December, with a minimum of 2.88 mm. It gradually increased in
January, started to rapidly rise in February, and reached its peak in April (6.37 mm). The
ETa variation—mainly influenced by ETr—for waterbodies was relatively consistent with
the average trend in ETr. The ETa variation in forestland between October and February
was consistent with the trend of ETr, with the lowest ETa in December (4.10 mm), when
ETa was greater than ETr. From March–May, the ETa/ETr ratio decreased, and ETa was
lower than ETr. The ETa of miscellaneous land (mainly pastures in the study area) was
related to the ETa of natural vegetation, such as forests, but was smaller than that of forests.
Perennial trees naturally grow without water management during the dry season and had
slightly different monthly ETa variations ranging from 2.55–3.26 mm. Field crops were
primarily cultivated in non-irrigated areas. Field crops were planted during the rainy
season and harvested between November and December. Their ETa variations ranged from
3.07–3.68 mm, with slightly differing monthly ETa values. Paddy fields in the study area
were planted and harvested differently depending on the type of water management in the
irrigated area. The ETa for paddy fields was relatively consistent with the average trend in
ETr but lower than ETr. The lowest and highest ETa values were observed in December
(1.67 mm) and April (2.78 mm), respectively. The ETa variation of horticulture between
October and January was consistent with the trend in ETr. From February–May, the ratio
of the ETa to the ETr of horticulture decreased, with the ETa being lower than the ETr.
Orchards showed an ETa pattern similar to that of perennial trees, with slightly different
monthly ETa variations. The lowest and highest ETa estimates were obtained in November
(2.6 mm) and May (3.13 mm), respectively. Finally, urban and built-up land showed the
lowest ETa values, with slightly different monthly ETa variations. The average accumulated
seasonal ETa values for forestland, waterbodies, miscellaneous land, horticulture, field
crops, perennial trees, orchards, paddy fields, and urban and built-up land over the dry
seasons of 2018–2020 were 1,145.15, 1,067.65, 945.48, 935.97, 807.45, 664.76, 655.79, 547.29,
and 511.27 mm, respectively (Table 6).
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equation (ETr) for nine land-use types in the study area in the Chiang Mai and Lamphun provinces,
which are located on the plains of the upper northern region of Thailand along the Ping River, during
the dry seasons of 2018–2020.
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Table 6. Accumulated monthly and seasonal ETa values for various land-use types and ETr in the study area during the dry seasons of 2018, 2019, and 2020.

Date
ETa (mm) ETr

(mm)Paddy Field Field Crop Miscellaneous Land Urban and Built-Up Land Perennial Tree Orchard Horticulture Forestland Waterbody

2017/10/01 to 2017/10/31 82.16 100.69 110.94 59.45 88.68 80.01 107.76 132.36 90.09 110.09
2017/11/01 to 2017/11/30 58.76 82.01 94.47 50.56 67.52 62.10 95.66 113.74 66.14 93.51
2017/12/01 to 2017/12/31 55.06 85.99 98.18 62.87 76.20 74.17 97.97 117.83 86.48 87.71
2018/01/01 to 2018/01/31 57.93 94.99 114.70 65.35 86.50 84.99 111.73 141.24 120.49 94.61
2018/02/01 to 2018/02/28 60.37 81.20 105.68 58.78 75.21 75.29 104.76 130.49 125.54 115.45
2018/03/01 to 2018/03/31 58.15 66.96 102.36 44.70 59.66 59.46 103.86 128.14 134.18 170.43
2018/04/01 to 2018/04/30 55.86 65.24 101.39 43.65 64.16 61.37 100.17 135.63 136.11 170.84
2018/05/01 to 2018/05/31 83.67 112.58 137.49 73.51 122.52 105.04 128.70 171.64 157.21 165.49

