
Citation: Zhao, L.; Zhang, H.; Niu, Z.;

Wei, D.; Yan, S.; Bai, J.; Zhang, L.; Shi,

X. Integration of Transcriptomics and

Metabolomics for Evaluating

Changes in the Liver of Zebrafish

Exposed to a Sublethal Dose of

Cyantraniliprole. Water 2023, 15, 521.

https://doi.org/10.3390/w15030521

Academic Editor: Abasiofiok

Mark Ibekwe

Received: 17 November 2022

Revised: 18 January 2023

Accepted: 26 January 2023

Published: 28 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

water

Article

Integration of Transcriptomics and Metabolomics for
Evaluating Changes in the Liver of Zebrafish Exposed to a
Sublethal Dose of Cyantraniliprole
Lijuan Zhao 1,*, Hong Zhang 2, Zhidan Niu 1, Dandan Wei 1, Suyue Yan 1, Jianhua Bai 1, Lei Zhang 1

and Xiaojing Shi 1

1 Department of Biology, Xinzhou Normal University, Xinzhou 034000, China
2 Shanxi Science and Technology Resources and Large-Scale Instruments Open Sharing Center,

Taiyuan 030006, China
* Correspondence: zho_001910@126.com; Tel.: +86-188-3512-8920

Abstract: Diamide insecticides are a class of insecticides with high efficiency, a broad spectrum, and
environmental and ecological safety. However, their effect on the environment cannot be ignored,
especially the chronic environmental effects of sublethal doses. In this study, we evaluated the
influence of cyantraniliprole on zebrafish and provided data for evaluating the risk of cyantraniliprole
in water. An acute toxicity test was used to obtain LC50, while 1/10 LC50 was selected to study the
toxicity of the sublethal dose of cyantraniliprole on the transcription and metabolism of zebrafish
liver. Our results showed that after exposure to a sublethal dose of cyantraniliprole for 30 days, the
expression of various functional genes (elovl6, cpt1ab, eci1, fabp6, etc.) was abnormal and the content
of various metabolites (Taurine, 1-Acyl-sn-glycero-3-phosphocholine, phosphatidylserine, betaine, sarcosine,
etc.) was altered. In addition, transcriptional and metabolic correlation analysis revealed that
sublethal doses of cyanobacteria could affect the fatty acid metabolism-related pathways of zebrafish
liver (fatty acid elongation, metabolism, and degradation), as well as the PPAR pathway related to fat
and the ABC pathway related to drug metabolism and transport. In conclusion, sublethal doses of
cyantraniliprole caused abnormal liver metabolism in zebrafish by affecting fatty acid metabolism,
up-regulating the PPAR pathway and down-regulating related genes and metabolites in the ABC
pathway, which eventually led to liver damage.

Keywords: cyantraniliprole; zebrafish; toxicity; transcriptomics; metabolomics

1. Introduction

Diamide insecticides are a class of insecticide with a special site of action intro-
duced to control planthopper on rice [1], citrus psyllid [2], Trialeurodes vaporariorum [3],
Bactrocera dorsalis [4], Ostrinia furnacalis [5], etc. Due to the unique targets of these agents on
insects that selective activate the insect ryanodine receptor, diamide insecticides have been
applied to more than 200 crops worldwide [6]. At present, commercial pesticides which
contain diamide active ingredients include flubendiamide, chlorantraniliprole, cyantranilip-
role, cyclaniliprole, and tetrachlorantraniliprole [7]. In China, diamine pesticides are used
in large quantities [8–10], which further increases the risk of contamination of aquatic
environmental systems [7,11]. In 2018, flubendiamide was banned in China due to its huge
toxic effect on the water environment [7]. In addition, there are also reports on the toxicity
of cyantraniliprole in non-target organisms. Xu et al. reported that cyantraniliprole could
cause DNA damage in the liver cells of tilapia by activating the pathways of DNA damage
and repair [5]. More recently, Qiao et al. reported toxicity affecting reproduction, genes,
and intestines damage in earthworms after exposure to high doses of cyantraniliprole [12].
Other studies have reported that cyantraniliprole is less toxic to fish, including rainbow
trout, sheepshead minnow, bluegill sunfish, and channel catfish; however, cyantraniliprole
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has a higher risk of being toxic (both acutely and chronically) to invertebrates [12,13]. The
results of chronic toxicity studies on rainbow trout (no observed effect concentration of
10.7 mg/L, 90d) and sheepshead minnow(no observed effect concentration of 9.9 mg/L,
30d) showed that cyantraniliprole is toxic to different species of fish [13]. However, there
are no studies on the short-term toxicity of cyantraniliprole in zebrafish, especially at the
transcriptional and metabolic levels.

