Green Zinc Oxide (ZnO) Nanoparticle Synthesis Using Mangrove Leaf Extract from Avicenna marina: Properties and Application for the Removal of Toxic Metal Ions (Cd2+ and Pb2+)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Collection and Extract Preparation of the Plant
2.3. Biosynthesis of Nanoparticles
2.4. Characterization of Nanostructures
2.5. Adsorption Studies in Batch
2.5.1. Impact of pH Value on the qe of Metal
2.5.2. Impact of Contact Duration
2.5.3. Impact of Nano-Sorbent Dose
2.5.4. Initial Influence of [Mn+] on Sorption Capacity
2.5.5. Impact of Competing Ions on Sorption Capacity
2.6. Data Analysis
2.6.1. Kinetics Describing Adsorption Models
2.6.2. Isotherms Describing Adsorption Models
2.6.3. Thermodynamic Adsorption
2.6.4. Experimental Desorption
2.6.5. Quality Assurance
3. Results
3.1. Characterization of Synthesis ZnO-NPs
3.1.1. Ultraviolet–Visible Spectroscopy (UV–Vis)
3.1.2. X-ray Diffraction Spectroscopy (XRD)
3.1.3. FT-IR Analysis of ZnO Nanospheres
3.1.4. Elemental Analysis of ZnO-NPs (EDX)
3.1.5. SEM Analysis of ZnO Nanospheres
3.2. The Influence of Operational Parameters on Metal Ion Adsorption
3.2.1. Effect of pH
3.2.2. Contact Time Effect
3.2.3. Effect of Adsorbent Dosage
3.2.4. The Role of Initiation Metal Ion Concentration
3.2.5. Impact of Temperature
3.2.6. The Influence of Competing Ions
3.3. Adsorption Isotherm Models
3.4. Adsorption Kinetics Models
3.5. Adsorption Thermodynamic Parameter Studies
3.6. Analysis of Desorption
3.7. Application of Green-Synthesized Adsorbents to Removal of Cd2+ and Pb2+ from Real Water Samples
4. Discussion
5. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Shafiee, M.; Foroutan, R.; Fouladi, K.; Ahmadlouydarab, M.; Ramavandi, B.; Sahebi, S. Application of oak powder/Fe3O4 magnetic composite in toxic metals removal from aqueous solutions. Adv. Powder Technol. 2019, 30, 544–554. [Google Scholar] [CrossRef]
- Thomson, K.K.; Rahman, A.; Cooper, T.J.; Sarkar, A. Exploring relevance, public perceptions, and business models for establishment of private well water quality monitoring service. Int. J. Health Plan. Manag. 2019, 34, 1098–1118. [Google Scholar] [CrossRef] [PubMed]
- Fontana, K.B.; Chaves, E.S.; Kosera, V.S.; Lenzi, G.G. Barium removal by photocatalytic process: An alternative for water treatment. J. Water Process Eng. 2018, 22, 163–171. [Google Scholar] [CrossRef]
- Abdulkhair, B.; Salih, M.; Modwi, A.; Adam, F.; Elamin, N.; Seydou, M.; Rahali, S. Adsorption behavior of barium ions onto ZnO surfaces: Experiments associated with DFT calculations. J. Mol. Struct. 2021, 1223, 128991. [Google Scholar] [CrossRef]
- Wang, Y.; Li, L.; Luo, C.; Wang, X.; Duan, H. Removal of Pb2+ from water environment using a novel magnetic chitosan/graphene oxide imprinted Pb2+. Int. J. Biol. Macromol. 2016, 86, 505–511. [Google Scholar] [CrossRef]
- Palani, G.; Arputhalatha, A.; Kannan, K.; Lakkaboyana, S.K.; Hanafiah, M.M.; Kumar, V.; Marella, R.K. Current trends in the application of nanomaterials for the removal of pollutants from industrial wastewater treatment—A review. Molecules 2021, 26, 2799. [Google Scholar] [CrossRef]
- Qasem, N.A.; Mohammed, R.H.; Lawal, D.U. Removal of heavy metal ions from wastewater: A comprehensive and critical review. npj Clean Water 2021, 4, 36. [Google Scholar] [CrossRef]