Sum 511.96 689.66 865.22 458.86 640.44 602.44 850.61 1071.07 916.24 1008.13

2018/10/01 to 2018/10/31 69.31 106.17 110.40 46.62 81.18 66.75 104.69 135.40 82.59 113.48
2018/11/01 to 2018/11/30 73.95 120.14 118.28 73.29 110.63 87.86 110.60 138.60 108.19 98.85
2018/12/01 to 2018/12/31 59.08 97.38 103.05 66.00 85.42 78.75 99.61 118.51 107.29 87.05
2019/01/01 to 2019/01/31 54.90 97.24 109.97 56.14 75.00 76.20 109.45 132.00 104.14 94.61
2019/02/01 to 2019/02/28 75.85 93.41 116.08 64.75 73.26 82.40 115.02 136.79 139.07 131.77
2019/03/01 to 2019/03/31 85.97 85.84 122.92 61.86 64.40 78.04 126.09 150.08 180.29 187.3
2019/04/01 to 2019/04/30 130.36 112.32 158.11 98.47 102.09 115.45 157.23 192.03 243.42 204.21
2019/05/01 to 2019/05/31 62.72 77.75 112.59 54.62 73.67 74.14 115.71 142.46 135.50 195.71

Sum 612.12 790.25 951.39 521.76 665.64 659.61 938.39 1145.86 1100.51 1112.98

2019/10/01 to 2019/10/31 62.87 135.57 135.65 58.85 99.81 86.35 132.89 162.87 109.69 122.6
2019/11/01 to 2019/11/30 30.89 96.78 98.67 33.02 59.62 53.43 100.11 123.53 80.28 102.56
2019/12/01 to 2019/12/31 40.72 111.45 115.91 53.59 75.11 76.43 113.05 144.65 107.28 93.48
2020/01/01 to 2020/01/31 64.52 112.37 122.14 73.67 81.74 89.80 118.96 141.63 144.87 103.02
2020/02/01 to 2020/02/29 73.67 109.83 123.24 78.23 79.84 90.00 123.06 140.18 165.74 135.31
2020/03/01 to 2020/03/31 102.99 146.18 163.38 104.62 113.16 118.19 168.52 186.89 236.65 202.05
2020/04/01 to 2020/04/30 63.60 98.44 114.31 69.98 72.10 79.62 116.91 139.14 173.38 198.4
2020/05/01 to 2020/05/31 78.55 131.83 146.53 81.23 106.80 111.51 145.43 179.62 168.32 198.77

Sum 517.80 942.44 1,019.84 553.19 688.18 705.33 1018.92 1218.52 1186.20 1156.19

Average seasonal of ETa
(2018–2020) 547.29 807.45 945.48 511.27 664.76 655.79 935.97 1145.15 1067.65 1092.43
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Our results show that the average daily ETa of waterbodies was similar to the ETr.
Additionally, the ETa values of forestland and waterbodies were higher than those of
irrigated and non-irrigated agricultural areas, including rice, longan, and other land-use
types, while the ETa of urban areas was the lowest. These results are consistent with a
previous report [27] which showed that forests and wetlands have higher average ETa
values than other land-use types, and that developed areas have the lowest average ETa.
Thus, ETa appears to be determined by land use type, land cover, and water availability.

The spatiotemporal variation in ETa depended on several factors controlling the ET
rate, including weather, vegetation, soil, waterbodies, and management [17]. The ET
trends of each land-use type were associated with their biophysical properties and factors
controlling the ET. For example, forest areas are resistant to water stress in the regular dry
season because the water storage in the soil’s top 3 m layer is adequate for maintaining
a stable ET rate [28]. Furthermore, the peak rate of ET was influenced by the height of
vegetation. Forests have greater stomatal control than agricultural plants, which leads
to higher ET values than other land-use types [17]. Similarly, urban and built-up land
represent developed areas with lower ETa values due to lower soil moisture availability [27].

