Increasing Risk of Spring Frost Occurrence during the Cherry Tree Flowering in Times of Climate Change
Abstract
:1. Introduction
- (1)
- to make the temporal evaluation of the beginning of flowering, end of flowering and duration of the cherry tree (Cerasus avium) flowering at long-term phenological stations situated in the different climatic conditions of the Czech Republic in the period of 1924–2012 and the periods of 1924–1967 and 1968–2012,
- (2)
- to analyze the minimum air temperature (including the number of frost days) during the period of the cherry tree flowering from 1961 to 2012,
- (3)
- to process the frequency of synoptic event occurrence during the period of the cherry tree flowering in the period of 1946–2012.
2. Material and Methods
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahas, R.; Aasa, A.; Menzel, A.; Fedotova, V.G.; Scheifinger, H. Changes in European spring phenology. Int. J. Clim. 2002, 22, 1727–1738. [Google Scholar] [CrossRef]
- Schwartz, M.D.; Ahas, R.; Aasa, A. Onset of spring starting earlier across the Northern Hemisphere. Glob. Chang. Biol. 2006, 12, 343–351. [Google Scholar] [CrossRef]
- Hajkova, L.; Kožnarová, V.; Mozny, M.; Bartošová, L. Changes in flowering of birch in the Czech Republic in recent 25 years (1991–2015) in connection with meteorological variables. Acta Agrobot. 2015, 68, 285–302. [Google Scholar] [CrossRef] [Green Version]
- Sanders-DeMott, R.; Sarensen, P.O.; Reinmann, A.B.; Templer, P.H. Growing season warming and winter freeze-thaw cycles reduce root nitrogen uptake capacity and increase soil solution nitrogen in a northern forest ecosystem. Biogeochemistry 2018, 137, 337–349. [Google Scholar] [CrossRef]
- Easterling, D.R.; Horton, B.; Jones, P.D.; Peterson, T.C.; Karl, T.R.; Parker, D.E.; Salinger, M.J.; Razuvayev, V.; Plummer, N.; Jamason, P.; et al. Maximum and minimum temperature trends for the globe. Science 1997, 277, 364–367. [Google Scholar] [CrossRef] [Green Version]
- Hansen, J.; Sato, M.; Ruedy, R. Long-term changes of the diurnal temperature cycle: Implications about mechanisms of global climate change. Atmos. Res. 1995, 37, 175–209. [Google Scholar] [CrossRef]
- Chmielewski, F.-M.; Götz, K.-P.; Weber, K.C.; Moryson, S. Climate change and spring frost damages for sweet cherries in Germany. Int. J. Biometeorol. 2018, 62, 217–228. [Google Scholar] [CrossRef] [PubMed]
- Rodrigo, J. Spring frosts in deciduous fruit trees Ð morphological damage and owerhardiness. Sci. Hortic. 2000, 85, 155–173. [Google Scholar] [CrossRef]
- Menzel, A.; Sparks, T.H.; Estrella, N.; Koch, E.; Aasa, A.; Ahas, R.; Alm-Kübler, K.; Bissolli, P.; Braslavská, O.; Briede, A.; et al. European phenological response to climate change matches the warming pattern. Glob. Chang. Biol. 2006, 12, 1969–1976. [Google Scholar] [CrossRef]
- Matzneller, P.; Götz, K.P.; Chmielewski, F.M. Spring frost vulnerability of sweet cherries under controlled conditions. Int. J. Biometeorol. 2016, 60, 123–130. [Google Scholar] [CrossRef]
- Blanc, M.L.; Geslin, H.; Holzberg, I.A.; Mason, B. Protection against Frost Damage. In Technical Note No. 51; World Meteorological Organization: Geneva, Switzerland, 1963. [Google Scholar]
- Kaya, O.; Kose, C. How sensitive are the flower parts of the sweet cherry in sub-zero temperatures? Use of differential thermal analysis and critical temperatures assessment. N. Z. J. Crop Hortic. Sci. 2021, 50, 17–31. [Google Scholar] [CrossRef]
- Beaubien, E.G.; Freeland, H.J. Spring phenology trends in Alberta, Canada: Links to ocean temperature. Int. J. Biometeorol. 2000, 44, 53–59. [Google Scholar] [CrossRef] [PubMed]
- Scheifinger, H.; Templ, B. Is Citizen Science the recipe for the survive of paper-based phenological network in Europe? BioSci. Adv. Access 2016, 66, 533–534. [Google Scholar] [CrossRef] [Green Version]
- Chuine, I. Why does phenology drive species distribution? Phil. Trans. R. Soc. B 2010, 365, 3149–3160. [Google Scholar] [CrossRef] [Green Version]
- Menzel, A.; Estrella, N.; Schleip, C. Impacts of climate variability, trends and NAO on 20th Century European plant phenology. In Climate Variability and Extremes during the Past 100 Years; Brönnimann, S., Luterbacher, J., Ewen, T., Diaz, H.F., Stolarski, R.S., Neu, U., Eds.; Springer: Berlin/Heidelberg, Germany, 2008; Volume 33, pp. 221–233. ISBN 978-1-4020-6765-5. [Google Scholar]
- Vitasse, Y.; Schneider, L.; Rixen, C.; Christen, D.; Rebetez, M. Increase in the risk of exposure of forest and fruit trees to spring frosts at higher elevations in Switzerland over the last four decades. Agric. For. Meteorol. 2018, 248, 60–69. [Google Scholar] [CrossRef]
- Available online: https://www.amet.cz/klima/mraziky.htm (accessed on 4 October 2022).