- Schneider, A.; Herlevi, L.M.; Guo, Y.; Fernandez Lahore, H.M. Perspectives on adsorption technology as an effective strategy for continuous downstream bioprocessing. J. Chem. Technol. Biotechnol. 2022, 97, 2305–2316. [Google Scholar] [CrossRef]
- El-Enein, S.A.; Okbah, M.A.; Hussain, S.G.; Soliman, N.F.; Ghounam, H.H. Adsorption of selected metals ions in solution using nano-bentonite particles: Isotherms and kinetics. Environ. Process. 2020, 7, 463–477. [Google Scholar] [CrossRef]
- Saleem, J.; Shahid, U.B.; Hijab, M.; Mackey, H.; McKay, G. Production and applications of activated carbons as adsorbents from olive stones. Biomass Convers. Biorefin. 2019, 9, 775–802. [Google Scholar] [CrossRef] [Green Version]
- Tan, W.K.; Muto, H.; Kawamura, G.; Lockman, Z.; Matsuda, A. Nanomaterial fabrication through the modification of sol–gel derived coatings. Nanomaterials 2021, 11, 181. [Google Scholar] [CrossRef] [PubMed]
- Shaba, E.Y.; Jacob, J.O.; Tijani, J.O.; Suleiman, M.A. A critical review of synthesis parameters affecting the properties of zinc oxide nanoparticle and its application in wastewater treatment. Appl. Water Sci. 2021, 11, 48. [Google Scholar] [CrossRef]
- Qu, J.; Yuan, X.; Wang, X.; Shao, P. Zinc accumulation and synthesis of ZnO nanoparticles using Physalis alkekengi L. Environ. Pollut. 2011, 159, 1783–1788. [Google Scholar] [CrossRef] [PubMed]
- Sundrarajan, M.; Ambika, S.; Bharathi, K. Plant-extract mediated synthesis of ZnO nanoparticles using Pongamia pinnata and their activity against pathogenic bacteria. Adv. Powder Technol. 2015, 26, 1294–1299. [Google Scholar] [CrossRef]
- Suresh, D.; Nethravathi, P.C.; Rajanaika, H.; Nagabhushana, H.; Sharma, S.C. Green synthesis of multifunctional zinc oxide (ZnO) nanoparticles using Cassia fistula plant extract and their photodegradative, antioxidant and antibacterial activities. Mater. Sci. Semicond. Process. 2015, 31, 446–454. [Google Scholar] [CrossRef]
- Angelin, K.B.; Siva, S.; Kannan, R.S. Zinc oxide nanoparticles impregnated polymer hybrids for efficient extraction of heavy metals from polluted aqueous solution. Asian J. Sci. Technol. 2015, 6, 2139–2150. [Google Scholar]
- Kamath, S.; Ramanjaneyalu, V.G.; Kamila, S. Application of ZnO nano rods for the batch adsorption of Cr (VI): A study of kinetics and isotherms. Am. J. Appl. Sci. 2019, 16, 101–112. [Google Scholar] [CrossRef] [Green Version]
- Xu, Y.; Hu, J.; Zhang, X.; Yuan, D.; Duan, G.; Li, Y. Robust and multifunctional natural polyphenolic composites for water remediation. Mater. Horiz. 2022, 9, 2496. [Google Scholar] [CrossRef]
- Wang, J.; Sun, Y.; Zhao, X.; Chen, L.; Peng, S.; Ma, C.; Duan, G.; Liu, Z.; Wang, H.; Yuan, Y.; et al. A poly(amidoxime)-modified MOF macroporous membrane for high-efficient uranium extraction from seawater. e-Polymers 2022, 22, 399–410. [Google Scholar] [CrossRef]
- Saad, E.M.; Elshaarawy, R.F.; Mahmoud, S.A.; El-Moselhy, K.M. New Ulva lactuca Algae Based Chitosan Bio-composites for Bioremediation of Cd(II) Ions. J. Bioresour. Bioprod. 2021, 6, 223–242. [Google Scholar] [CrossRef]
- Khana, M.M.; Saadaha, N.H.; Khanb, M.E.; Harunsania, M.H.; Tana, A.L.; Cho, M.H. Potentials of Costus woodsonii leaf extract in producing narrow band gap ZnO Nanoparticles. Mater. Sci. Semicond. Process. 2019, 91, 194–200. [Google Scholar] [CrossRef]
