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Abstract: Modeling potential evapotranspiration (ETy) is an important issue for water resources plan-
ning and management projects involving droughts and flood hazards. Evapotranspiration, one of
the main components of the hydrological cycle, is highly effective in drought monitoring. This study
investigates the efficiency of two machine-learning methods, random vector functional link (RVFL)
and relevance vector machine (RVM), improved with new metaheuristic algorithms, quantum-based
avian navigation optimizer algorithm (QANA), and artificial hummingbird algorithm (AHA) in
modeling ET( using limited climatic data, minimum temperature, maximum temperature, and ex-
traterrestrial radiation. The outcomes of the hybrid RVFL-AHA, RVFL-QANA, RVM-AHA, and
RVM-QANA models compared with single RVFL and RVM models. Various input combinations
and three data split scenarios were employed. The results revealed that the AHA and QANA con-
siderably improved the efficiency of RVFL and RVM methods in modeling ETy. Considering the
periodicity component and extraterrestrial radiation as inputs improved the prediction accuracy of
the applied methods.

Keywords: machine learning; modeling potential evapotranspiration; relevance vector machine
(RVM); random vector functional link (RVFL) hybrid modeling; quantum-based avian navigation
optimizer algorithm (QANA); artificial hummingbird algorithm (AHA)

1. Introduction

Water is one of the most vital resources to preserve the environment and fulfill many
direct and indirect human needs. Nevertheless, humans are altering fresh water at an un-
precedented rate, both directly, e.g., through diversions, withdrawals of water for agricul-
tural, domestic, energy generation, recreation, and industrial reasons, and also indirectly,
e.g., by maintaining specific land cover areas green throughout the year [1]. The volume of
water used for agricultural purposes represents the highest share of water used by humans,
nearly 70% of the blue water use [2]. It is expected that exponential population growth in
the coming decades and changes in diet will increase the global food demand and, con-
sequently, put more pressure on the water demand for agricultural purposes [3].On top
of that, a considerable volume of water leaves the water bodies and land naturally due to
high temperatures and wind speed. Thus, evapotranspiration (ET) consists of the water
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losses from the Earth’s surface to the atmosphere by the combined evaporation processes
from open water bodies, bare soil, and plant surfaces, among others [4,5]. Climate change
affects the water cycle and alters water balance levels at different magnitudes from region
to region.

Thus, ET is an important process of the hydrological cycle that links the land’s surface
water and energy balance. Because of increasing global pressure on water resource avail-
ability from competing users and climate change, great importance is given to water loss
reduction by using efficient irrigation systems [6]. Thus, extreme climate events, especially
drought, occur more frequently worldwide, leading to the inevitability of sustainable and
efficient management of freshwater resources. The evapotranspiration process from land is
invisible and difficult to measure and therefore needs to be determined by direct measure-
ment or estimation using mathematical models [7,8]. Accurate estimation of ET is vital for
studying climate change and its environmental impacts, preventing inefficient irrigation,
and using water resources appropriately while offering essential agricultural supplies.

Additionally, it has much application value in agriculture water needs management,
monitoring and effective water resource utilization, and drought forecasting, among oth-
ers [9,10]. Potential evapotranspiration is used for calculating the drought index (standard-
ized precipitation evapotranspiration index), which is essential in drought assessment. De-
spite the importance of the need for accurate ET estimation, it is still a very challenging and
complex process due to the high cost and resources in direct measurements.

Therefore, engineers and scientists have put tremendous effort into developing mod-
els for estimating ET at a reasonable accuracy and cost for different locations and climatic
regions. These models diverge among them by input data, functional relationships, spa-
tial scale, time scale, degree of complexity, and applicability, such as planning agricul-
tural activities and water balance analysis [11,12]. Among the first empirical models to
estimate, ET is Penman, which Monteith further improved; since then, it has been called
the Penman-Monteith model and remains the most commonly used model worldwide [7].
After Penman-Monteith, many other physically based models, categorized as temperature-
based, such as Blaney-Criddle, Hargreaves, Linacre, Kharrufa, Ravazzani, and mass
transfer-based empirical-based models such as Dalton, Trabert, Brockamp, and Mahringer,
among others are proposed. In general, temperature-based models are the most used be-
cause they require fewer input data; nevertheless, the accuracy achieved by those models
is much lower than mass transfer-based models. Therefore, temperature-based requires
careful calibration based on local observation [13]. On the other side, mass transfer-based
models ensure higher accuracy of ET estimation, regardless of climate region. Still, they
require more input data which, in some cases, due to different reasons, it is impossible to
find all necessary types of the required information [11].