- Pifflová, L.; Brablec, J.; Lenner, V.; Minář, M. Handbook for Phenological Observers; Hydrometeorological Institute: Prague, Czech Republic, 1956; p. 152, D-571503. [Google Scholar]
- Coufal, L.; Houška, V.; Reitschlager, J.D.; Valter, J.; Vráblík, T. Phenological Atlas, 1st ed.; CHMI: Prague, Czech Republic, 2004; p. 204. ISBN 80-86690-21-0. [Google Scholar]
- Anonymous. Methodical Instructions Number 10 for Phenological Stations—Wild Plants; CHMI: Prague, Czech Republic, 2009. [Google Scholar]
- Štěpánek, P. AnClim—Software for Time Series Analysis; Department of Geography, Faculty of Natural Science, MU: Brno, Czech Republic, 2010; Available online: http://www.climahom.eu/AnClim.html (accessed on 2 January 2023).
- Available online: https://www.chmi.cz/historicka-data/pocasi/typizace-povetrnostnich-situaci (accessed on 4 October 2022).
- Tolasz, R.; Brázdil, R.; Bulíř, O.; Dobrovolný, P.; Dubrovský, M.; Hájková, L.; Halásová, O.; Hostýnek, J.; Janouch, M.; Kohut, M.; et al. Climate Atlas of Czechia, 1st ed.; CHMI: Prague, Czech Republic, 2007; p. 255. ISBN 978-80-86690-26-1. [Google Scholar]
- Drogoudi, P.; Kazantzis, K.; Kunz, A.; Blanke, M.M. Effects of climate change on cherry production in Naoussa, Greece and Bonn, Germany: Adaptation strategies. Euro-Mediterr. J. Environ. Integr. 2020, 5, 12. [Google Scholar] [CrossRef] [Green Version]
- Wypych, A.; Ustrnul, Z.; Sulikowska, A.; Chmielewski, F.M.; Bochenek, B. Spatial and temporal variability of the frost-free season in Central Europe and its circulation background. Int. J. Climatol. 2017, 37, 3340–3352. [Google Scholar] [CrossRef]
- Kaya, O.; Kose, C.; Sahin, M. The use of differential thermal analysis in determining the critical temperatures of sweet cherry (Prunus avium L.) flower buds at different stages of bud burst. Int. J. Biometeorol. 2021, 65, 1125–1135. [Google Scholar] [CrossRef]
- Roetzer, T.; Wittenzeller, M.; Haeckel, H.; Nekovář, J. Phenology in central Europe—Differences and trends of spring phenophases in urban and rural areas. Int. J. Biometeorol. 2000, 44, 60–66. [Google Scholar] [CrossRef]
- Available online: https://www.klimatickazmena.cz (accessed on 4 October 2022).
