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Abstract: In spring, rivers at middle and high latitudes in the Northern Hemisphere are prone
to ice jams, which threaten the safety of hydraulic structures in rivers. Heilongjiang Province is
located on the highest latitude in China, starting at 43◦26′ N and reaching 53◦33′ N. Rivers in
Heilongjiang Province freeze in winter and break up in spring. Forecasting the break-up date of river
ice accurately can provide an important reference for the command, dispatch, and decision-making of
ice flood preventing and shipping. Based on the observed break-up date series of river ice from seven
representative hydrological stations in Heilongjiang Province, the complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN) was used to decompose the observed break-up date
series of river ice into several subsequences, and the long-short term memory neural network (LSTM)
was used to forecast the subsequences decomposed by CEEDMAN. Then, the forecast results of each
subsequence were summed to obtain the forecasting value for the break-up date of river ice proceeded
by CEEMDAN-LSTM. Compared with the LSTM, the forecast accuracy of CEEMDAN-LSTM for the
break-up date of river ice had been significantly improved, with the mean absolute error reduced from
0.80–6.40 to 0.75–3.40, the qualification rate increased from 60–100% to 80–100%, the root-mean-square
difference reduced from 1.37–5.97 to 0.95–1.69, the correlation coefficient increased from 0.51–0.97 to
0.97–0.98, and the Taylor skill score increased from 0.87–0.99 to 0.99. CEEMDAN-LSTM performed
well in forecasting the break-up date of river ice in the Heilongjiang Province, which can provide
important information for command, dispatch, and decision-making of ice flood control.

Keywords: river ice; break-up date; LSTM; CEEMDAN; Heilongjiang Province

1. Introduction

River ice plays a key role in the erosion of river banks and beds in cold regions
and the regulation of river flow regimes [1,2]. In middle and high-latitude rivers in
the Northern Hemisphere, the break-up of river ice is an important seasonal hydrolog-
ical event [3]. The break-up of river ice has important ecological and socioeconomic
impacts [4], and destroys fish spawning grounds [5], leads to an increase in the concen-
tration of suspended sediment [6,7], pounds hydraulic structures, and threatens property
safety [8–10]. Forecasting the break-up date of river ice is one of the important contents of
the ice regime forecast, and provides an important scientific basis for command, dispatch,
and decision-making in ice flood control.

Research regarding the forecasting of the break-up date of river ice began in the
1970s [11]. Numerical simulation methods and mathematical–statistical methods are used to
forecast the break-up date of river ice [12]. One-dimensional numerical models (such as RIV-
JAM, ICEJAM, RIVER1D, ICEPRO, MIKE11, and RIVICE, etc.) [13–19], two-dimensional
numerical models (such as CRISSP2D/DYNARICE, etc.) based on the principles of ice
dynamics and hydrodynamics considering water level and flow data [20,21], and other
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numerical simulation methods were evaluated for simulating the breakup of river ice.
However, due to the lack of some physical parameter values or boundary conditions
required in the numerical simulation method, the application of numerical simulation
methods for forecasting the break-up date of river ice in some rivers was limited [22]. For
making up for the shortcoming of numerical simulation methods, mathematical–statistical
methods were used to attempt to figure out the break-up date of river ice by the cor-
relation between the break-up date of river ice and the meteorological or hydrological
elements, or by the autocorrelation of the break-up date series of river ice. For example,
the correlation between the thermal, dynamic, and river factors and break-up date was
described by a fuzzy optimization neural network [23], the correlation between the flow
velocity of upstream and downstream, and temperature and break-up date described by a
neural network [24], the correlation between the autumn weather process and break-up
date [12] was used to forecast the break-up date of rivers. However, the meteorological
and hydrological elements affecting the break-up date of rivers are different at different
hydrological stations, which need to be analyzed and recognized separately. Therefore, it is
complex and laborious to use the correlation between the break-up date of river ice and
the meteorological or hydrological elements in forecasting the break-up date of river ice
for regions with numerous hydrological stations. In addition, it is difficult to measure or
guarantee the measurement accuracy for some hydrological elements, such as water level,
flow velocity, and so on, influenced by the river ice during the freezing period. Therefore,
methods using the autocorrelation of the break-up date series, namely time-series forecast
methods, have been found to be simple and effective ways to forecast the break-up date of
river ice. Among the time-series forecast methods, artificial neural networks (ANN) with
structural advantages perform well [25]. In ANNs, the long short-term memory network
(LSTM), which can be used in time-series forecasting, overcomes the problem of traditional
recurrent neural networks (RNNs) with exploding and vanishing gradient problems, by
adding cell states [26]. Furthermore, the break-up date series of river ice contain nonlinear
and nonstationary information that increases the difficulty of forecasting. Signal decom-
position techniques, producing cleaner series as model inputs, can improve forecasting
model performance in comparison to traditional approaches [27–30]. Compared with
other signal decomposition techniques, complete ensemble empirical mode decomposition
with adaptive noise (CEEMDAN) resolves the mode-mixing problem of empirical mode
decomposition (EMD) and achieves negligible reconstruction errors [31], and is widely
used in hydrology [32–35].

Therefore, to forecast the break-up date of river ice (the break-up date, for short, in
the following) in the Heilongjiang Province, CEEMDAN is used to decompose the original
break-up date series into subsequences (some intrinsic mode functions (IMFs) and one
residual series) according to different fluctuations and frequencies, and LSTM is used to
forecast the subsequences decomposed by CEEMDAN, then the forecast results of each
subsequence are summed to obtain the forecast break-up date, and the method is named as
CEEMDAN-LSTM. The remainder of the paper is organized as follows. Section 2 describes
the details of the LSTM, CEEMDAN-LSTM, study area, and data. Section 3 presents
the forecasting results of the break-up date obtained from LSTM and CEEMDAN-LSTM.
Section 4 discusses the reasons for the difference in the accuracy of LSTM and CEEMDAN-
LSTM, and the reasons for the poor forecast accuracy of the break-up date at the two special
stations of Baoqing and Qiqihar stations. Conclusions are drawn in Section 5.