- Azimpanah, R.; Solati, Z.; Hashemi, M. Synthesis of ZnO Nanoparticles with Antibacterial Properties Using Terminalia catappa Leaf Extract. Chem. Eng. Technol. 2022, 45, 658–666. [Google Scholar] [CrossRef]
- Zare, M.; Namratha, K.; Thakur, M.S.; Byrappa, K. Biocompatibility assessment and photocatalytic activity of bio-hydrothermal synthesis of ZnO nanoparticles by Thymus vulgaris leaf extract. Mater. Res. Bull. 2019, 109, 49–59. [Google Scholar] [CrossRef]
- Thatoi, P.; Kerry, R.G.; Gouda, S.; Das, G.; Pramanik, K.; Thatoi, H.; Patra, J.K. Photo-mediated green synthesis of silver and zinc oxide nanoparticles using aqueous extracts of two mangrove plant species, Heritiera fomes and Sonneratia apetala and investigation of their biomedical applications. J. Photochem. Photobiol. B Biol. 2016, 163, 311–318. [Google Scholar] [CrossRef] [PubMed]
- Sagar, R.D.P.; Thorat, R. Green synthesis of zinc oxide (ZnO) nanoparticles using ocimum tenuiflorum leaves. Int. J. Sci. Res. 2015, 4, 1225–1228. [Google Scholar]
- Edokpayi, O.; Osemwenkhae, O.; Ayodele, B.V.; Ossai, J.; Fadilat, S.A.; Ogbeide, S.E. Batch adsorption study of methylene blue in aqueous solution using activated carbons from rice husk and coconut shell. J. Appl. Sci. Environ. Manag. 2018, 22, 631–635. [Google Scholar] [CrossRef]
- Ho, Y.S.; McKay, G. Pseudo-second order model for sorption processes. Process Biochem. 1999, 34, 451–465. [Google Scholar] [CrossRef]
- Jasper, E.E.; Ajibola, V.O.; Onwuka, J.C. Nonlinear regression analysis of the sorption of crystal violet and methylene blue from aqueous solutions onto an agro-waste derived activated carbon. Appl. Water Sci. 2020, 10, 132. [Google Scholar] [CrossRef]
- Marczewski, A.W.; Seczkowska, M.; Deryło-Marczewska, A.; Blachnio, M. Adsorption equilibrium and kinetics of selected phenoxyacid pesticides on activated carbon: Effect of temperature. Adsorption 2016, 22, 777–790. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, N.H.; Mohamed, M.A.; Yusoff, S.F. Improved adsorption performance of rubber-based hydrogel: Optimisation through response surface methodology, isotherm, and kinetic studies. J. Sol Gel Sci. Technol. 2020, 94, 322–334. [Google Scholar] [CrossRef]
- Langmuir, I. The constitution and fundamental properties of solids and liquids. Part I. Solids. J. Am. Chem. Soc. 1916, 38, 2221–2295. [Google Scholar] [CrossRef] [Green Version]
- Jaerger, S.; Dos Santos, A.; Fernandes, A.N.; Almeida, C.A. Removal of p-nitrophenol from aqueous solution using Brazilian peat: Kinetic and thermodynamic studies. Water Air Soil Pollut. 2015, 226, 236. [Google Scholar] [CrossRef]
- Freundlich, H.M.F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385–471. [Google Scholar]
- Tempkin, M.J.; Pyzhev, V. Kinetics of ammonia synthesis on promoted iron catalysts. Acta Physicochim. URSS 1940, 12, 217–256. [Google Scholar]
- Dubinin, M.M.; Radushkevich, L.V. The equation of the characteristic curve of the activated charcoal. Proc. Acad. Sci. Phys. Chem. Sect. 1947, 55, 331–337. [Google Scholar]
- Muhammad, W.; Ullah, N.; Haroona, M.; Abbasi, B.H. Optical, morphological, and biological analysis of zinc oxide nanoparticles (ZnO NPs) using Papaver somniferum L. RSC Adv. 2019, 9, 29541–29548. [Google Scholar] [CrossRef] [Green Version]