Thus, despite plenty of empirically-based models for predicting ET, there is still no
universal consensus on the appropriateness of utilization of any proposed model for differ-
ent climate regions. Therefore, these models, especially when applied to semi-arid regions
with limited weather data, require rigorous local calibration before estimating ET [6,7].
Different soft computing models have been developed and tested to avoid limitations as-
sociated with empirically based models and estimate the ET with reasonable accuracy. In
general soft computing, models require fewer input data and can be applied in different
climate regions [14,15]. Gavili et al. [16] compared three soft computing models with five
empirical models by estimating the reference evapotranspiration (ETy) in a semi-arid re-
gion. Their findings show that all tested soft computing models outperformed the em-
pirical models. Among the soft computing models, the artificial neural network (ANN)
provided better results than the adaptive neuro-fuzzy inference system (ANFIS) and gene
expression programming (GEP). Fan et al. [17] assessed the performance of a new tree-
based soft computing model, called light gradient boosting machine (LightGBM), by com-
paring it with the tree-based M5 Model Tree (M5Tree) and random forests (RF) as well as
four empirical models, namely Hargreaves-Samani, Tabari, Makkink and Trabert) using
different combinations of daily weather data. They concluded that the proposed model,
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namely, LightGBM provides good results in terms of accuracy, and it can be used as an
alternative model for daily ET( estimation, especially when long meteorological data are
unavailable. Shamshirband et al. [18] estimated ET( using a combination of the cuckoo
search algorithm (CSA) with ANN and ANFIS, respectively, and compared the results
with two empirical models. They concluded that both combined soft computing models
performed better than empirical models. Aghelpour et al. [19] estimated crop evapotran-
spiration using multilayer perceptron (MLP), radial basis function (RBF), generalized re-
gression neural network (GRNN), and group method of data handling (GMDH). Their
findings show that the GMDH model performed better than other soft computing and
empirical models. Mokari, et al. [20] used four machine learning (ML) models, namely ex-
treme learning machine (ELM), genetic programming (GP), random forest (RF), and sup-
port vector regression (SVR), for estimating daily ETO with limited climatic data using a
tenfold cross-validation method across different climate zones in New Mexico using dif-
ferent input scenarios of data. Their findings show that SVR and ELM performed better
than other soft computing models for all input scenarios. Ferreira, et al. [21] estimated
ETo by comparing the FAO56-PM equation with random forest (RF) (ANN), multivari-
ate adaptive regression splines (MARS), and extreme gradient boosting (XGBoost). They
concluded that combining the soft computing models with the FAO56-PM equation to es-
timate ETo performed similarly to using them individually. Sharma et al. [22] estimated
ET(y employing Convolution—Long Short-Term Memory (Conv-LSTM) and Convolution
Neural Network—LSTM (CNN-LSTM) and compared them with other empirical models
such as Hargreaves, Makkink, and Ritchie considering different input combinations of cli-
mate data to find out the minimum needed parameters to estimate the ET at reasonable
accuracy. Their findings show that CNN-LSTM and Conv-LSTM outperform the empiri-
cal models.

Similarly, Sharma et al. [23] found that their proposed model, DeepEvap, could esti-
mate the ETj at an acceptable accuracy using fewer data than empirical models. Therefore,
they suggest that their model can be used as an alternative model to estimate ETj, at a lower
cost in terms of required data and computation time. Chia et al. [24] utilized CNN-1D (ex-
plainable structure), Long short-term memory (LSTM), and GRU (black-box structure) to
estimate monthly ETj in a humid climate region. They suggest that the LSTM and GRU
models would perform better if designed in a hybrid form rather than a simple black-box
structure. This suggests that soft computing models perform better than empirical models
in estimating ET.

In contrast, among soft computing models, those of hybrid structure have better per-
formance in computation time and reduced errors [25-28]. Therefore, in this study, we
tested random vector functional link (RVFL) and relevance vector machine (RVM) with
a quantum-based avian navigation optimizer algorithm (QANA) and artificial humming-
bird algorithm (AHA) to estimate ET in a semi-arid region in Pakistan. The novelty of this
study lies in testing a new hybrid soft computing model, namely the AHA model. Addi-
tionally, to our knowledge, no study compares the soft computing models tested in this
study. The rest of the manuscript is organized as follows: Section 2 describes the study
site, whereas Section 3 gives brief information about the methodology in general, and for
each soft computing model specifically, Section 4 presents the main results and discusses
the relevance of our findings and the advantages of the proposed model compared to other
models. Finally, the main conclusion drawn from this study is presented in Section 5.

2. Case Study

In this study, two semi-arid climatic stations are selected from Pakistan, as shown in
Figure 1. Both stations are selected due to their geological and economical importance.
Both stations were identified as semi-arid regions based on the aridity index. Due to its
industrial and agricultural product production, Faisalabad is the key economical city of
Punjab province in Pakistan. Wheat is a major crop grown in this area. The area comprises
alluvial loess soils with calcareous characteristics that make this region very productive.
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This station has a mean sea elevation of 184 m with coordinates of 31.41 longitude and
73.11 latitudes. This area faces hot summer weather with a maximum temperature of 45 °C.
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Figure 1. Study area.

In contrast, the mean minimum and maximum temperatures are observed as 27 and
39 °C, respectively. In the winter, the mean minimum and maximum temperatures are
recorded as 6 and 17 °C. Peshawar is the second climatic station selected in this study. It
is the capital’s most economically populated city of Khyber Pakhtunkhwa province, with
a population of 4 million. This station is situated at a mean sea elevation of 331 m with
coordinates of 34.01 longitudes and 71.54 latitudes. This region has hot summer weather
with mild winter. The mean annual rainfall is 400 mm in the region, with a higher rainfall
ratio in the winter than summer. In summer, during the hottest month of July, maximum
and minimum temperatures exceed 40 °C and 25 °C whereas, during the coldest month of
December, the mean maximum and minimum temperatures are observed as 18.3 °C and
4 °C. For this study, minimum and maximum temperature data are collected from Pak-
istan meteorological department for the duration 1988 to 2015. Temperature data are easily
available even in developing countries. Therefore, only temperature-based inputs with ex-
traterrestrial radiation are used in this study. Extraterrestrial radiation is computed based
on the Julian date and does not require any climatic data. For better data visualization,
three training testing data partitions are adopted, such as 50-50%, 60-40%, and 75-25%. A
brief statistical summary of both stations’ used data is summarized in Table 1.
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Table 1. The statistical parameters of the applied data.

Tmin Tmax ETy Ra
Faisalabad Station
Min. 3.25 16.15 1.07 18.83
Max. 28.8 42.2 10.53 41.34
Mean 17.5 31.1 4.71 31.05
Skewness —0.241 —0.403 0.105 —0.181
Std. dev. 8.326 7.324 2.444 8.051
Peshawar Station
Min. —1.45 15.95 141 17.23
Max. 26.7 40.5 10.04 41.58
Mean 16.5 29.6 5.36 30.25
Skewness —0.176 —0.344 0.267 —0.147
Std. dev. 7.936 6.824 2.127 8.697
3. Methods

In this investigation, two new bio-inspired optimizers, the artificial hummingbird al-
gorithm (AHA) and quantum-based avian navigation optimizer algorithm (QANA), are
utilized for tuning RVFL and RVM methods in modeling ETj. These algorithms were de-
veloped using knowledge of hummingbirds’ sophisticated foraging techniques and unique
flight abilities. The implemented methods are described in the next sections.