The combination of transcriptome and metabolome was used to analyze biologi-
cal systems at different levels, as well as different biological organisms [14]. Relevant
mechanistic information was obtained through pathway overexpression and enrichment
analysis [15]. The combined analysis of transcriptomics and metabolomics is widely used
in plant research but is rare in animal studies, especially in aquatic animals. For example,
Masami et al. showed that several specific response pathways for Arabidopsis thaliana under
sulfur deficiency and related stresses could be obtained by combining transcriptome and
metabolome analysis [16]. Moreover, Theodore et al. obtained genes and metabolites of
rice response to bacterial wilt using a similar method [14].

In order to investigate the changes in the metabolomics and transcriptomics of ze-
brafish after being exposed to a sublethal dose of cyantraniliprole in water, KEGG and
enrichment analysis were used to evaluate the effects of transcriptomics in the liver of
zebrafish. UHPLC-Q Exactive HFX, the R program, and the MS2 database were used
for metabolite detection, screening, and annotation. Finally, the correlation analysis of
differential genes and metabolites was conducted to obtain the action pathway of sublethal
doses of cyantraniliprole in zebrafish liver. The data derived from short-term toxicity
studies could be used for quantitative risk assessments and the selection of concentrations
for chronic studies of cyantraniliprole in water.

2. Materials and Methods
2.1. Reagents and Animals

Cyantraniliprole (Dupont Agrochemical Co., Ltd., Shanghai, China; 94%), Tween-80,
and dimethylformamide (DMF) (Solarbio Technology Co., Ltd., Beijing, China) were used.

Adult female zebrafish (three months old, wild-type, AB strain, the China Zebrafish
Resource Center, Wuhan, China) were used. The temperature, humidity, and light time of
zebrafish rearing were based on previous research reports [17]. After 2 weeks, zebrafish
about 2.5 cm long were used for subsequent toxicity tests. Quality parameters included
a pH of 7.3, a dissolved oxygen mean of 6.7, and hardness in the range of 80–95 mg L−1

(as CaCO3), with all parameters measured weekly. All experiments were performed in
accordance with the guidelines of the Animal Care and Use Committee at Xinzhou Teachers
University [approval no. SYXK(JIN) 2020-006].

2.2. Determination of LC50

Zebrafish were reared in a 50 L tank for two weeks before toxicity testing and were
fed twice daily with solid food (Jiangmen Pengjiang District Dolphin Aquarium Co., Ltd.,
Jiangmen, China). They were divided into a control group (chlorine-free tap water) and
solvent control group (chlorine-free tap water with 0.05% DMF and Tween 80) (10 fish
per group) in this period of testing, which was repeated four times. The fresh pesticide
solutions were changed every 24 h to ensure exposure levels. The number of deaths was
recorded at 24 and 96 h (GB/T [18] 31270.12−2014) and the mortality of zebrafish was
calculated. LC50 was calculated based on mortality and concentration. There was no
feeding during the test.

2.3. Short-Term Exposure Test

A one-month (30-day) short-term toxicity test was performed in accordance with
OECD guidelines [19] at 0.35 mg/L (1/10 of LC50, 96 h). The zebrafish were then anes-
thetized on ice, and their livers were harvested and used for transcriptional and metabolic studies.
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2.4. Transcriptome and Metabolic Analysis

The results of preliminary experiments (acute toxicity test and chronic toxicity test)
suggested no significant difference from the control to the solvent control, so we chose the
solvent control group (CK) as the control in the transcriptome and metabolome analysis.