- Song, Z.; Kelf, T.A.; Sanchez, W.H.; Roberts, M.S.; Rička, J.; Frenz, M.; Zvyagin, A.V. Characterization of optical properties of ZnO nanoparticles for quantitative imaging of transdermal transport. Biomed. Opt. Express 2011, 2, 3321–3333. [Google Scholar] [CrossRef]
- Talam, S.; Karumuri, S.R.; Gunnam, N. Synthesis, Characterization, and Spectroscopic Properties of ZnO Nanoparticles International Scholarly Research Network. ISRN Nanotechnol. 2012, 2012, 372505. [Google Scholar] [CrossRef] [Green Version]
- Shamhari, N.M.; Wee, B.S.; Chin, S.F.; Kok, K.Y. Synthesis and Characterization of Zinc Oxide Nanoparticles with Small Particle Size Distribution. Acta Chim. Slov. 2018, 65, 578–585. [Google Scholar] [CrossRef]
- Zak, A.K.; Razali, R.; Abd Majid, W.H.; Darroudi, M. Synthesis and characterization of a narrow size distribution of zinc oxide nanoparticles. Int. J. Nanomed. 2011, 6, 1399–1403. [Google Scholar]
- AL-Asady, Z.M.; AL-Hamdani, A.H.; Hussein, M.A. Study the Optical and Morphology Properties of Zinc Oxide Nanoparticles. AIP Conf. Proc. 2020, 2213, 020061. [Google Scholar] [CrossRef]
- Akhil, K.; Khan, S.S. Effect of humic acid on the toxicity of bare and capped ZnO nanoparticles on bacteria, algal and crustacean systems. J. Photochem. Photobiol. B 2017, 167, 136–149. [Google Scholar] [CrossRef]
- Prasad, S.; Walck, S.; Zabinski, J. Microstructural evolution in lubricious ZnO films grown by pulsed laser deposition. Thin Solid Films 2000, 360, 107–117. [Google Scholar] [CrossRef]
- Yuvakkumar, R.; Suresh, J.; Hong, S.I. Green Synthesis of Zinc Oxide Nanoparticles. Adv. Mater. Res. 2014, 952, 137–140. [Google Scholar] [CrossRef]
- Jayarambabu, N.; Kumari, B.S.; Rao, K.V.; Prabhu, Y.T. Germination, and growth characteristics of mungbean seeds (Vigna radiata L.) affected by synthesized zinc oxide nanoparticles. Int. J. Curr. Eng. Technol. 2014, 4, 3411–3416. [Google Scholar]
- Kumar, V.; Kumar, S.; Kumar, D. Synthesis, and characterization of cadmium doped ZnO nanoparticles. In Recent Trends in Materials and Devices; Springer: Cham, Switzerland, 2017; pp. 211–215. [Google Scholar] [CrossRef]
- Sathya, M.; Pushpanathan, K. Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl. Surf. Sci. 2018, 449, 346–357. [Google Scholar] [CrossRef]
- Ben Dassi, R.; Chamam, B.; Méricq, J.P.; Heran, M.; Faur, C.; El Mir, L.; Tizaoui, C.; Trabelsi, I. Pb doped ZnO nanoparticles for the sorption of Reactive Black 5 textile azo dye. Water Sci. Technol. 2020, 82, 2576–2591. [Google Scholar] [CrossRef]
- Feng, Z.; Gao, C.; Ma, X.; Zhan, J. Well-dispersed Pd nanoparticles on porous ZnO nanoplates via surface ion exchange for chlorobenzene-selective sensor. RSC Adv. 2019, 9, 42351–42359. [Google Scholar] [CrossRef] [Green Version]
- Tiwari, A.K.; Jha, S.; Singh, A.K.; Mishra, S.K.; Pathak, A.K.; Ojha, R.P.; Yadav, R.S.; Dikshit, A. Innovative Investigation of Zinc Oxide Nanoparticles Used in Dentistry. Crystals 2022, 12, 1063. [Google Scholar] [CrossRef]
- Lakshmikandhan, T. Green synthesis of zinc oxide nanoparticles using murraya koenigii (curry leaf) leaf extract. Malaya J. Mat. 2020, 2, 4309–4317. [Google Scholar] [CrossRef]