2. Materials and Methods
2.1. Study Area and Data

Heilongjiang Province is the northernmost and highest-latitude province in China.
Heilongjiang Province, spanning 14 longitudes from east to west and 10 latitudes from
north to south, geographically extends from 121◦11′ E to 135◦05′ E and 43◦26′ N to 53◦33′ N.
Heilongjiang Province covers a total area of 473,000 km2. There are three mountain ranges
(Greater Khingan Mountains, Lesser Khingan Mountains, and the northern remnants of
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Changbai Mountain named Wanda Mountains) and two plains (Songnen plain and Sanjiang
plain). The geographical location and topography of Heilongjiang Province are shown in
Figure 1. Heilongjiang Province is located in cold and middle temperate zones with an
average annual temperature of 3–5 ◦C. Heilongjiang province has a long and cold winter
with an average temperature of −17.1 ◦C, and a windy and dry spring with an average
temperature of 4.8 ◦C. The rivers in Heilongjiang province freeze up at the end of October
and break up in April of the next year.
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Figure 1. Study area and representative stations (The red star represents the capital of China).

The break-up date series of Mohe hydrological station (MH), Yichun hydrological
station (YC), Mudanjiang hydrological station (MDJ), Qiqihar hydrological station (QQHR),
Harbin hydrological station (HRB), Fujin hydrological station (FJ), and Baoqing hydro-
logical station (BQ) were selected to study the break-up date forecast. Among these
hydrological stations, MH, YC, and MDJ are located in Greater Khingan Mountains, Lesser
Khingan Mountains, and Wanda Mountains, respectively. QQHR and HRB are located in
the Songnen plain. FJ and BQ are located in the Sanjiang plain. Except for MH, which is
located in the cold temperate zone, the other hydrological stations are located in a middle
temperate zone. The length, time span, mean, standard deviation (SD), and range of the
break-up date series of each hydrological station are shown in Table 1. As shown in Table 1,
the break-up date series of all hydrological stations ended in 2019. Except for QQHR (length
of 36) and YC (length of 47), the length of the break-up date series of other stations was
about 60 years. Except for FJ, MH, and YC, breaking up in mid-late April (day 107–day
119), the break-up date of other hydrological stations is in early April (day 97 to day 101).
Apart from BQ (standard deviation of 6.84, range of 45) and QQHR (standard deviation of
6.82, range of 34), the standard deviation of the break-up date series of other hydrological
stations was less than 6, and the range (the difference between the earliest break-up date
and the latest break-up date in the respective series) was less than 25 days.
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Table 1. Characteristic of break-up date series at each station.

Station
HRB BQ FJ MH MDJ QQHR YC

(1) (2) (3) (4) (5) (6) (7)

Time span 1951–2019 1961–2019 1960–2019 1958–2019 1960–2019 1984–2019 1973–2019
Series length (year) 69 59 69 62 60 36 47

Mean Day 98 Day 97 Day 107 Day 119 Day 101 Day 98 Day 107
Standard deviation (day) 5.14 6.84 5.21 5.07 5.44 6.82 5.20

Range (day) 25 45 23 25 25 34 19

Note: The break-up date in this paper is the day when the river surface is mainly covered by open water and the
area of open water exceeds 80%. The time span of the break-up date series is the beginning year of the series to
the end year of the series, and the unit of the time span of the break-up date series is the “year”. The length of
the break-up date series is the number of samples that make up the series, and there is one sample a year for the
break-up of rivers in Heilongjiang province. The unit of the length of the break-up date series is the “year”. In this
paper, the break-up date of the river was converted to a numeric value, which is shown as the days after 1 January
(1 January is the first day). For example, day 5 in this paper means the break-up date of the river with 5 January.
After converting the break-up dates into corresponding numeric values, the break-up date series is converted into
numeric value series, and the mean, standard deviation (SD), and range of the break-up date series are the mean
value, the SD value, and the range value of the numerical value series, respectively. The units of mean, SD, and
range of the break-up date series are the same, all of which are the “day”.

2.2. CEEMDAN

In this paper, CEEMDAN, a signal decomposition technique, is used to decompose
the observed break-up date series into subsequences according to different fluctuations
and frequencies. The steps of CEEMDAN are as follows:

Step 1: Add adaptive Gaussian white noise nj(t) to the break-up date series x(t), and
obtain the signal xj(t) used to decompose:

xj(t) = x(t) + pinj(t)(i = 1, 2, · · · , M; j = 1, 2, · · · , N) (1)

where i represents the number of the IMF in Step 2; j represents the realization number, that
is, the number of times white noise was added to x(t) or rk(t), the value of j in the hundreds
will lead to a very good result [36], is set to 500 in this paper; pi is the standard deviation
in the noise, which controls the signal-to-noise ratio of nj(t) to x(t), the value of pi is set to
0.2 times the standard deviation of the break-up date series, which is recommended by
Colominas, Schlotthauer, and Torres [37].

Step 2: Use the EMD [38] to decompose the signal obtained from Step 1 xj(t) to

obtain the IMF component IMFj
i (t). IMFj

i (t) is the ith IMF component of xj(t) after EMD
decomposition.