2.4.1. Transcriptome Analysis

Transcriptional sequencing of the solvent control group and the 0.35 mg/L cyantranilip-
role exposure group (S) was performed by Biotree Biotechnologies Co. (Shanghai, China).
The extraction, degradation, and contamination monitoring of total RNA and the method
of integrity evaluation was based on previous research reports [20,21].

The establishment of a 1 µg RNA sequencing library for each sample, the evaluation
of library quality, the analysis of differential expression between control and treatment
groups, and the enrichment of differential genes in the KEGG pathway were also based on
previous research [21,22].

2.4.2. Metabolic Analysis

The sample (50 mg) was extracted three times via homogenization (35 Hz, 4 min) and
ultrasonication (ice bath, 5 min), and the extraction solution was 1000 µL of methanol, ace-
tonitrile, and water (2:2:1, containing isotope-labeled internal standard)). After extraction,
the samples were incubated at a low temperature (−40 ◦C, 1 h) and centrifuged (12,000 rpm,
15 min, 4 ◦C) to obtain the supernatant. Subsequently, 3 µL of the supernatant was detected
using UHPLC-Q Exactive HFX (Vanquish and Orbitrap MS, Thermo Fisher Scientific) with
a mobile phase of 25 mmol/L ammonium acetate and sodium hydroxide (pH = 9.75) in
water and acetonitrile.

Electrospray ion source parameters were as follows: sheath gas, 30 Arb; auxiliary gas,
25 Arb; capillary, 350 ◦C; resolution, 60,000 (full MS) and 7500 (MS/MS); collision energy,
10/30/60; the positive source voltage was 3.6 kV and the negative source voltage was
−3.2 kV. The raw data were converted into mzXML format and the R program was used
for peak detection, extraction, alignment, and integration. The MS2 database (BiotreeDB)
was used for metabolite annotation (the cut-off value was 0.3).

2.5. Differential Gene and Metabolite Association Analysis

We used the “spearman” algorithm to analyze the relationship between differential
genes and metabolites. The differential genes and metabolites were introduced into the
KEGG pathway to find the related pathways that caused the differences. A p value < 0.05
represented statistical significance.

3. Results
3.1. LC50 Value

The LC50 of zebrafish after exposure to cyantraniliprole at 24 and 96 h was 7.2 mg/L
and 3.5 mg/L, respectively, with 95% confidence intervals of 7.1–8.3 mg/L and 3.4–4.0 mg/L,
respectively (Table S1). According to test guidelines, cyantraniliprole was considered to
cause moderate toxicity.

3.2. Liver Transcription Results
3.2.1. Differential Genes in Groups after Exposure to Cyantraniliprole

A total of 343 significant DEGs (differential genes) were found after exposure to
0.35 mg/L cyantraniliprole (padj < 0.05 and |log2FoldChange| > 0; Figure 1). There were
115 and 228 up-regulated and down-regulated genes, respectively (Table S2).
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Figure 1. The difference in gene expression between control and treatment groups. Blue dots
represent the total number of genes, red dots represent up-regulated genes, and green dots represent
down-regulated genes. S—treatment, CK—control.

3.2.2. GO and KEGG Enrichment Results

The clusterProfiler R package was used for GO (Gene Ontology) enrichment of dif-
ferential genes (p < 0.05). Most of the DEGs participated in biological processes (BPs) and
molecular function (MF). Eight genes (fgf19, calca, cxcl18b, fgf9, vip, ccl19a.2, ccl19a.1, inhbab)
were down-regulated in MF, including the receptor–ligand activity, receptor regulation,
chemokine expression, and the binding of chemokine receptors (Figure 2A). Six genes
(got2a, elovl6, eci1, me1, hadhab, tph1a) were up-regulated in BPs, including carboxylic acid
catabolism, oxyacid metabolism, organic acid catabolism, fatty acid oxidative catabolism,
and small molecule catabolism (Figure 2B).