- Fakhar-e-Alam, M.; Rahim, S.; Atif, M.; Aziz, M.H.; Malick, M.I.; Zaidi, S.S.; Suleman, R.; Majid, A. ZnO nanoparticles as drug delivery agent for photodynamic therapy. Laser Phys. Lett. 2013, 11, 025601. [Google Scholar] [CrossRef]
- Król, A.; Railean-Plugaru, V.; Pomastowski, P.; Buszewski, B. Phytochemical investigation of Medicago sativa L. extract and its potential as a safe source for the synthesis of ZnO nanoparticles: The proposed mechanism of formation and antimicrobial activity. Phytochem. Lett. 2019, 31, 170–180. [Google Scholar] [CrossRef]
- Taha, A.A.; Shreadah, M.A.; Ahmed, A.M.; Heiba, H.F. Multi-component adsorption of Pb (II), Cd (II), and Ni (II) onto Egyptian Na-activated bentonite; equilibrium, kinetics, thermodynamics, and application for seawater desalination. J. Environ. Chem. Eng. 2016, 4, 1166–1180. [Google Scholar] [CrossRef]
- Awual, M.R.; Hasan, M.M. Novel conjugate adsorbent for visual detection and removal of toxic lead (II) ions from water. Microporous Mesoporous Mater. 2014, 196, 261–269. [Google Scholar] [CrossRef]
- Wen, Y.; Ma, J.; Chen, J.; Shen, C.; Li, H.; Liu, W. Carbonaceous sulfur-containing chitosan–Fe (III): A novel adsorbent for efficient removal of copper (II) from water. Chem. Eng. J. 2015, 259, 372–380. [Google Scholar] [CrossRef]
- Abdolali, A.; Ngo, H.H.; Guo, W.; Lu, S.; Chen, S.S.; Nguyen, N.C.; Zhang, X.; Wang, J.; Wu, Y. A breakthrough biosorbent in removing heavy metals: Equilibrium, kinetic, thermodynamic and mechanism analyses in a lab-scale study. Sci. Total Environ. 2016, 542, 603–611. [Google Scholar] [CrossRef]
- Huang, H.; Jia, Q.; Jing, W.; Dahms, H.U.; Wang, L. Screening strains for microbial biosorption technology of cadmium. Chemosphere 2020, 251, 126428. [Google Scholar] [CrossRef]
- Masoud, M.S.; Zidan, A.A.; El Zokm, G.M.; Elsamra, R.M.; Okbah, M.A. Humic acid and nano-zeolite NaX as low cost and eco-friendly adsorbents for removal of Pb (II) and Cd (II) from water: Characterization, kinetics, isotherms and thermodynamic studies. Biomass Convers. Biorefin. 2022. [Google Scholar] [CrossRef]
- Tang, C.Y.; Yu, P.; Tang, L.S.; Wang, Q.Y.; Bao, R.Y.; Liu, Z.Y.; Yang, M.B.; Yang, W. Tannic acid functionalized graphene hydrogel for organic dye adsorption. Ecotoxicol. Environ. Saf. 2018, 165, 299–306. [Google Scholar] [CrossRef]
- Adebowale, K.O.; Unuabonah, I.E.; Olu-Owolabi, B.I. The effect of some operating variables on the adsorption of lead and cadmium ions on kaolinite clay. J. Hazard. Mater. 2006, 134, 130–139. [Google Scholar] [CrossRef]
- El Nemr, A.; Khaled, A.; Abdelwahab, O.; El-Sikaily, A. Treatment of wastewater containing toxic chromium using new activated carbon developed from date palm seed. J. Hazard. Mater. 2008, 152, 263–275. [Google Scholar] [CrossRef]
- De Gisi, S.; Lofrano, G.; Grassi, M.; Notarnicola, M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment: A review. Sustain. Mater. Technol. 2016, 9, 10–40. [Google Scholar] [CrossRef] [Green Version]
- Larous, S.; Meniai, A.H.; Lehocine, M.B. Experimental study of the removal of copper from aqueous solutions by adsorption using sawdust. Desalination 2005, 185, 483–490. [Google Scholar] [CrossRef]