Step 3: Repeat Step 1 and Step 2 N times, and add different Gaussian white noise nj(t)
each time. The maximum iteration, which is not limited [39], is set to 5000 by experience to
ensure that all extracted IMFs are valid before the EMD stops.

Step 4: Set the mean values of the IMF components after N time decompositions as
the first IMF. The formula used to calculate the first IMF component is as follows:

IMF1(t) =
1
N ∑N

j=1 IMFj
1 (t) (2)

The residual signal is as follows:

r1(t) = x(t)− IMF1(t) (3)

Then, e1(t) is defined as a process of the first IMF component IMF1(t) by EMD and
the sequence r1(t) + p2e1(nj(t)) to obtain the second IMF component as follows:

IMF2(t) =
1
N ∑N

j=1 e2
(
r1(t) + p2e1

(
nj(t)

))
(4)
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The residual signal is as follows:

r2(t) = r1(t)− IMF2(t) (5)

Similar to the above steps, the kth residual signal can be expressed as follows:

rk(t) = rk−1(t)− IMFk(t) (6)

The (k + 1)th IMF component is as follows:

IMFk+1(t) =
1
N ∑N

j=1 ek+1
(
rk(t) + pk+1ek

(
nj(t)

))
(7)

Finally, the above steps are repeated until the residual signal rk(t) becomes a constant
function or monotonic function. Supposing that there are M IMF components, the original
sequence can be expressed as follows:

x(t) = ∑M
i=1 IMFi(t) + r(t) (8)

where r(t) represents the final residual signal that has become a constant function or
monotonic function.

2.3. LSTM Network

The LSTM network is a special kind of RNN which reduces the decreased learning
ability of traditional RNNs for long-term series [40]. There are three gates in the struc-
ture of LSTM designed to overcome the weakness in traditional RNNs to learn long-
term dependencies.

The first gate is the forget gate, which controls the element of the cell state vector
that will be forgotten. The formula used to calculate the output vector of the forget gate is
shown in Formula (9)

ft = σ
(

W f xt
∗ + U f ht−1 + b f

)
(9)

where xt
∗ represents the normalized break-up date series (the normalization method is

shown in Formula (10)); ft represents the output vector of the forget gate, whose values
are in the range of (0, 1); σ(·) represents the logistic sigmoid function; ht represents the
hidden state; W f , U f and b f represent the learnable parameters for the forget gate, W f and
U f represent two adjustable weight matrices, and b f represents a bias vector.

xt
∗ =

xt − µ

σ
(10)

where xt is the sample value of the break-up date series, µ is the mean of the break-up date
series, σ is the standard deviation of the break-up date series.

The second gate is the input gate. This gate defines which information (and to what
degree) is used to update the cell state at the current time, as shown in Formula (11):

it = σ(Wixt
∗ + Uiht−1 + bi) (11)

where it represents a vector, and its values range from 0 to 1, Wi and Ui represent two
adjustable weight matrices, and bi represents a bias vector for the input gate.

Ĉt = tan h(Wc·[ht−1, xt
∗] + bc) (12)

Ct = ftCt−1 + itĈt (13)

where Ct and Ĉt are the cell state at the current moment and the previous moment, respec-
tively. Ĉt is the candidate status of the inputs. tanh is a hyperbolic tangent activation function.
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The last gate is the output gate, which controls the information of the cell state Ct that
flows into a new hidden state. The output of the output gate is calculated by Formula (14):

Ot = σ(Woxt
∗ + Uoht−1 + bo) (14)

ht = Ot·tan h(Ct) (15)

where Ot represents a vector, and its values range from 0 to 1, Wo and Uo represent two
adjustable weight matrices, and bo represents a bias vector for the output gate.

In LSTM, the number of hidden layers is set to 18. The loss function is a mean square
error function. More details of the LSTM can be found in Gers et al. (2000) [41]. In the
original LSTM algorithm, a custom-designed approximate gradient calculation is used to
update the weights after each timestep [42]. However, the backpropagation through time
(BPTT) method is used to reverse-calculate the mean square error between the output value
of each LSTM neuron and the observed value [43]. According to the mean square error,
the gradient of each weight is calculated, and the gradient descent algorithm is applied to
update the weight.

In addition to the model structure and weight updating, the window length is a part
of LSTM. The window length is different for different model inputs and outputs [44]. For
time-series forecast, the autocorrelation coefficient can be used to select the window length
of LSTM [25]. The autocorrelation coefficient describes the degree of correlation between
two periods of the random signal. The greater the absolute value of the autocorrelation
coefficient, the stronger the correlation between the random signals over the two periods.
The order (m) corresponding to the maximum value of the autocorrelation coefficient
(maximum autocorrelation order) of the break-up date series represents the strongest
correlation between the break-up date series x(t) and the break-up date series x(t − m) [45].
The value of the maximum autocorrelation order is set as the window length of the LSTM.
The maximum autocorrelation order of the break-up date series at each hydrological station
is shown in Table 2. As shown in Table 2, the window length of the LSTM of HRB, BQ, FJ,
MH, MDJ, QQHR, and YC are 14, 3, 1, 16, 3, 6, and 2, respectively. The last five years’ (2015–
2019) break-up dates from each hydrological station are used as the forecast data of the
LSTM, and the remaining break-up dates are used as training data. The forecast break-up
date obtained by the LSTM is the calculation result of the LSTM after inverse normalization.

Table 2. The maximum autocorrelation order of the break-up date series at each hydrological station.

Model Station HRB BQ FJ MH MDJ QQHR YC

LSTM Maximum autocorrelation order 14 3 1 16 3 6 2

Note: The value of the maximum autocorrelation order is set as the window length of the LSTM.