3.1. Random Vector Functional Link Networks (RVFL)

The Random Vector Functional Link (RVFL) networks transform the input pattern
nonlinearly before being fed into the network’s input layer, creating an improved pat-
tern [29,30]. A connection between the input and output layers is present in the RVFL,
a form of Single Layer Feedforward Neural Network (SLFNN), as depicted in Figure 2.

Output Layer

Enhancement Node

P Output Weights

Random Weights T

Input Layer

Figure 2. Schematic structure of RVFL (adopted from [23]).

The over-fitting issue, which is prevalent in traditional SLFNN, is avoided by this link.
To induce an anticipated function, a functional link’s main goal is to try to expand a feature
space. The aim variable, y;, is obtained by the RVFL from the Ns sample data (X), which is
represented as a pair (x;, y;). After that, the middle (hidden) nodes process the input data.
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The nodes of enhancement are these middle nodes. The output of every middle node is
determined as follows Equation (1):

1

Oj(ajx; + Bj) = P e aie[—S, S|, Bjel0, S] (1)
where the weights between the enhancement (middle) nodes and the input layer nodes are
denoted by f;, and the bias is denoted by ;. During the optimization process, S, the scale

factor, is assessed. The formula below computes the outcomes of RVFL:
Z =FW - WeR"? . F = [F, R] )

where W denotes the output weight, and F denotes a matrix made up of the intermediate
layer’s F, result and the input sample F;:

X110 o Xig O(mx1 +pB1) -+ O(apxi+Bp)
h=]: -~ ¢ |andh = : : ®)
N1 XN O(myxn +B1) -+ O(apxn + Bp)

The following equations, which, respectively, represent the Moore-Penrose pseudo-
inverse and ridge regression, are used to update the output weight after the mentioned
Equations (4) and (5):

W =Fz (4)

-1
W= (FTF + (1:) Fz (5)

where + is the Moore-Penrose pseudo-inverse and C is a trading-off parameter. An initial
population of decision variables, called a “string”, is first randomly generated. The “fit-
ness” of the population search string is then evaluated by considering the constraints and
the objective function. Then, the ordered strings are linearly mapped to a fitness value
ranking: highest and lowest mating probability. There is a mating pool at this stage, and
the selected thread is assigned a mating partner.

3.2. Relevance Vector Machine (RVM)

As aspecial case of a sparse kernel model with an extended linear model with the same
functional form as a support vector machine, RVM indicates a Bayesian approach to the
model (SVM). It differs from SVM because the solution offers a probabilistic interpretation
of the results [31,32]. By creating models with a structure and parameterization procedure
that are both relevant to the information content of the data, RVM avoids complexity.

In the previously presented optimization process, the sparse Bayesian learning algo-
rithm is critical to the RVM, obtained by the likelihood function and prior knowledge. In
order to predict the function of y(x) at some random point x given a set of (usually noisy)
measurements of the function t = (ty, ..., ty) at certain training points x = (xy, ... ... , XN),
RVM begins with the notion of linear models:

= y(x) + e Q

where ¢; represents the measurement’s noise component, which has a mean of 0 and a
variation of 0. According to the premise of a linear model, the unknown function y(x) is
a linear amalgamation of certain recognized basis functions ¢; = (x), i.e., Equation (7):

M

y(x) = Ly wii(x) @)

where w = (wj, ..., wy) is a vector consisting of the linear combination weights.
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Equation (6) can then be written in vector form as follows:
t=¢w+e (8)

If ¢ isa N x M design matrix, the values of the basis function |¢;(X) at each training
points are produced in the ith column, and e = (5 ...... en ) is the noise vector.

RVM begins with a collection of input data (X, )nN:1 and their associated target vector
(tn )nN:y as a supervised learning method. This “training” set’s objective is to create a model
of the target vector’s dependence on the inputs to accurately forecast t for a value of x that
has never been seen before. The prediction is estimated in the context of RVM based on a
function of the form (Equation (9)):

y(x) = YN wiK(xex) + g ©)

where the weight vectors w = (wq, w», ..., wy), the bias wy, and the kernel function K (x,
xi) are all present.

We use the conventional formulation and assume p(tlx) is Gaussian N(tly(x), ¢2).
given a data set of input-target pairs (Xn-tn)nNzl. The expression y(x), as defined in Equa-
tion (6), models the mean of this distribution for a given x. The dataset’s likelihood can be

expressed as Equation (10):

p(t‘w,(rz) = <27wz) _N/zexp{—ziz t— ¢w2} (10)

where t = (t, ... ., tN), w = (wp, ..., wy) and P is the N*(N+1) “design” matrix with
@y = K(x-x,_1) and &1 = 1. Overfitting frequently occurs when w and ¢ in Equation
(6) are estimated with maximum probability. Tipping [33], therefore, advised imposing
previous constraints on the parameters by making the likelihood or error function more
complex. The learning process’ capacity for generalization is governed by this a priori
knowledge. New higher-level parameters are typically used to constrain an explicit zero-
mean Gaussian prior probability distribution over the weights (Equation (11)):

p(w’a) = Hlo N(w;

Each weight can depart from zero by a vector of (N*1) hyperparameters called [6].
Given the above non-informative prior distributions, Bayes’ rule could be used to deter-
mine the posterior overall unknowns (Equation (12)).

0,a; 1) (11)

1

p(w,rx,02|t) — p(tlw,a,c®)p(w,a,0) .