3.2.2. Spatial Distribution of the Actual Evapotranspiration

The spatial distribution of the seasonal ETa was calculated from accumulated time
series of daily ETa in the study area during the dry seasons of 2018, 2019, and 2020 (Figure 7).
The characteristics of the ETa distribution were consistent with variations in the climate,
vegetation, and anthropogenic activities such as water resource management in the study
area. The spatial distribution and variation of ET can be used as indicators of vegetation
variation and water consumption [29]. Additionally, ETa estimated from the METRIC
model can capture crop water stress conditions [16].
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Figure 7. Spatial distribution of the seasonal actual evapotranspiration (ETa) in the study area located
in the Chiang Mai and Lamphun provinces, which is located on the plains of the upper northern
region of Thailand along the Ping River, during the dry seasons of 2018–2020.

Within the study area, area A is an irrigated region belonging to two irrigation projects:
Mae Tang and Mae Faek-Mae Ngat Somboon Chon (Figure 7). Area A is mainly covered by
paddy fields; the ETa in the cultivated area in the dry season is shown as the blue-shaded
area in Figure 7. Areas B and D belong to the Mae Kuang Udom Thara irrigation project
and are examples of upstream and downstream areas within the same irrigation project.
Most rice-cultivation areas with adequate water allocation are located upstream of the
irrigation project area (area B) and are shaded blue for all three years. Area D consists
of primarily urban and built-up land in Lamphun Province. The paddy fields in area D
were not cultivated during the dry season (shown as orange-shaded areas). In area C,
which contains longan orchards, blue shading can be observed throughout the whole area
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across all three years. As mentioned before, longan is an economically valuable fruit; thus,
sufficient water is required for its maintenance.

4. Conclusions

In this study, satellite-based surface energy balance data derived from Landsat-8
imagery and the METRIC model were applied to estimate the spatiotemporal distribution
of ETa at a field scale, and to compare the ETa obtained from the METRIC model with that
derived from the FAO-56 dual-crop coefficient method using SIMDualKc.

The daily ETa exhibited substantial spatial variation and temporal changes across
various land-use types and sample plots in the testing area throughout the dry season.
The accuracy of the ETa values obtained from the METRIC model and FAO-56 dual-crop
coefficient method was determined based on statistical analyses performed on the satellite
acquisition dates and the cumulative ETa of all sample plots. The data plots indicated that
the ETa estimates derived from the METRIC model were similar to those derived from
SIMDualKc, and we observed a strong linear correlation between the estimates calculated
using the two methods. Overall, the accuracy assessment for all sample plots on the satellite
acquisition date yielded R2, RMSE, and MAE values of 0.830, 0.730, and 0.575 mm d−1,
respectively, and the ETa accuracy obtained for the longan plots was higher than that for the
rice plots. The differences between the cumulative ETa derived from SIMDualKc and that
derived from the METRIC model ranged in magnitude from 0.93%–3.57% and 3.08%–7.99%
for the rice and longan sample plots, respectively. For all plots, the cumulative ETa derived
from METRIC was lower than that derived from SIMDualKc. Analysis of the ETa variation
for various land-use types showed that the average daily ETa for waterbodies is similar
to the ETr. The ETa values obtained for forestland and waterbodies were higher than
those for irrigated and non-irrigated agricultural areas, including rice, longan, and other
land-use types, while the ETa for urban areas was the lowest. Overall, the observed spatial
distributions and temporal changes of the seasonal ETa during the dry seasons of 2018,
2019, and 2020 correlated with variations in the climate, vegetation, and anthropogenic
activities such as water management in the study area each year.

The results of this study indicate that the METRIC model is an efficient tool for estimat-
ing ETa during crop growth in the dry season, as well as the spatiotemporal distribution of
the ETa for various land-use types at a field scale, in order to facilitate water resource man-
agement. Furthermore, the METRIC model can be applied to estimate the spatiotemporal
distribution of ETa at field to regional scales, making it suitable for application to water
resource management under various environmental conditions and for the improvement of
the water use efficiency over a large area. In the future, ETa studies should be expanded to
other areas in Southeast Asia, as this region is an essential source of agricultural production.
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