2.4. Fundamental Frameworks of CEEMDAN-LSTM

The coupling of CEEMDAN and LSTM, named CEEMDAN-LSTM, is used to forecast
the break-up date of each station. The basic idea of CEEMDAN-LSTM is the normalized
IMFs and residual series are obtained by CEEMDAN as input data for the LSTM. Same as
the LSTM, the last five years’ break-up dates from each hydrological station are used as the
forecast data of the CEEMDAN-LSTM, and the remaining break-up dates are used as train-
ing data. The value of the maximum autocorrelation order of each IMF and residual series
is the window length of the LSTM. The forecast break-up date obtained by the CEEMDAN-
LSTM is the sum of the calculation results of the LSTM after inverse normalization of all
IMFs and residual. The specific steps of the CEEMDAN-LSTM are as follows:

(1) Obtain the break-up date series and decompose it into subsequences (multiple IMFs
and a residual series) by CEEMDAN.

(2) Divide the IMFs and residual series into training data and forecast data, and normal-
ize them.



Water 2023, 15, 496 7 of 21

(3) Calculate the maximum autocorrelation order of each IMF and residual series (shown
in Table 3), and build the LSTM to forecast the value of IMFs and residual series.

Table 3. The maximum autocorrelation order of each IMF and residual series of the break-up date
series of each hydrological station.

Model Station HRB BQ FJ MH MDJ QQHR YC

CEEMDAN-LSTM

IMF1 1 2 2 1 2 1 2
IMF2 3 3 3 3 3 3 3
IMF3 1 1 1 4 1 1 1
IMF4 1 1 1 1 1 1 1
IMF5 1 1 1 1 1 - 1
IMF6 - 1 - - - - -

Residual 1 1 1 1 1 1 1
Note: “-” means no corresponding IMF.

(4) Denormalize and evaluate the forecast result.

2.5. Performance Evaluation

The Taylor diagram was adopted to assess and compare the performance of LSTM and
CEEMDAN-LSTM in the break-up date forecast. The Taylor diagram is a polar coordinate
diagram composed of standard deviation (SD), the root-mean-square difference (RMSD),
and the correlation coefficient (R) of the forecast break-up date series (x̂t) and the observed
break-up date series (xt) [46]. The Taylor diagram is constructed by the relationship between
the four statistical quantities above shown in Formula (16). The SD, RMSD, and R can be
calculated by Formula (17)–(20).

RMSD2 = SDo
2 + SDf

2 − 2SDoSDfR (16)

SDo =

√
1
N ∑N

t=1(xt − xt)
2 (17)

SD f =

√
1
N ∑N

t=1

(
x̂t − x̂t

)2
(18)

RMSD =

√
1
N ∑N

t=1

[(
x̂t −

=
x̂t

)
− (xt − xt)

]2
(19)

R =

1
N ∑N

t=1

(
x̂t −

=
x̂t

)
(xt − xt)

SDoSD f
(20)

where SDo is the standard deviation of observed break-up date series (xt), SD f is the
standard deviation of forecast break-up date series (x̂t), N is the series length.

For quantitatively comparing the model performance, the Taylor skill score was
introduced to evaluate the pros and cons of model capabilities. The calculation formula of
the Taylor skill score is shown in Formula (21).

S =
4(1 + R)4( SD f

SDo
+ SDo

SD f

)2
(1 + Rmax)

4
(21)

where S is the Taylor skill score. The larger the S, the better the model performs. Rmax is the
maximum value of R between the forecast break-up date and the observed break-up date.
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In addition to the Taylor diagram and the Taylor skill score, the mean average error
(MAE) and qualification ratio (QR) are selected to evaluate the model performance; the calcu-
lation formula of the MAE and QR are shown in Formula (22) and Formula (23), respectively.

MAE =
1
N ∑N

t=1|x̂t − xt| (22)

When MAE = 0, all forecast break-up dates are equal to the observed break-up dates.
The closer the MAE is to 0, the better the model performance.

QR =
nabs(AE)≤7

N
(23)

where nabs(AE)≤7 is the number of the absolute error less than or equal to 7 days (according
to the standard for hydrological information and hydrological forecasting, for ice regime
forecasting with a foreseen period greater than 15 days, the maximum allowable error is 7
days), N is the length of series, AE = xt − x̂t.

3. Result
3.1. Results of Decomposing the Observed Break-Up Date Series Using CEEMDAN

The observed break-up date series of each hydrological station (except for the last five
years’ data) was taken as the input of CEEMDAN; the decomposition result of CEEMDAN
is shown in Figure 2.

As shown in Figure 2, the observed break-up date series is decomposed into several
IMFs and a residual series. Combining Figure 2 and Table 1, it can be seen that the observed
break-up date series with a larger standard deviation, compared with other similar break-
up date series in length, obtains relatively more decomposed subsequences. Except for
the break-up date series of QQHR and YC stations, the lengths of the break-up date series
of the other stations are similar (Table 1). The standard deviation of the break-up date
series of BQ station is the largest (Table 1), and the break-up date series of BQ station are
decomposed into 7 components (6 IMFs and 1 residual series shown in Figure 2), while the
break-up date series of the other hydrological stations are decomposed into 6 components
(Figure 2).

As shown in Figure 2, the subsequences (IMFs and residual series) have different but
simple intrinsic oscillation modes. Each IMF has a different frequency and fluctuation
degree. With the decomposition processing, the frequency and fluctuation degree decreased.
IMF1 has the highest fluctuation degree and frequency. The residual series has the lowest
fluctuation degree and frequency. The residual series is close to linear and varied slightly
around the long-term average, whose values are much larger than the values of IMFs. The
residual series represents the trend in the original break-up date series [47].