As shown in Figure 3, there were 20 reliable KEGG (Kyoto Encyclopedia of Genes
and Genomes) pathways and differential genes enriched in the pathways. According to
padj < 0.05 and |log2 (Fold change)| ≥ 1, four pathways were chosen. Fatty acid degra-
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dation and metabolism and the PPAR signaling pathway were enriched in the exposure
group, while arginine biosynthesis was down-regulated (Table 1).

3.3. Metabolites Analysis
3.3.1. Differences in Metabolites in Groups Exposed to Cyantraniliprole

There were 764 metabolites detected by UHPLC-MS/MS (quadrupole and Orbitrap),
including 556 in the positive ion mode and 208 in the negative ion mode. These metabolites
were organic acids, amino acids, lipids, carbohydrates, nucleosides, and alkaloids. The
differential metabolites were screened according to p < 0.05, VIP > 1. In the positive ion
mode, 175 significantly different metabolites were obtained. Among the 71 metabolites that
were significantly decreased, 24 metabolites were decreased by more than 0.5 times, while
104 metabolites were significantly increased, among which 13 metabolites increased more
than ten-fold compared to the control (Figure 4A, Table 2).

In the negative ion mode, 40 significantly different metabolites were obtained. Thirty-
five metabolites were significantly decreased, and three metabolites were reduced by more
than 0.5 times vs. the control group. Additionally, four metabolites were significantly
increased more than ten-fold compared to controls (Figure 4B, Table 3).

Water 2023, 15, x FOR PEER REVIEW 5 of 17 
 

 

acid catabolism, oxyacid metabolism, organic acid catabolism, fatty acid oxidative catab-
olism, and small molecule catabolism (Figure 2B). 

 
Figure 2. DEGs in BPs (A) and MF (B). The rectangle represents GO with the enrichment level of 
TOP5, and the oval is non-Top5. The shade of color expresses the degree of enrichment. In figure A, 
blue represents the strongest enrichment, followed by yellow and white representing the weakest 
enrichment. In figure B, red represents the strongest enrichment, followed by yellow and white rep-
resenting the weakest enrichment. 

As shown in Figure 3, there were 20 reliable KEGG (Kyoto Encyclopedia of Genes 
and Genomes) pathways and differential genes enriched in the pathways. According to 
padj < 0.05 and|log2 (Fold change)| ≥1, four pathways were chosen. Fatty acid degrada-
tion and metabolism and the PPAR signaling pathway were enriched in the exposure 
group, while arginine biosynthesis was down-regulated (Table 1). 

Table 1. Differential genes (padj < 0.05, |log2 (Fold change)| ≥ 1) in the KEGG-related pathways 
after cyantraniliprole exposure. 

KEGGID 
Descrip-

tion Padj GeneID GeneName  

dre00220 
Arginine 

biosynthe-
sis 

0.005 
ENSDARG00000069095/ENSDARG00000039269/ENSD

ARG00000026925/novel.6825 gls2a/arg2/nos2a/- 
Down-reg-

ulated 

dre00071 
Fatty acid 
degrada-

tion 
0.020 

ENSDARG00000062054/ENSDARG00000018002/ENSD
ARG00000060594/novel.4229 cpt1ab/eci1/hadhab/- 

Up-regu-
lated dre01212 

Fatty acid 
metabo-

lism 
0.036 

ENSDARG00000062054/ENSDARG00000004402/ENSD
ARG00000060594/novel.4229 

cpt1ab/elovl6/hadha
b/- 

dre03320 
PPAR sig-

naling 
pathway 

0.041 
ENSDARG00000062054/ENSDARG00000044566/ENSD

ARG00000053215/novel.4229 cpt1ab/fabp6/me1/- 

Figure 2. DEGs in BPs (A) and MF (B). The rectangle represents GO with the enrichment level of
TOP5, and the oval is non-Top5. The shade of color expresses the degree of enrichment. In (A), blue
represents the strongest enrichment, followed by yellow and white representing the weakest enrich-
ment. In (B), red represents the strongest enrichment, followed by yellow and white representing the
weakest enrichment.
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Table 1. Differential genes (padj < 0.05, |log2 (Fold change)| ≥ 1) in the KEGG-related pathways after cyantraniliprole exposure.