[ p(tlw, a,02)p(w, &, 0?)dwdado?
However, since we are unable to carry out the normalizing integral, p(t) = f p(%, «,
0?)p(w, x, 0?)dw da do?, we calculate the posterior solution in Equation (13) directly. In-

stead, we break down the back as Equation (13):

p(w,tx,az‘B) = p(w

t,oc,(fz)p(oc,02|t) (13)
to make the solution easier. Given by is the posterior distribution of weights (Equation (14)).

p(t|w,o®)p(w,a)
p(tla, 0?)

p(w|t,a,o?) = (14)
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p(t

wot) = [ p(t\wﬁ)p(w

Bayes’ rule is then used to determine the posterior over the weights (Equation (15)):
1
ploof o?) =2 N2z el S e W) a9

There is an analytical answer to Equation (18) where the mean and posterior covari-
ance are the following;:

-1
z=(¢"Bp+A4) (16)
= Yp Bt (17)
where we have defined A = &y, a7...... ay) and B = o 21y. is also treated as a

hyperparameter, which maybe estimated from the data.

As a result, machine learning evolved into a search for the posterior-most probable
hyperparameters. The marginal likelihood for the hyperparameters is then calculated by
integrating the weights, and predictions are then created for a new set of data:

w)dw = (271) N2 |B1 4 pA 19T -1/2 exp{—;tT (B*l + ¢A*1¢T) lt} (18)

As a machine learning method, the RVM-based tool wear prediction model also in-
cludes two important processes model construction and performance evaluation. The in-
puts of the RVM in the two processes are feature vectors composed of machining parame-
ters and features obtained from monitoring signals [34].

3.3. Artificial Hummingbird Algorithm (AHA)

Although AHA is a meta-heuristic, it differs greatly from other existing algorithms.
The most notable difference between AHA and the others is its unique biological basis.
AHA was founded on three foraging techniques and three flight maneuvers used by hum-
mingbirds in the wild. Another important distinction is between exploration and exploita-
tion. The territorial foraging strategy in AHA fosters exploitation, whereas the migration
foraging strategy ensures search space exploration.

In contrast, the guided foraging method prioritizes exploration over exploitation. The
third difference between AHA and current algorithms is its unique memory update mech-
anism. Each hummingbird must know when the others last visited to choose its preferred
food source. This information is saved in a visiting table. When the factors above are
considered, AHA and existing algorithms differ dramatically. Good literature attempts to
model the search behaviors of hummingbirds using Levy flight and the best individuals
Zhang et al. [35]. However, the proposed optimizer in this work attempts to mimic the
search behaviors of hummingbirds using three foraging strategies and their exceptional
memory and impressive flight abilities [36,37]. AHA imitates three flying patterns—axial,
diagonal, and omnidirectional —and three different search tactics—guided foraging, terri-
torial foraging, and migratory. In addition, a critical component known as the visit table
is included to imitate how hummingbirds use their memory to identify and select food
sources (see Figure 3).

This work proposes an artificial hummingbird algorithm (AHA), a product bio-insp-
ired optimization method, to address optimization challenges. The AHA algorithm simu-
lates hummingbirds” unique flight talents and smart foraging strategies in the wild.

In this piece, we looked through AHA, an optimization method that takes some cues
from the ingenuity of hummingbirds. Following is an outline of the three fundamental
tenets of AHA.

What we eat: In reality, a hummingbird chooses an appropriate food source from a
set by evaluating its properties, such as the nectar quality and content of individual flow-
ers, the nectar-refilling rate, and the most recent time of visit. A food source in AHA is a
solution vector, and the rate at which its nectar is replenished is represented by its function
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fitness value; this assumption is made for simplicity. The fitness benefits of a food source
include a faster rate of nectar replenishment.

The frequency with which different hummingbirds return to the same food source
is recorded in a “visit table,” which also keeps track of how long it has been since the
same hummingbird last visited that source. Suppose a hummingbird has a choice between
two food sources. In that case, it will preferentially visit the one that receives the most
visits overall.

’ ’. # 4 weeeend Territorial foraging
ST f -

Figure 3. Three foraging behaviors of AHA [36].

3.4. Quantum-Based Avian Navigation Optimizer Algorithm (QANA)

In order to solve problems requiring global optimization, differential evolution has
become a common and effective method. However, when the problem’s dimension ex-
pands, the solution’s efficacy and scalability decline. As a result, this research focuses on
developing a brand-new DE approach called the quantum-based avian navigation opti-
mizer algorithm (QANA), which was prompted by the extraordinarily exact navigation
of migrating birds along long-distance aerial routes. Using the proposed self-adaptive
quantum orientation and quantum-based navigation, which incorporated the two muta-
tion procedures DE/quantum/I and DE/quantum/Il, the QANA distributes the population
by splitting it into multiple flocks to explore the search space successfully. Except for the
firstiteration, each flock is randomly assigned to one of the quantum mutations approaches
using a newly created success-based population distribution (SPD) strategy. In the mean-
time, a novel communication topology known as V-echelon is utilized to distribute the
information flow among the population. In addition to providing a qubit-crossover opera-
tor for developing advanced search agents, we also provide both long-term and short-term
memory for storing data necessary for performing a partial landscape analysis. The sug-
gested QANA'’s efficacy and scalability were extensively evaluated using the benchmark
functions CEC 2018 and CEC 2013 as LSGO problems [38].

A robust and scalable DE algorithm, the quantum-based avian navigation optimizer
algorithm (QANA), is offered as a solution to LSGO problems. The QANA was inspired by
the extraordinary feats of the migrating birds, which use a quantum-based avian navigator
and communication topology to easily fly great distances [2,7]. The following are some of
how we helped to create this robust QANA algorithm:
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To allocate flocks effectively, we provide the success-based population distribution
(SPD) policy that exploits mutational approaches.

Keep things interesting by including both long-term and short-term memory.

Information sharing and management are best accomplished by implementing a V-
echelon topology, as recommended below.

Designing a couple of novel mutation strategies for quantum-based positioning
systems.

A qubit-crossover operator can help search agents obtain better results.