3.2. Result of LSTM Applied to Forecast the Break-Up Date

The last five years’ break-up dates from each hydrological station were used as the
forecast data of the LSTM, and the remaining break-up dates were used as input data.
The absolute errors (AE) for the seven stations are shown in Figure 3. The mean absolute
error (MAE) and qualification ratio (QR) and the range of AE are shown in Table 4. The
Taylor diagram is shown in Figure 4. The standard deviation (SD), the root-mean-square
difference (RMSD), and the correlation coefficient (R) used to draw the Taylor diagram are
shown in Table 5.
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Figure 3. The absolute error (AE) of the LSTM at each station in Heilongjiang Province (the black
dashed line represents the maximum allowable error stipulated by the standard for hydrological
information and hydrological forecasting, and the yellow dashed line divides the training period and
the forecast period).

Table 4. The absolute error range, MAE, and QR of LSTM at each station.

Period Performance Evaluation Index HRB BQ FJ MH MDJ QQHR YC

Training
Range of AE [−8, 9] [−9, 9] [−6, 5] [−13, 9] [−5, 4] [−11, 12] [−8, 9]

MAE 2.53 2.61 1.69 2.48 0.80 3.97 2.71
QR(%) 95.31 96.30 100.00 91.23 100.00 75.19 95.24

Forecast
Range of AE [−6, 0] [−10, 8] [0, 4] [−2, 4] [1, 2] [−13, −1] [0, 3]

MAE 1.80 6.40 2.00 2.67 2.17 6.33 1.67
QR(%) 100.00 60.00 100.00 100.00 100.00 80.00 100.00
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Table 5. The S, RMSD, R, and SD of LSTM at each station.

Station HRB BQ FJ MH MDJ QQHR YC

S 0.93 0.95 0.99 0.95 0.99 0.87 0.99
RMSD 3.58 3.96 2.27 3.87 1.37 5.97 3.10

R 0.72 0.82 0.91 0.66 0.97 0.51 0.83
SDo 5.14 6.84 5.21 5.07 5.44 6.82 5.20
SDf 3.95 5.50 5.23 4.05 5.65 4.64 5.27

As shown in Figure 3, among the absolute errors of break-up date forecasting for the
seven representative hydrological stations, only the absolute errors of FJ and MDJ stations
fall within the range of the maximum allowable error. As shown in Table 4, the absolute
errors of all stations range from −13 to 12. The absolute errors in the training period range
from −13 to 12, and the absolute errors in the forecast period range from −13 to 8, which
is smaller than the absolute error range in the training period. In the training period, the
absolute error range of QQHR is the largest, from −11 to 12, and the absolute error range
of MDJ is the smallest, from −5 to 4. In the forecast period, the absolute error range of BQ
is the largest, from −10 to 8, which is slightly larger than the absolute error range of QQHR
from −13 to −1, and the absolute error range of MDJ is the smallest, from 1 to 2.

As shown in Table 4, the MAE values of all stations obtained by LSTM range from
0.80 to 6.40, and the MAE values of QQHR and BQ are larger than the others. In the training
period, the MAE value of QQHR with 3.97 is the largest, which is slightly larger than the
MAE value of BQ with 2.61. The MAE value of MDJ with 0.80 is the smallest in all stations.
In the forecast period, the MAE value of BQ with 6.40 is the largest, which is slightly larger
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than the MAE value of QQHR with 6.33. The MAE value of YC with 1.67 is the smallest in
all stations.

According to the maximum allowable error stipulated by the standard for hydrological
information and hydrological forecasting, for an ice regime forecasting with a foreseen
period greater than 15 days, the maximum allowable error is 7 days. Namely, a forecasting
with the absolute error fewer than 7 days is considered as a qualified forecasting. The
qualification ratio (QR) is listed in Table 4. As shown in Table 4, the QR values for all
stations are above 60%. Furthermore, in the training period, except for the QR value of
QQHR with 75.19%, the QR values are above 90%. In the forecast period, except for the QR
value of QQHR with 80% and the QR value of BQ with 60%, the QR values are 100%.

The Taylor diagram provides a statistical summary of the matching degree between
the forecasting break-up date series and the observed break-up date series in terms of
correlation coefficient (R), standard deviation, and root-mean-square difference (RMSD) in
a polar plot. In a Taylor diagram, the cosine of the azimuth angle represents the R between
the forecasted break-up date series and the observed break-up date series, the distance from
the origin (radius) represents the standard deviation of the forecasted (observed) break-up
date series (SDf or SDo), and the distance from the reference point (azimuth angle = 0 and
radius = SDo), being in full agreement with observed break-up date series, represents the
RMSD. In a Taylor diagram, the smaller the azimuth angle, the closer the radius to SDo,
and the closer the distance to the reference point, the better the LSTM performance.

As shown in Figure 4, the azimuth angles of the points representing the forecast
break-up date series of FJ, MDJ, and YC are smaller, the radiuses of points representing the
forecast break-up date series of FJ, MDJ, and YC are closer to their corresponding SDo, and
the points representing the forecast break-up date series of FJ, MDJ, and YC are closer to
the corresponding reference points. The Taylor skill score (S) values of FJ, MDJ, and YC are
all 0.99 (Table 5). The azimuth angle of the points representing the forecast break-up date
series of QQHR is the largest, the radius of points representing the forecast break-up date
series of QQHR is the farthest from the corresponding SDo, and the points representing the
forecast break-up date series of QQHR are the farthest from the corresponding reference
points. The S value of QQHR is 0.87 (Table 5).