- Allen, S.J.; Mckay, G.; Porter, J.F. Adsorption isotherm models for basic dye adsorption by peat in single and binary component systems. J. Colloid Interface Sci. 2004, 280, 322–333. [Google Scholar] [CrossRef]
- Kundu, S.; Gupta, A.K. Arsenic adsorption onto iron oxide-coated cement (IOCC): Regression analysis of equilibrium data with several isotherm models and their optimization. Chem. Eng. J. 2006, 122, 93–106. [Google Scholar] [CrossRef]
- Veli, S.; Alyüz, B. Adsorption of copper and zinc from aqueous solutions by using natural clay. J. Hazard. Mater. 2007, 149, 226–233. [Google Scholar] [CrossRef]
- Argun, M.E. Use of clinoptilolite for the removal of nickel ions from water: Kinetics and thermodynamics. J. Hazard. Mater. 2008, 150, 587–595. [Google Scholar] [CrossRef]
- Al-Ghouti, M.; Khraisheh, M.A.; Ahmad, M.N.; Allen, S. Thermodynamic behaviour and the effect of temperature on the removal of dyes from aqueous solution using modified diatomite: A kinetic study. J. Colloid Interface Sci. 2005, 287, 6–13. [Google Scholar] [CrossRef]
- Hu, H.; Huang, X.; Deng, C.; Chen, X.; Qian, Y. Hydrothermal synthesis of ZnO nanowires and nanobelts on a large scale. Mater. Chem. Phys. 2007, 106, 58–62. [Google Scholar] [CrossRef]
- Duman, O.; Ayranci, E. Adsorptive removal of cationic surfactants from aqueous solutions onto high-area activated carbon cloth monitored by in situ UV spectroscopy. J. Hazard. Mater. 2010, 174, 359–367. [Google Scholar] [CrossRef]
- Mueller, N.C.; Nowack, B. Nanoparticles for remediation: Solving big problems with little particles. Elements 2010, 6, 395–400. [Google Scholar] [CrossRef]
- Zhang, W.; Meng, L.; Mu, G.; Zhao, M.; Zou, P.; Zhang, Y. A facile strategy for fabrication of nano-ZnO/yeast composites and their adsorption mechanism towards lead (II) ions. Appl. Surf. Sci. 2016, 378, 196–206. [Google Scholar] [CrossRef]
- El-Gendy, M.M.; Ten, N.M.; Ibrahim, H.A.; Abd El-Baky, D.H. Heavy metals biosorption from aqueous solution by endophytic Drechslera hawaiiensis of Morus alba L. derived from heavy metals habitats. Mycobiology 2017, 45, 73–83. [Google Scholar] [CrossRef] [Green Version]
- Khilji, S.A.; Munir, N.; Aziz, I.; Anwar, B.; Hasnain, M.; Jakhar, A.M.; Sajid, Z.A.; Abideen, Z.; Hussain, M.I.; El-Habeeb, A.A.; et al. Application of Algal Nanotechnology for Leather Wastewater Treatment and Heavy Metal Removal Efficiency. Sustainability 2022, 14, 13940. [Google Scholar] [CrossRef]
- Joshi, N.; Singh, A. Adsorptive Performances and Characterizations of Biologically Synthesized Zinc Oxide Based Nano sorbent (ZOBN). Groundw. Sustain. Dev. 2020, 10, 100325. [Google Scholar] [CrossRef]
- Saad, A.A.; Azzam, A.M.; El-Wakeel, S.T.; Mostafa, B.B.; Abd El-latif, M.B. Removal of toxic metal ions from wastewater using ZnO@ Chitosan core shell nanocomposite. Environ. Nanotechnol. Monit. Manag. 2018, 9, 67–75. [Google Scholar] [CrossRef]
- Xu, M.; Zhang, Y.; Zhang, Z.; Shen, Y.; Zhao, M.; Pan, G. Study on the adsorption of Ca2+, Cd2+ and Pb2+ by magnetic Fe3O4 yeast treated with EDTA dianhydride. Chem. Eng. J. 2011, 168, 737–745. [Google Scholar] [CrossRef]
- Joshi, N.C.; Rawat, B.S.; Kumar, P.; Kumar, N.; Upadhyay, S.; Chetana, S.; Gururani, P.; Kimothi, S. Sustainable synthetic approach and applications of ZnO/r-GO in the adsorption of toxic Pb2+ and Cr6+ ions. Inorg. Chem. Commun. 2022, 145, 110040. [Google Scholar]