3.5. Proposed Optimized RVM and RVFL Models

The performance of RVM and RVFL depends on selecting appropriate model
hyper-parameters. In order to improve the performance of RVM and RVFL models, they
were integrated with two most recent metaheuristic algorithms (AHA and QANA).
Gausrsian kernel function was adopted for the RVM model. The main RVFL parame-
ters are the activation function, bias, and hidden node number. In the presented study,
200 hidden neurons were used, with bias at the output. The activation function was ra-
dial in RVFL. The main steps of the optimized RVM and RVFL models are illustrated in
Figures 4 and 5, respectively.

Optimizing RVM and RVFL models with AHA and QANA was started by normaliz-
ing the datasets into the range of 0-1. Data were split into 70% (training) and 30% (test-
ing). RMSE was used as a fitness function, and the training process was repeated till the
maximum iteration was met. The quality of the optimized RVM and RVFL models was
assessed utilizing 30% of the samples (testing data) with evaluation metrics to compute

the target output.

Set population size (N), Max number of
iterations (Tmax)

v

Generate the initial parameter population

v

Run RVM model on training data o

v

Calculate the fitness value and select the best
N solutions

Training
Dataset

Testing
Data

A\ 4

. L Is the
Obtain RVM optimized parameters | Yes N
- < termination
\criteria met?
\ 4 v No
Train RVM model Generate new population using metaheuristic

algorithm

A\ 4

optimized RVM model prediction
results

v
End

Figure 4. The main steps of optimized RVM.
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Figure 5. The main steps of optimized RVFL.

3.6. Assessment of the Developed Methods and Parameters

The implemented models in this study were compared with single versions and as-
sessed based on the following criteria:

1 N
RMSE : Root Mean Square Error = \/N Zizl [(Yo); — (Yc)l-]z (19)
1 N
MAE : Mean Absolute Error = N Zi:l (Yo); — (Yo); (20)
N _ _
(Yo=Y ) (Y=Y
R? : Determination Coef ficient = L (Yo = ¥o) (Ye — o) (21)

VI, (% - %) (Y - Yo

N 2
N 1(Yy): — (Y.):
NSE : Nash — Sutclif fe Ef ficiency =1 — Zl:}\} (%), (:)12] ,—00 < NSE<1 (22)
iz [(Yo); — Yo
where Y, is calculated ET, Y, is observed ETy, Y, is mean FAO PM 56 ET N is a number
of data. Table 2 gives brief information related to the setting parameters of the used MH

algorithms. For each model, 30 populations were set, and 1000 iterations were employed.
The algorithms were run 30 times to reach the final solution.

Table 2. Parameter settings for all algorithms.

Algorithm Parameter Value
AHA Migration coefficient 2n

r €1[0,1]

The number of flocks (k) 10

QANA K 9

K 50

Population 30

Common Settings Number of iterations 100

Number of runs for each Algorithm 30
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4. Results

The study investigates the viability of two machine learning methods, RVFL and RVM,
improved by two metaheuristics (MH) algorithms, AHA and QANA, in estimating ET( us-
ing limited input data (Tmin, Tmax, and Ra). The models were assessed using three data
split scenarios (50-50%, 60-40%, and 75-25%), and the results were tabulated for the best-
split scenario of each method. Training and testing results of the single RVFL models in
estimating ETj of Faisalabad Station are summed up in Table 3. As seen from the table,
five input combinations were considered. The fifth combination considers the periodic-
ity component (MN, month number of the output). It is apparent from Table 3 that the
RVFL model with full inputs (Tmin, Tmax, Ra, and MN) offers better estimations com-
pared to other input combinations. Table 3 also provides the outcomes of the improved
RVFL models, RVFL-AHA and RVFL-QANA, for the Faisalabad Station. It is visible from
Table 4 that the RVFL-AHA with input combination (v) acts as the best model. In the case
of RVFL-QANA, the models with input combinations (iii) and (iv) perform the best in the
estimation of ET, respectively.

It is clear from the RVFL-based models (see Table 3) that Tmax, Ra input is more
effective on ETj than the Tmin, Ra. A comparison of the single RVFL and hybrid ver-
sions reveals that the hybrid models improve the accuracy of the single RVFL model in
estimating ETy.

The outcomes of the single and hybrid RVM models in estimating ET( of Faisalabad
Station are reported in Table 4 for the best training-test scenario (75-25%). There is a
marginal difference between the input combinations (iv) and (v). Adding MN into the
inputs slightly improves the RVM accuracy.

Table 3. The results of the RFVL-based models for Faisalabad Station using the best training-test
partition (75-25% scenario).

. Training Period Test Period
Inputs Combinations
RMSE MAE R2 NSE RMSE MAE R2 NSE
RFVL
(i) Tmin, Tmax 0.9049 0.7135 0.8012 0.8012 0.9181 0.7261 0.7987 0.7940
(ii) Tmin, Ra 0.7069 0.5387 0.9156 0.9128 0.7173 0.5458 0.9081 0.9058
(iii) Tmax, Ra 0.6849 0.5206 0.9240 0.9210 0.6875 0.5234 0.9180 0.9177
(iv) Tmin, Tmax, Ra 0.6919 0.5314 0.9216 0.9210 0.6983 0.5361 0.9166 0.9144
(v) Tmin, Tmax, Ra, MN 0.6825 0.5183 0.9228 0.9203 0.6866 0.5222 0.9221 0.9186
Mean 0.7342 0.5645 0.8970 0.8953 0.7416 0.5707 0.8927 0.8901
RFVL-AHA
(i) Tmin, Tmax 0.8893 0.6939 0.8116 0.8114 0.9122 0.7140 0.8056 0.8021
(ii) Tmin, Ra 0.6375 0.4868 0.9492 0.9473 0.6447 0.4901 0.9469 0.9456
(iif) Tmax, Ra 0.6182 0.4569 0.9583 0.9567 0.6235 0.4625 0.9558 0.9543
(iv) Tmin, Tmax, Ra 0.6081 0.4524 0.9621 0.9596 0.6164 0.4599 0.9587 0.9572
(v) Tmin, Tmax, Ra, MN 0.6059 0.4507 0.9637 0.9605 0.6158 0.4562 0.9591 0.9580
Mean 0.6718 0.5081 0.9290 0.9271 0.6825 0.5165 0.9252 0.9234
RFVL-QANA
(i) Tmin, Tmax 0.8565 0.6715 0.8340 0.8321 0.9082 0.7051 0.8058 0.8055
(ii) Tmin, Ra 0.6329 0.4816 0.9483 0.9462 0.6466 0.4861 0.9451 0.9448
(iii) Tmax, Ra 0.6034 0.4517 0.9625 0.9617 0.6082 0.4553 0.9608 0.9604
(iv) Tmin, Tmax, Ra 0.5958 0.4452 0.9649 0.9632 0.6068 0.4471 0.9625 0.9616
(v) Tmin, Tmax, Ra, MN 0.6028 0.4459 0.9638 0.9617 0.6079 0.4491 0.9616 0.9609
Mean 0.6583 0.4992 0.9347 0.9330 0.6755 0.5085 0.9272 0.9266