As shown in Table 5, the RMSD values range from 1.37 to 5.97. The RMSD value of
QQHR with 5.97 is the largest, and is larger than the RMSD value of BQ with 3.96. The
RMSD value of MDJ with 1.37 is the smallest. The values of R range from 0.51 to 0.97. The
value of R of QQHR with 0.51 is the smallest. The value of R of MDJ with 0.97 is the largest.
The SDf values of FJ, YC, and MDJ are 5.23, 5.27, and 5.65, respectively, which are close to
the SDo values of FJ, YC, and MDJ with 5.21, 5.20, and 5.44, respectively. The difference
between the SDf and the SDo of FJ, YC, and MDJ are 0.02, 0.07, and 0.21, respectively.
The SDf of QQRH is 4.64, which is quite different from the SDo of QQHR with 6.82. The
difference between the SDf and the SDo of QQHR is 2.18.

3.3. Result of CEEMDAN-LSTM Applied to Forecast the Break-Up Date

CEEMDAN-LSTM was used to forecast the break-up date of each station. The last
five years’ samples of each IMF and residual series were used as the forecast data for a
station, and the remaining data were used for training. The absolute errors (AE) of the
simulation results of seven stations are shown in Figure 5. The mean absolute error (MAE)
and qualification ratio (QR) and the range of AE are shown in Table 6. The Taylor diagram
is shown in Figure 6. The standard deviation (SD), the root-mean-square difference (RMSD),
and the correlation coefficient (R) used to draw the Taylor diagram are shown in Table 7.
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Figure 5. The absolute error (AE) of the simulation results of CEEMDAN-LSTM at each station in 
Heilongjiang Province (the black dashed line represents the maximum allowable error stipulated 
by the standard for hydrological information and hydrological forecasting, and the yellow dashed 
line divides the training period and the forecast period). 

  

Figure 5. The absolute error (AE) of the simulation results of CEEMDAN-LSTM at each station in
Heilongjiang Province (the black dashed line represents the maximum allowable error stipulated by
the standard for hydrological information and hydrological forecasting, and the yellow dashed line
divides the training period and the forecast period).

Table 6. The absolute error range, MAE, and QR of CEEMDAN-LSTM at each station.

Period Performance Evaluation Index HRB BQ FJ MH MDJ QQHR YC

Training
Range of AE [−3, 3] [−4, 4] [−3, 4] [−2, 3] [−4, 3] [−3, 3] [−3, 4]

MAE 0.75 1.97 0.79 0.77 0.87 1.35 1.01
QR(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00

Forecast
Range of AE [−1, 1] [−6, −1] [−2, 1] [−2, 2] [−1, 1] [−4, 2] [−2, 2]

MAE 0.80 3.40 0.83 1.17 0.83 1.83 1.00
QR(%) 100.00 100.00 100.00 100.00 100.00 100.00 100.00
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Table 7. The S, RMSD, R, and SD of CEEMDAN-LSTM at each station.

Station HRB BQ FJ MH MDJ QQHR YC

S 0.99 0.99 0.99 0.99 0.99 0.99 0.99
RMSD 0.95 1.55 1.05 1.02 1.10 1.69 1.27

R 0.98 0.97 * 0.98 0.98 0.98 0.97 ** 0.97 ***
SDo 5.14 6.84 5.21 5.07 5.44 6.82 5.20
SDf 5.23 6.45 5.31 5.15 5.42 6.73 5.51

Note: * represents the minimum R value (0.970 of BQ), ** represents the second minimum R value (0.971 of
QQHR), *** represents the third minimum R value (0.974 of YC).

As shown in Figure 5, the absolute errors of all hydrological stations fall within the
range of maximum allowable error. It can be seen that, compared with Figure 3, the absolute
errors of CEEMDAN-LSTM of each station shown in Figure 5 are obviously reduced. As
shown in Table 6, the absolute errors of all stations range from −6 to 4, the absolute errors
in the training period range from −4 to 4, and the absolute errors in the forecast period
range from −6 to 2. The absolute error range of each station in the training period is the
same as the absolute error range of each station in the forecast period. In the training
period, the absolute error range of BQ is the largest, from −4 to 4, and the absolute error
range of MH is the smallest, from −2 to 3. In the forecast period, the absolute error range
of QQHR is the largest, from −4 to 2, which is slightly larger than the absolute error range
of BQ, from −6 to −1. The absolute error range of MDJ, is the smallest from −1 to 1.
Compared with the absolute error range of LSTM (Table 4), the absolute error range of
CEEMDAN-LSTM is reduced by 15 days: 17 days in the training period, and 13 days in the
forecast period. Among all seven stations, the absolute error range of QQHR in the training
period is reduced the most by 17 days, the absolute error range of BQ in the forecast period
is reduced the most by 13 days, and followed by QQHR with 6 days. Similar to the LSTM,
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the absolute error range of CEEMDAN-LSTM in the training period is larger than the
absolute error range in the forecast period. The absolute error range of BQ in the training
period is the largest, and the absolute error range of QQHR in the forecast period is the
largest, followed by BQ.

As shown in Table 6, the MAE values of all stations obtained by CEEMDAN-LSTM
range from 0.75 to 3.40, and the MAE values of QQHR and BQ are larger than the others.
In the training period, the MAE value of BQ with 1.97 is the largest, which is slightly larger
than the MAE value of QQHR with 1.35. In the forecast period, the MAE value of BQ
with 3.40 is the largest, which is slightly larger than the MAE value of QQHR with 1.83.
Compared with LSTM, the range of MAE value obtained by CEEMDAN is reduced by
2.95. The MAE values of QQHR and BQ in the training period decrease by 2.62 and 0.64,
respectively. The MAE values of QQHR and BQ in the forecast period decrease by 4.5 and
3.0, respectively.