- Joshi, N.C. Synthesis of r-GO/PANI/ZnO based material and its application in the treatment of wastewater containing Cd2+ and Cr6+ ions. Sep. Sci. Technol. 2022. [CrossRef]
- Garg, R.; Garg, R.; Khan, M.; Bansal, M.; Garg, V.K. Utilization of biosynthesized silica-supported iron oxide nanocomposites for the adsorptive removal of heavy metal ions from aqueous solutions. Environ. Sci. Pollut. Res. 2022. [Google Scholar] [CrossRef]
- Mahmoud, A.E.D.; Al-Qahtani, K.M.; Alflaij, S.O.; Al-Qahtani, S.F.; Alsamhan, F.A. Green copper oxide nanoparticles for lead, nickel, and cadmium removal from contaminated water. Sci. Rep. 2021, 11, 12547. [Google Scholar] [CrossRef]
- Tatarchuk, T.; Shyichuk, A.; Sojka, Z.; Gryboś, J.; Naushad, M.; Kotsyubynsky, V.; Kowalska, M.; Kwiatkowska-Marks, S.; Danyliuk, N. Green synthesis, structure, cations distribution and bonding characteristics of superparamagnetic cobalt-zinc ferrites nanoparticles for Pb (II) adsorption and magnetic hyperthermia applications. J. Mol. Liq. 2021, 328, 115375. [Google Scholar] [CrossRef]
Isotherm Model | Adsorption Equation | Equations | Reference |
---|---|---|---|
Langmuir | (5) | [31] | |
Freundlich | (6) | [32,33] | |
Tempkin | (7) | [34] | |
(D–R) Dubinin–Radushkevich | (8) | [35] |
Peak Position 2θ (°) | FWHM (Radians) | Miller Indices | D (nm) |
---|---|---|---|
31.77 | 0.26408 | (100) | 31.3 |
34.43 | 0.25677 | (002) | 32.4 |
31.26 | 0.25676 | (101) | 32.2 |
47.55 | 0.24595 | (102) | 35.3 |
56.6 | 0.34471 | (110) | 26.2 |
62.87 | 0.37829 | (103) | 24.6 |
66.39 | 0.24235 | (200) | 39.2 |
67.96 | 0.4037 | (112) | 23.7 |
69.09 | 0.38421 | (201) | 25.1 |
72.59 | 0.4044 | (004) | 24.4 |
76.98 | 0.3984 | (104) | 25.5 |
29.1 |
Interfering Ions | ZnO-NPs-Cd | ZnO-NPs-Pb | ||
---|---|---|---|---|
% Removal | qe (mgg−1) | % Removal | qe (mgg−1) | |
Blank | 71.60 | 0.51 | 88.24 | 16.55 |
CaCO3 | 57.70 | 0.45 | 84.22 | 15.79 |
Na2CO3 | 58.00 | 0.45 | 81.92 | 15.36 |
KCl | 62.10 | 0.49 | 75.84 | 14.22 |
NaCl | 63.92 | 0.50 | 82.19 | 15.41 |
KNO3 | 59.20 | 0.46 | 73.56 | 13.79 |
MgSO4 | 60.70 | 0.47 | 72.61 | 13.61 |
Equilibrium Models | Parameters | ZnO-NP | |
---|---|---|---|
Pb2+ | Cd2+ | ||
Langmuir | qmax (mg/g) | 2.016 | 7.663 |
KL (L/mg) | 9.502 | 0.052 | |
R2 | 0.940 | 0.953 | |
Freundlich | Kf (mg/g) | 5.497 | 0.176 |
nf | 0.413 | 0.529 | |
1/nf | 2.420 | 1.888 | |
R2 | 0.926 | 0.948 | |
Tempkin | At (L/g) | 0.895 | 0.379 |
Bt | 31.019 | 7.429 | |
R2 | 0.913 | 0.939 | |
Dubinin–Radushkevich | qD (mg/g) | 487.602 | 69.152 |
Ea (kJ/mol) | 21.169 | 15.011 | |
BD (mg/L) | 0.001 | 0.002 | |
R2 | 0.951 | 0.923 |
Metal | C° (ppm) (mg/L) | qe (exp) (mg/g) | Pseudo-First-Order Kinetics | Pseudo-Second-Order Kinetics | ||||
---|---|---|---|---|---|---|---|---|
K1 | qe (cal) | R2 | K2 | qe (cal) | R2 | |||
Cd2+ | 5 | 0.77 | 0.037 | 0.215 | 0.9049 | 0.610 | 0.632 | 0.998 |
10 | 1.52 | 0.035 | 0.046 | 0.8986 | 2.481 | 1.481 | 1.000 | |
15 | 2.32 | 0.038 | 0.395 | 0.8174 | 0.317 | 2.081 | 0.9991 | |
20 | 3.09 | 0.016 | 0.042 | 0.162 | 4.758 | 3.077 | 0.9997 | |
25 | 3.86 | 0.034 | 0.354 | 0.8731 | 0.306 | 3.646 | 0.9997 | |
30 | 4.67 | 0.022 | 0.172 | 0.3856 | 0.426 | 4.562 | 0.9993 | |
Pb2+ | 5 | 3.12 | 0.310 | 0.964 | 0.9623 | 0.175 | 2.669 | 0.9991 |