- Guedon, Y.; Legave, J.M. Analyzing the time-course variation of apple and pear tree dates of flowering stages in the global warming context. Ecol. Model. 2008, 219, 189–199. [Google Scholar] [CrossRef]
- Zavalloni, C.; Andresen, J.A.; Flore, J.A. Phenological models of flower bud stages and fruit growth of “Montmorency” sour cherry based on growing degree-day accumulation. J. Amer. Soc. Hort. Sci. 2006, 131, 601–607. [Google Scholar] [CrossRef]
Station | Longitude | Latitude | Altitude (m a.s.l.) | Station | Longitude | Latitude | Altitude (m a.s.l.) | Quitt’s Classification |
---|---|---|---|---|---|---|---|---|
Hodonín (P) | 17°48′ | 48°52′ | 174 | Hodonín (C) | 17°48′ | 48°51′ | 172 | W4 |
Střednice (P) | 14°31′ | 50°24′ | 290 | Doksany (C) | 14°10′ | 50°27′ | 158 | W2 |
Věšín (P) | 13°50′ | 49°37′ | 565 | Příbram (C) | 14°01′ | 49°41′ | 555 | MW4 |
Častrov (P) | 15°18′ | 49°31′ | 620 | Nový Rychnov (C) | 15°16′ | 49°24′ | 619 | MW4 |
Station | tyear (°C) | abs tmax (°C) | tmax July (°C) | tmin January (°C) | abs tmin (°C) | tmin > 0.0 °C (Days) | ryear (mm) | abs rmax (mm) | r > 0.1 mm (Days) |
---|---|---|---|---|---|---|---|---|---|
1961–1986 | |||||||||
Hodonín | 9.1 | 35.6 | 25.0 | −5.4 | −28.6 | 261 | 533.9 | 79.9 | 128 |
Střednice | 8.6 | 36.7 | 24.2 | −5.0 | −26.3 | 263 | 451.3 | 78.0 | 154 |
Věšín | 7.0 | 37.3 | 22.3 | −5.3 | −23.5 | 243 | 515.6 | 95.7 | 161 |
Častrov | 6.6 | 36.5 | 21.7 | −6.6 | −27.2 | 231 | 599.1 | 54.3 | 196 |
1987–2012 | |||||||||
Hodonín | 9.8 | 37.6 | 26.5 | −4.2 | −25.5 | 263 | 535.4 | 58.4 | 123 |
Střednice | 9.5 | 38.2 | 26.0 | −3.4 | −25.9 | 270 | 471.7 | 63.0 | 162 |
Věšín | 7.8 | 36.4 | 23.4 | −4.0 | −24.4 | 254 | 524.5 | 73.4 | 166 |
Častrov | 7.5 | 35.3 | 23.1 | −5.2 | −23.9 | 241 | 673.7 | 74.0 | 197 |
Station | Period | Average | Minimum | Maximum | Standard Deviation |
---|---|---|---|---|---|
Beginning of flowering | |||||
Hodonín | 1924–2012 | 109 | 89 | 128 | 8.7 |
Střednice | 1924–2012 | 111 | 90 | 134 | 8.3 |
Věšín | 1924–2012 | 119 | 95 | 138 | 8.9 |
Častrov | 1924–2012 | 121 | 95 | 139 | 9.6 |
Hodonín | 1924–1967 | 110 | 91 | 128 | 9.4 |
Střednice | 1924–1967 | 113 | 98 | 134 | 9.1 |
Věšín | 1924–1967 | 122 | 102 | 138 | 8.3 |
Častrov | 1924–1967 | 125 | 107 | 139 | 7.9 |
Hodonín | 1968–2012 | 107 | 89 | 121 | 7.6 |
Střednice | 1968–2012 | 109 | 90 | 125 | 6.7 |
Věšín | 1968–2012 | 117 | 95 | 135 | 8.9 |
Častrov | 1968–2012 | 118 | 95 | 134 | 10.2 |
End of flowering | |||||
Hodonín | 1924–2012 | 119 | 95 | 139 | 8.7 |
Střednice | 1924–2012 | 123 | 102 | 142 | 8.0 |
Věšín | 1924–2012 | 132 | 116 | 148 | 7.7 |
Častrov | 1924–2012 | 132 | 116 | 152 | 7.6 |
Hodonín | 1924–1967 | 121 | 103 | 139 | 9.1 |
Střednice | 1924–1967 | 125 | 110 | 142 | 8.7 |
Věšín | 1924–1967 | 134 | 117 | 148 | 7.6 |
Častrov | 1924–1967 | 130 | 116 | 146 | 7.3 |
Hodonín | 1968–2012 | 118 | 95 | 131 | 7.9 |
Střednice | 1968–2012 | 122 | 102 | 135 | 7.0 |
Věšín | 1968–2012 | 131 | 116 | 146 | 7.6 |