Water 2023, 15, 486

13 of 22

Table 4. The results of the RVM-based models for Faisalabad Station using the best training-test
partition (75-25% scenario).

Training Period Test Period
Inputs Combinations
RMSE MAE R2 NSE RMSE MAE R2 NSE
RVM
(i) Tmin, Tmax 0.9042 0.7125 0.8074 0.8043 0.9115 0.7134 0.8061 0.8025
(ii) Tmin, Ra 0.6873 0.5397 0.9253 0.9242 0.6960 0.5414 0.9204 0.9200
(iii) Tmax, Ra 0.6827 0.5209 0.9279 0.9269 0.6854 0.5220 0.9259 0.9244
(iv) Tmin, Tmax, Ra 0.6809 0.5204 0.9283 0.9274 0.6826 0.5227 0.9269 0.9260
(v) Tmin, Tmax, Ra, MN 0.6695 0.5106 0.9324 0.9315 0.6734 0.5134 0.9307 0.9294
Mean 0.7249 0.5608 0.9043 0.9029 0.7298 0.5626 0.9020 0.9005
RVM-AHA
(i) Tmin, Tmax 0.8615 0.6672 0.8269 0.8257 0.9020 0.7139 0.8125 0.8087
(ii) Tmin, Ra 0.6396 0.4835 0.9503 0.9486 0.6437 0.4890 0.9472 0.9460
(iii) Tmax, Ra 0.5798 0.4348 0.9681 0.9681 0.6229 0.4594 0.9548 0.9546
(iv) Tmin, Tmax, Ra 0.5546 0.4149 0.9775 0.9775 0.6068 0.4487 0.9621 0.9610
(v) Tmin, Tmax, Ra, MN 0.5460 0.4062 0.9805 0.9805 0.6047 0.4462 0.9626 0.9617
Mean 0.6363 0.4813 0.9407 0.9401 0.6760 0.5114 0.9278 0.9264
RVM-QANA
(i) Tmin, Tmax 0.8067 0.6214 0.8560 0.8560 0.8900 0.7048 0.8164 0.8163
(ii) Tmin, Ra 0.6119 0.4492 0.9569 0.9569 0.6413 0.4824 0.9484 0.9470
(iii) Tmax, Ra 0.6076 0.4583 0.9612 0.9603 0.6143 0.4547 0.9587 0.9580
(iv) Tmin, Tmax, Ra 0.5766 0.4262 0.9706 0.9706 0.6070 0.4542 0.9616 0.9609
(v) Tmin, Tmax, Ra, MN 0.5604 0.4141 0.9765 0.9765 0.6062 0.4438 0.9639 0.9622
Mean 0.6326 0.4738 0.9442 0.9441 0.6718 0.5080 0.9298 0.9289

It is clear from Table 4 enlisting the training and testing outcomes of the hybrid RVM
models that for hybrid models, also periodicity slightly improves the models” accuracy in
estimating ET(. Like RVM-based models, here also Tmax, Ra inputs seem more effective
on ET( than the Tmin, Ra inputs. The last performance belongs to the models having Tmin
and Tmax inputs. Itis apparent from Table 4 that the RVM-AHA and RVM-QANA perform
superior to the single RVM models as found for the RVFL-based models. It is visible from
the single and hybrid RVFL and RVM models (Tables 3 and 4) that importing Ra into the
model inputs considerably improves the efficiency in estimating ETj.

Training and testing results of RVFL-based models are provided in Table 5 for esti-
mating ETy of Peshawar Station for the best training-test scenario. It is visible from the
tables that the models with Tmax, Ra inputs perform superior to the models having in-
puts of Tmin, Ra. The models with Tmin, Tmax, Ra, and MN inputs outperform the other
alternatives. In some cases, however, considering MN in inputs deteriorates the models’
accuracy in ET( estimation; for example, a 75-25% scenario of RVFL-QANA. It should be
noted that the models with only temperature inputs (Tmin, Tmax) produce inferior ETy
estimates in all cases and for all RVFL-based models.