10 | 6.08 | 2.251 | 0.976 | 0.2855 | 0.540 | 5.917 | 0.9999 | |
15 | 9.21 | 0.588 | 0.964 | 0.8241 | 0.066 | 8.278 | 0.9983 | |
20 | 12.06 | 0.104 | 0.966 | 0.9103 | 0.124 | 11.534 | 0.9999 | |
25 | 15.28 | 0.332 | 0.963 | 0.9445 | 0.163 | 14.771 | 1.0000 | |
30 | 18.39 | 0.231 | 0.965 | 0.8631 | 0.137 | 17.953 | 0.9999 |
Metals | T (°C) | T (K) | Kd | ΔG° (kJ/mol) | ΔH° (kJ/mol) | ΔS° (J/mol K) | R2 |
---|---|---|---|---|---|---|---|
Cd2+ | 10 | 283 | 1.02707 | −62.85 | 16,969.7 | 59.6039 | 0.9331 |
20 | 293 | 1.23844 | −520.9 | ||||
30 | 303 | 1.40162 | −850.5 | ||||
40 | 313 | 1.65461 | −1310 | ||||
50 | 323 | 2.73019 | −2697 | ||||
60 | 333 | 2.8399 | −2890 | ||||
Pb2+ | 10 | 283 | 26.6259 | −7722 | 48,695.9 | 198.4 | 0.9860 |
20 | 293 | 37.7893 | −8848 | ||||
30 | 303 | 100.508 | −11,614 | ||||
40 | 313 | 188.482 | −13,633 | ||||
50 | 323 | 279.017 | −15,122 | ||||
60 | 333 | 547.621 | −17,457 |
Physico-Chemical Parameters | Major Constituents (mgL−1) | Nutrient Salts (µM) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Real Samples | S‰ | pH | OOM (mgL−1) | Na+ | K+ | Ca2+ | Mg2+ | SO42− (g/L) | NO3 | NO2 | PO4 | SiO4 |
Ground water | 2.29 | 7.32 | 2.96 | 1208 | 535 | 114 | 245 | 0.220 | 3.52 | 0.13 | 0.23 | 2.14 |
Red Sea water | 38.55 | 8.08 | 1.85 | 10,334 | 287 | 650 | 2452 | 2.047 | 5.25 | 0.27 | 0.25 | 4.52 |
Spiked | Cd2+ (% Removal) | Pb2+ (% Removal) | ||||
---|---|---|---|---|---|---|
Initial Metal (C0) | C0 = 5 µg/L | C0 = 20 µg/L | ||||
Water sample | Run 1 | Run 2 | Run 3 | Run 1 | Run 2 | Run 3 |
Ground water | 91.93 | 90.41 | 89.63 | 93.51 | 91.87 | 92.33 |
Red Sea water | 85.04 | 84.80 | 86.23 | 89.21 | 90.54 | 90.07 |
Sorbents | ZnO-NPs-Cd | ZnO-NPs-Pb | References |
---|---|---|---|
qe (mgg−1) | qe (mgg−1) | ||
ZnO-NPS Synthesis Using Mangrove Leaf Extract | 7.66 | 2.02 | Present study |
ZnO@ Chitosan core shell | 135.1 | 476.1 | [77] |
Nano-ZnO | - | 38.47 | [73] |
Magnetic Fe3O4 yeast treated with EDTA anhydride | 41.55 | 88.16 | [78] |
ZnO/r-GO | - | 16.26 | [79] |
r-GO/PANI/ZnO | 12.033 | - | [80] |
Silica-supported iron oxide nanocomposites | 19.57 | 20.54 | [81] |
CuO NPs | 15.60 | 88.80 | [82] |
ZnFe2O4 | - | 289 | [83] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al-Mur, B.A. Green Zinc Oxide (ZnO) Nanoparticle Synthesis Using Mangrove Leaf Extract from Avicenna marina: Properties and Application for the Removal of Toxic Metal Ions (Cd2+ and Pb2+). Water 2023, 15, 455. https://doi.org/10.3390/w15030455
Al-Mur BA. Green Zinc Oxide (ZnO) Nanoparticle Synthesis Using Mangrove Leaf Extract from Avicenna marina: Properties and Application for the Removal of Toxic Metal Ions (Cd2+ and Pb2+). Water. 2023; 15(3):455. https://doi.org/10.3390/w15030455
Chicago/Turabian StyleAl-Mur, Bandar A. 2023. "Green Zinc Oxide (ZnO) Nanoparticle Synthesis Using Mangrove Leaf Extract from Avicenna marina: Properties and Application for the Removal of Toxic Metal Ions (Cd2+ and Pb2+)" Water 15, no. 3: 455. https://doi.org/10.3390/w15030455
APA StyleAl-Mur, B. A. (2023). Green Zinc Oxide (ZnO) Nanoparticle Synthesis Using Mangrove Leaf Extract from Avicenna marina: Properties and Application for the Removal of Toxic Metal Ions (Cd2+ and Pb2+). Water, 15(3), 455. https://doi.org/10.3390/w15030455