Častrov | 1968–2012 | 130 | 116 | 146 | 7.3 |
Station | Period | Average | Minimum | Maximum | Standard Deviation |
---|---|---|---|---|---|
Period of flowering | |||||
Hodonín | 1924–2012 | 11 | 4 | 24 | 4.9 |
Střednice | 1924–2012 | 12 | 7 | 20 | 3.1 |
Věšín | 1924–2012 | 13 | 7 | 25 | 3.3 |
Častrov | 1924–2012 | 10 | 3 | 26 | 4.5 |
Hodonín | 1924–1967 | 10 | 4 | 24 | 5.1 |
Střednice | 1924–1967 | 11 | 7 | 19 | 2.4 |
Věšín | 1924–1967 | 12 | 7 | 20 | 2.9 |
Častrov | 1924–1967 | 9 | 3 | 19 | 2.6 |
Hodonín | 1968–2012 | 11 | 4 | 23 | 3.9 |
Střednice | 1968–2012 | 13 | 7 | 20 | 3.4 |
Věšín | 1968–2012 | 13 | 8 | 25 | 3.5 |
Častrov | 1968–2012 | 12 | 5 | 26 | 5.3 |
Station | Variable | Slope Change/Year | Days/Period |
---|---|---|---|
Hodonín | Beginning of flowering | −0.036 | −3.2 |
Střednice | Beginning of flowering | −0.105 ** | −9.3 |
Věšín | Beginning of flowering | −0.143 *** | −12.7 |
Častrov | Beginning of flowering | −0.158 *** | −13.9 |
Hodonín | End of flowering | −0.029 | −2.6 |
Střednice | End of flowering | −0.068 * | −6.1 |
Věšín | End of flowering | −0.095 ** | −8.5 |
Častrov | End of flowering | −0.092 ** | −8.1 |
Hodonín | Period of flowering | 0.016 | +1.4 |
Střednice | Period of flowering | 0.038 ** | +3.4 |
Věšín | Period of flowering | 0.04 *** | +3.6 |
Častrov | Period of flowering | 0.05 *** | +4.1 |
Station | Slope Change/Year | Days/Period |
---|---|---|
Hodonín | −0.006 | −0.3 |
Střednice | −0.005 | −0.26 |
Věšín | 0.022 ** | +1.1 |
Častrov | 0.023 ** | +1.2 |
Station | Slope Change/Year | °C/Period |
---|---|---|
Hodonín | 0.004 | 0.21 |
Střednice | 0.004 | 0.21 |
Věšín | −0.0125 ** | −0.65 |
Častrov | −0.0125 ** | −0.65 |
Type/Station | Hodonín | Střednice | Věšín | Častrov |
---|---|---|---|---|
Anticyclonal synoptic event | 15 | 34 | 6 | 13 |
Cyclonal synoptic event | 12 | 23 | 7 | 8 |
B | 0 | 5 | 1 | 1 |
Wcs | 1 | 1 | 0 | 0 |
Bp | 3 | 4 | 1 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hájková, L.; Možný, M.; Oušková, V.; Bartošová, L.; Dížková, P.; Žalud, Z. Increasing Risk of Spring Frost Occurrence during the Cherry Tree Flowering in Times of Climate Change. Water 2023, 15, 497. https://doi.org/10.3390/w15030497
Hájková L, Možný M, Oušková V, Bartošová L, Dížková P, Žalud Z. Increasing Risk of Spring Frost Occurrence during the Cherry Tree Flowering in Times of Climate Change. Water. 2023; 15(3):497. https://doi.org/10.3390/w15030497
Chicago/Turabian StyleHájková, Lenka, Martin Možný, Veronika Oušková, Lenka Bartošová, Petra Dížková, and Zdeněk Žalud. 2023. "Increasing Risk of Spring Frost Occurrence during the Cherry Tree Flowering in Times of Climate Change" Water 15, no. 3: 497. https://doi.org/10.3390/w15030497
APA StyleHájková, L., Možný, M., Oušková, V., Bartošová, L., Dížková, P., & Žalud, Z. (2023). Increasing Risk of Spring Frost Occurrence during the Cherry Tree Flowering in Times of Climate Change. Water, 15(3), 497. https://doi.org/10.3390/w15030497