The outcomes of single and hybrid RVM models are enlisted in Table 6 for estimating
ETy in Peshawar Station for the best training-test scenario (75-25%). It is clear from the
table that the models with full inputs (input combination (v)) generally act as the best in
estimating ET. Here also, Tmax, Ra combination provides the worst outcomes for single
and hybrid RVM models. It is understood from the table that tuning RVM parameters with
AHA and QANA methods improve its accuracy in estimating ETy using limited climatic
inputs. A comparison of RVM and RVFL models reveals that the RVM-based models gen-
erally act better than the RVFL-based models concerning mean statistics of RMSE, MAE,
R?, and NSE.
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The scatterplots in Figure 6 compare the optimal RVFL and RVM-based models for the
test period of Faisalabad Station. It is clear that the hybrid models produce less scattered
estimates than single models, and QANA generally has slightly better accuracy in estimat-
ing ETy. Taylor diagram illustrated in Figure 7 shows the superior accuracy of AHA and
QANA-based RVFL and RVM models compared to single models with higher correlation,
lower RMSE, and better standard deviation. It is clear from the violin charts in Figure 8
that the RVFL-QANA and/or RVM-QANA models better resemble the distribution of ob-
served ET in Faisalabad Station. It can be seen from the scatterplots, Taylor diagram, and
violin charts demonstrated in Figures 9-11 that the differences between hybrid and single
RVFL and RVM models are clearer for the Peshawar Station. These graphs justify hybrid
models” superiority over single models in estimating ET).

Table 5. The results of the RFVL-based models for Peshawar Station using the best training-test
partition (75-25% scenario).

o Training Period Test Period
Inputs Combinations
RMSE MAE R2 NSE RMSE MAE R2 NSE
RFVL
(i) Tmin, Tmax 0.7186 0.5687 0.8571 0.8571 0.8369 0.6786 0.8525 0.8303
(ii) Tmin, Ra 0.7392 0.5541 0.9220 0.9196 0.7554 0.6083 0.9136 0.9038
(iii) Tmax, Ra 0.6791 0.5034 0.9333 0.9333 0.7144 0.5371 0.9159 0.9098
(iv) Tmin, Tmax, Ra 0.6495 0.4879 0.9444 0.9441 0.6961 0.5452 0.9178 0.9128
(v) Tmin, Tmax, Ra, MN 0.6483 0.4861 0.9446 0.9444 0.6943 0.5360 0.9195 0.9141
Mean 0.6869 0.5200 0.9203 0.9197 0.7394 0.5810 0.9039 0.8942
RFVL-AHA
(i) Tmin, Tmax 0.6998 0.5617 0.8649 0.8645 0.7852 0.6376 0.8342 0.8366
(ii) Tmin, Ra 0.5047 0.4150 0.9531 0.9352 0.5342 0.4101 0.9524 0.9301
(iii) Tmax, Ra 0.4198 0.3594 0.9634 0.9467 0.4905 0.3828 0.9572 0.9447
(iv) Tmin, Tmax, Ra 0.4268 0.3360 0.9651 0.9543 0.4367 0.3617 0.9623 0.9502
(v) Tmin, Tmax, Ra, MN 0.3841 0.2876 0.9724 0.9635 0.3917 0.2904 0.9691 0.9567
Mean 0.4870 0.3919 0.9438 0.9328 0.5277 0.4165 0.9350 0.9237
RFVL-QANA
(i) Tmin, Tmax 0.6519 0.5101 0.8835 0.8824 0.7756 0.6052 0.8535 0.8413
(ii) Tmin, Ra 0.4895 0.3827 0.9564 0.9361 0.5016 0.3921 0.9543 0.9348
(iii) Tmax, Ra 0.3935 0.3060 0.9648 0.9526 0.4408 0.3451 0.9637 0.9514
(iv) Tmin, Tmax, Ra 0.3426 0.2690 0.9693 0.9671 0.3754 0.2935 0.9689 0.9632
(v) Tmin, Tmax, Ra, MN 0.3892 0.3022 0.9704 0.9581 0.4223 0.3435 0.9670 0.9541
Mean 0.4533 0.3540 0.9489 0.9393 0.5031 0.3959 0.9415 0.9290

Table 6. The results of the RVM-based models for Peshawar Station using the best training-test par-
tition (75-25% scenario).

L. Training Period Test Period
Inputs Combinations
RMSE MAE R2 NSE RMSE MAE R2 NSE
RVM
(i) Tmin, Tmax 0.7157 0.5647 0.8584 0.8583 0.8346 0.6260 0.8092 0.7915
(ii) Tmin, Ra 0.6678 0.5502 0.9215 0.9136 0.6759 0.5900 0.9199 0.8929
(iii) Tmax, Ra 0.6410 0.4934 0.9363 0.9333 0.6578 0.5414 0.9216 0.9201
(iv) Tmin, Tmax, Ra 0.6100 0.4815 0.9328 0.9256 0.6435 0.5362 0.9289 0.9205
(v) Tmin, Tmax, Ra, MN 0.5951 0.4725 0.9461 0.9452 0.6436 0.5369 0.9297 0.9283
Mean 0.6459 0.5125 0.9190 0.9152 0.6911 0.5661 0.9019 0.8907




Water 2023, 15, 486

15 of 22

Table 6. Cont.

L. Training Period Test Period
Inputs Combinations
RMSE MAE R2 NSE RMSE MAE R2 NSE
RVM-AHA
(i) Tmin, Tmax 0.7060 0.5649 0.8629 0.8621 0.7853 0.6096 0.8577 0.8466
(ii) Tmin, Ra 0.4567 0.3540 0.9499 0.9198 0.5385 0.4169 0.9474 0.9346
(iii) Tmax, Ra 0.4284 0.3501 0.9620 0.9418 0.4338 0.3612 0.9575 0.9410
(iv) Tmin, Tmax, Ra 0.4110 0.3409 0.9662 0.9560 0.4258 0.3529 0.9650 0.9534
(v) Tmin, Tmax, Ra, MN 0.3618 0.2988 0.9695 0.9594 0.3688 0.3009 0.9665 0.9573
Mean 0.4728 0.3817 0.9421 0.9278 0.5104 0.4083 0.9388 0.9266
RVM-QANA
(i) Tmin, Tmax 0.5643 0.4390 0.9119 0.9119 0.7823 0.6087 0.8537 0.8480
(ii) Tmin, Ra 0.4104 0.3208 0.9618 0.9534 0.4682 0.3880 0.9548 0.9312
(iii) Tmax, Ra 0.3659 0.2810 0.9630 0.9630 0.3999 0.3185 0.9623 0.9498
(iv) Tmin, Tmax, Ra 0.3088 0.2328 0.9736 0.9736 0.4347 0.3616 0.9685 0.9407
(v) Tmin, Tmax, Ra, MN 0.3132 0.2452 0.9729 0.9729 0.3252 0.2696 0.9705 0.9668
Mean 0.3925 0.3038 0.9566 0.9550 0.4821 0.3893 0.9420 0.9273
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Figure 6. Scatterplots of the observed and predicted ET by different RVFL- and RVM-based models