In the training period and the forecast period, the QR values of all stations obtained
by CEEMDAN-LSTM were 100%. Compared with LSTM, the QR value of QQHR obtained
by CEEMDAN-LSTM in the training period increased by 25%, and the QR values of
QQHR and BQ obtained by CEEMDAN-LSTM in the forecast period increased by 20% and
40%, respectively.

As shown in Figure 6, compared with the results of LSTM shown in Figure 4, the
azimuth angles of the points representing the forecast break-up date series are smaller,
the radiuses of the points representing the forecast break-up date series are closer to their
corresponding SDo values, and the points representing the forecast break-up date series are
closer to the corresponding reference points. As shown in Table 7, the Taylor skill score of
each station obtained by CEEMDAN-LSTM was improved to 0.99. The Taylor skill score of
QQHR increased the most, by 0.12. The RMSD values obtained by CEEMDAN-LSTM range
from 0.95 to 1.69. The RMSD value of QQHR is the largest with 1.69, followed by BQ with
the RMSD value of 1.55. The R values obtained by CEEMAN-LSTM range from 0.97 to 0.98.
The R values of QQHR and BQ are smaller with 0.97. Compared with Table 5, the RMSD
values obtained by CEEMDAN-LSTM decrease by 0.27–4.28. The RMSD value of QQHR
decreases the most with a decrease of 4.28. The R values obtained by CEEMDAN-LSTM
improved by 0.01–0.46. The R value of QQHR improved the most with an increase of 0.46.
Based on the analysis for Figure 6 and Table 7 above, the LSTM-CEEMDAN performs better
than LSTM.

4. Discussion
4.1. Reasons for the Improvement of the Forecasting Accuracy of Break-Up Date by CEEMDAN-LSTM

Compared with the forecasting accuracy of LSTM shown in Figure 3 and Table 4, the
forecasting accuracy of CEEMDAN-LSTM is obviously improved (Figure 5 and Table 6),
which indicates that a decomposition series by CEEMDAN plays an important role in the
improvement of the forecasting accuracy of break-up dates.

As shown in Figure 2, during the training period, with the decomposition of the
series, the fluctuation degree of the subsequence gradually decreases. Generally speaking,
the weaker the fluctuation degree, the weaker the randomness of the series, the easier
it is to forecast, and the higher the forecast accuracy. As shown in Figure 7 and Table 8,
IMF1 and IMF2 have a high fluctuation degree and strong randomness. The MAE values
of IMF1 and IMF2 of each station are large, with the order of magnitude of 10−1. The
IMF5, IMF6, and residual series have a low fluctuation degree and weak randomness. The
MAE values of IMF5, IMF6, and the residual series are small with the order of magnitude
about 10−2 to 10−3. The MAE value with an order of magnitude about 10−2 to 10−3 has
negligible influence on the forecasting accuracy for break-up date. The Taylor diagram,
which comprehensively shows the forecast accuracy of each subsequence of each station, is
shown in Figure A1 in the Appendix A.



Water 2023, 15, 496 16 of 21Water 2023, 15, 496 17 of 22 
 

 

 
Figure 7. The forecast results and the absolute error of IMFs and residual series of each station by 
CEEMDAN-LSTM (the blue line represents the absolute error, and the red line represents the fore-
casting value). 

Table 8. The MAE of IMFs and residual series at each station. 

Station IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 Residual 
HRB 0.293  0.155  0.126  0.095  0.042  - 0.037  
BQ 0.741  0.511  0.288  0.265  0.073  0.035  0.053  
FJ 0.342  0.213  0.105  0.089  0.004  - 0.043  

MH 0.362  0.233  0.134  0.100  0.071  - 0.054  
MDJ 0.368  0.157  0.185  0.082  0.029  - 0.043  
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Figure 7. The forecast results and the absolute error of IMFs and residual series of each station
by CEEMDAN-LSTM (the blue line represents the absolute error, and the red line represents the
forecasting value).

Table 8. The MAE of IMFs and residual series at each station.

Station IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 Residual

HRB 0.293 0.155 0.126 0.095 0.042 - 0.037
BQ 0.741 0.511 0.288 0.265 0.073 0.035 0.053
FJ 0.342 0.213 0.105 0.089 0.004 - 0.043

MH 0.362 0.233 0.134 0.100 0.071 - 0.054
MDJ 0.368 0.157 0.185 0.082 0.029 - 0.043

QQHR 0.569 0.298 0.158 0.170 - 0.163
YC 0.455 0.222 0.163 0.083 0.086 - 0.005
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In addition, the reason for the improvement of the forecast accuracy of the break-up
date by CEEMDAN-LSTM may be related to the sample values of the IMFs and residual
series. Generally speaking, in the case of two series with a similar fluctuation degree of
the same length, the larger the sample values, the greater the absolute error. Compar-
ing the fluctuation degree and length shown in Figure 2 and the MAE values shown in
Tables 4 and 8, it is found that the fluctuation degree and length of the IMF1, IMF2, and the
observed break-up date series are similar, but the sample values of the IMF1 and IMF2 are
about 1/10 of the observed break-up date series, and the MAE values of IMF1 and IMF2
are less than the MAE value of the observed break-up date series. In addition, although the
sample values of residual series are similar to the observed break-up date series (Figure 2),
the fluctuation degree of residual series is low, the randomness of residual series is weak,
and the MAE value of the residual series is small.

Above all, IMFs and residual series obtained by CEEMDAN have smaller sample
values, weaker fluctuation degree, and stronger regularity than observed series, which
leads to a reduction of learning difficulty for LSTM and an improvement in forecasting
accuracy. Therefore, the forecasting accuracy of CEEMDAN-LSTM is higher than that
of LSTM.