in the test period using the best input combination -Station 1 (Faisalabad).
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Figure 7. Taylor diagrams the predicted ET by different RVFL- and RVM-based models in the test
period using the best input combination —Station 1 (Faisalabad).
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Figure 8. Violin charts of the predicted ET by different RVFL- and RVM-based models in the test
period using the best input combination —Station 1 (Faisalabad).
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Figure 11. Violin charts of the predicted ET by different RVFL- and RVM-based models in the test
period using the best input combination —Station 2 (Peshawar).
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5. Discussion

The viability of RVFL and RVM models improved by AHA and QANA was investi-
gated in estimating ETj using limited inputs. The outcomes were compared with single
models considering three data split scenarios. It was observed that the AHA and QANA
methods considerably improved the accuracy of single RVFL and RVM models. For ex-
ample, the mean RMSE of the RVFL model was improved by 7.96% by applying the AHA
method (RVFL-AHA) in the test period of Faisalabad Station, respectively.

The overall outcomes revealed that only temperature input (Tmin, Tmax) provides
the worst ET estimations. In contrast, the full inputs involving Tmin, Tmax, Ra, and MN
generally perform the best. The studies by Dimitriadou and Nikolakopoulos [39,40] also
found similar results. They applied multiple linear regression and ANN for predicting
ETj of the Peloponnese Peninsula, Greece. They indicated that the models with only tem-
perature inputs offer inferior outcomes. On the other hand, Importing Ra into the models’
input considerably improves the performance in estimating ETy. For example. The RMSE
of the single RVFL model decreased by 23.94% in the test period of Faisalabad Station.
Shiri et al. [41] assessed some machine learning methods in estimating ET in humid loca-
tions of Iran and found that temperature-based models involving temperature and Ra in-
puts offer promising results. Adnan et al. [42] investigated the estimation of ET by hybrid
adaptive fuzzy inferencing coupled with heuristic algorithms and using various climatic
inputs. They observed that the Ra is highly effective on models’ accuracy in ETj estimation.

Considering MN in inputs considerably improves the models’ performance in esti-
mating ETy in some cases. It was seen from the comparison of input combinations that the
Tmax, Ra provided better accuracy than the Tmin, Ra in estimating ETj in all models in
both stations.

Niaghi et al. [43] investigated the accuracy of linear regression, random forest (RF),
gene expression programming, and support vector machine in estimating ETy of
sub-humid Red River Valley using different climatic input combinations. They obtained
the best outcomes (R? = 0.927) from the RF in the testing period. Adnan et al. [42] in-
vestigated the estimation of ETy by hybrid adaptive fuzzy inferencing (ANFIS) coupled
with Moth Flame Optimization (MFO) and Water Cycle Optimization (WCA) heuristic al-
gorithms using different climatic input data. From best to worst, the ANFIS-WCAMFO,
ANFIS-MFO, ANFIS-WCA, and ANFIS provided R? values of 0.950, 0.946, 0.939, and 0.937
in the test stage, respectively. In the presented study, the hybrid RVFL-AHA and RVM-
AHA models had R? values of 0.959 and 0.963 in the test stage. The comparison with
previous studies shows the good efficiency of the proposed models. However, the accu-
racy of the estimations is highly related to the available data. The relationships between
climatic input data and ETj can be more complex in some regions and/or climates.

On the other side, sometimes, some input parameters having a low correlation with
output (here ETy) badly affect the accuracy of machine-learning methods. Therefore, dif-
ferent combinations of inputs should be considered to obtain the best one. The provided
outcomes of this study assessed and indicated the efficiency of the hybrid RVM and RVFL
models for the limited number of stations in the same climatic region. The results cannot
apply to other regions with a different climates. To do this, much more data should be
used in evaluating the proposed models. On the other hand, the main RVM and RVFL
models can be tuned to more recent algorithms and compared with calibrated empirical
equations and deep learning approaches to decide the optimal method for any region.

6. Conclusions

Prediction abilities of two machine-learning methods, i.e., random vector functional
link (RVFL) and relevance vector machine (RVM), evaluated in this study with the inte-
gration of two novel optimization algorithms, quantum-based avian navigation optimizer
algorithm (QANA) and artificial hummingbird algorithm (AHA). Evapotranspiration data
of two climatic stations located in semi-arid regions of Pakistan are predicted using both
optimized machine learning models. To determine the accuracy of models, four statisti-
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cal indicators, i.e., the root mean square errors (RMSE), mean absolute errors, determina-
tion coefficient, and Nash-Sutcliffe Efficiency, were applied using different input combi-
nations composed of minimum temperature, maximum temperature, and extraterrestrial
radiation. The effect of different splitting strategies and periodicity is also examined. It
is found that the RVM-QANA model with 75-25% train-test split scenario using full in-
puts involving Tmin, Tmax, Ra, and MN provided more accurate results in comparison to
other models. Temperature data are available worldwide, especially in developing coun-
tries, whereas Ra can easily be computed based on Julian data. Limited data usage with
more accurate study results recommended applying these advanced models for ETo pre-
diction. Prediction of potential evapotranspiration (ETy) is crucial in drought monitoring
and assessment. ET( calculates the common drought index (standardized precipitation
evapotranspiration index). The methods investigated in this study can be used in drought
assessment projects by providing accurate ET( data.
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