4.2. Reasons for the Lower Forecasting Accuracy of BQ and QQHR by LSTM

As shown in Table 4 in Section 3.2, the forecasting accuracy of the break-up date at BQ
and QQHR by LSTM is not as good as others in the forecast period. The standard deviation
of BQ is the largest, followed by that of QQHR, and the length of the break-up date series
of QQHR is the shortest, as shown in Table 1 in Section 2.1. It therefore seems that the
standard deviation and the length of the observed break-up date series are the reasons for
the lower forecast accuracy of BQ and QQHR.

The standard deviation, as is known, describes the fluctuation degree of the series.
The larger the standard deviation is, the higher the fluctuation degree of a series, and
the stronger the randomness of a series. Generally speaking, the higher the fluctuation
degree and the stronger the randomness of the series, the more difficult it is to obtain a
good forecast Compared to the standard deviation of each station shown in Table 1, the
standard deviation of BQ and QQHR is larger than the standard deviation of other stations,
which indicates that the observed break-up date series of BQ and QQHR had the larger
fluctuation degree and stronger randomness. Therefore, the forecasting accuracy of BQ and
QQHR is lower.

Not only the larger standard deviation but also the short series length is a reason
for the lower forecasting accuracy of QQHR (Table 1). Compared with other stations, the
series length of QQHR is shorter, and the training samples of QQHR are fewer. The size of
the training sample plays an important role in the forecasting accuracy of artificial neural
networks. The shorter the series length, the fewer features of the observed break-up date
series learned by LSTM, and the weaker the forecasting ability of the LSTM. Therefore, the
forecasting accuracy of QQHR is low. It is worth noting that, comparing the forecasting
accuracy obtained by LSTM and CEEMDAN-LSTM, the forecasting accuracy of QQHR has
a greater improvement, which indicates that CEEMDAN can reduce the influence of few
samples on the forecasting accuracy of LSTM to some extent.

4.3. The Performance of LSTM in Forecasting the Black Swan Events

As shown in Figure 3 in Section 3.2 and Figure 5 in Section 3.3, the absolute errors
of forecasting results for BQ and QQHR in 2019 are significantly larger than that of other
years, because the black swan event, which is accidental, greatly influential, very difficult
to forecast, and predictable after occurring, occurred in 2019 at BQ and QQHR. Namely,
the break-up dates of BQ and QQHR in 2019 were much earlier than other years for all
the observed break-up date series. Moreover, the LSTM, introducing a gate to determine
whether the input data is important enough to be remembered, is a neural network that
can remember long short-term information in history and forecast important events with
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very long intervals and delays in series. For the black swan events, the LSTM performs
poorly because the extreme characteristics of the black swan events are not learned from the
observed samples. The subsequences, decomposed from the observed break-up date series
without the black swan event by CEEMDAN, cannot describe the extreme characteristics
of the black swan event. Therefore, the LSTM and CEEMDAN-LSTM perform poorly in
the forecast of the break-up date of BQ and QQHR in 2019. Above all, using the LSTM and
CEEMDAN-LSTM to forecast the break-up date, the extreme samples in history should be
included in the training data to provide the information of extreme events for LSTM and
improve the forecasting ability for extreme events.

5. Conclusions

LSTM and CEEMDAN-LSTM methods were used to study the forecasting of the
break-up date of seven representative hydrological stations in Heilongjiang Province based
on topographic and climatic features. The following conclusions are obtained.

(1) CEEMDAN decomposed the observed break-up date series into subsequences accord-
ing to different fluctuations and frequencies. The observed break-up date series with a
larger standard deviation, compared with a similar break-up date series in length, had
relatively more decomposed subsequences. With the decomposition processing, the
frequency and fluctuation degree of subsequence decreased, and the sample values
of subsequence increased. The residual series had the lowest fluctuation degree and
frequency, which was close to linear and varied slightly around the long-term average.

(2) The subsequence decomposed by CEEMDAN with a lower fluctuation degree or
smaller sample values compared with the observed series for LSTM obtained a higher
forecasting accuracy. The IMF1 and IMF2 had smaller values, the MAE values for
forecasting results of IMF1 and IMF2 were small with the order of magnitude of 10−1.
The IMF5, IMF6, and residual series had lower fluctuation degrees, and the MAE
values of forecasting results of IMF5, IMF6, and residual series were small with the
order of magnitude of 10−2 and 10−3.

(3) Among the performance evaluation of the LSTM for all seven stations, the absolute
error ranged from −13 to 12, the MAE values ranged from 0.80 to 6.40, the QR values
were above 60%, the RMSD values ranged from 1.37 to 5.97, the R values ranged from
0.51 to 0.97, and the S values ranged from 0.87 to 0.99.

(4) The forecasting accuracy was obviously improved by LSTM coupled with CEEMDAN.
CEEMDAN-LSTM performed better than LSTM. In the performance evaluation of the
CEEMDAN-LSTM for all seven stations, the absolute error ranged from −6 to 4, the
MAE values ranged from 0.75 to 3.40, the QR values improved to 100%, the RMSD
values ranged from 0.95 to 1.69, the R values ranged from 0.97 to 0.98, and the S values
improved to 0.99.

(5) CEEMDAN can reduce the influence of the few samples on the forecasting accuracy of
LSTM. The forecasting accuracy by LSTM was obviously improved after decomposing
the observed break-up date series of QQHR with a short length by CEEMDAN. The
MAE value of forecasting results for QQHR decreased from 6.33 to 1.83, the QR value
was improved from 80% to 100%, and the S value was improved from 0.87 to 0.99.
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