KEGGID Description padj GeneID GeneName

dre00220 Arginine biosynthesis 0.005 ENSDARG00000069095/ENSDARG00000039269/ENSDARG00000026925/novel.6825 gls2a/arg2/nos2a/- Down-regulated
dre00071 Fatty acid degradation 0.020 ENSDARG00000062054/ENSDARG00000018002/ENSDARG00000060594/novel.4229 cpt1ab/eci1/hadhab/-

Up-regulateddre01212 Fatty acid metabolism 0.036 ENSDARG00000062054/ENSDARG00000004402/ENSDARG00000060594/novel.4229 cpt1ab/elovl6/hadhab/-
dre03320 PPAR signaling pathway 0.041 ENSDARG00000062054/ENSDARG00000044566/ENSDARG00000053215/novel.4229 cpt1ab/fabp6/me1/-
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Figure 4. (A) Different metabolites under positive ion mode (NEG). (B) Different metabolites under
negative ion mode (POS). The size of the dot represents the value of LOG_FOLDCHANGE; the
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represents the classification of the different metabolite sources in the group and the line represents
the correlation coefficient value of the metabolite at the corresponding location.

Table 2. The difference in metabolites in the positive ion mode.

Super Class MS2 Name Vip p-Value Old Change

Organic acids and
derivatives

Betaine 1.1706 0.0290 0.8150 ↓
Creatine 1.2810 0.0016 0.5706 ↓

Creatinine 1.3438 0.0348 0.7076 ↓
Taurine 1.2138 0.0083 0.6915 ↓

N-(2-Methylpropyl) acetamide 1.6595 0.0003 0.5217 ↓
Alanyl-ssparagine 1.4894 0.0019 0.5506 ↓

L-carnitine 1.3082 0.0095 0.7323 ↓
Nervonyl carnitine 1.1347 0.0396 0.5730 ↓

Beta-guanidinopropionic acid 1.5416 0.0003 0.7521 ↓
2-diethylaminoethanol 1.2225 0.0400 0.6536 ↓

Furanone A 1.3682 0.0019 0.6856 ↓
1-isothiocyanato-6-(methylsulfinyl)hexane 1.3442 0.0260 0.6996 ↓

L-acetylcarnitine 1.4341 0.0011 0.6890 ↓
3-hydroxyisovalerylcarnitine 1.3427 0.0150 0.5635 ↓

Leucyl-serine 1.6092 0.0125 11.5661 ↑
3-Chlorotyrosine 1.5789 0.0241 45.8652 ↑

Dihydrocaffeic acid 3-sulfate 1.7584 0.0004 11.6826 ↑

Other
PC(18:1(11Z)/14:0) 1.4287 0.0020 0.5528 ↓
PC(16:1(9Z)/P-18:0) 1.3582 0.0074 0.5713 ↓

Lipids and lipid-like
molecules

PS(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 1.4937 0.0014 0.7067 ↓
Schleicherastatin 5 1.2785 0.0223 0.5590 ↓

Ganodermic acid TQ 1.4614 0.0076 0.5426 ↓
Linoleamide 1.0443 0.0398 0.7566 ↓

PC(18:1(11Z)/P-16:0) 1.2649 0.0021 0.5305 ↓
PS(18:0/22:6(4Z,7Z,10Z,13Z,16Z,19Z)) 1.4937 0.0014 0.7067 ↓

Perilloside B 1.7006 0.0147 142.6186 ↑
2,3-dinor-6-keto-prostaglandin F1 a 1.3067 0.0462 96.1260 ↑

17-phenyl-18,19,20-trinor-prostaglandin E2 1.7325 0.0143 101.8653 ↑
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Table 2. Cont.

Super Class MS2 Name Vip p-Value Old Change

LysoPC(P-18:1(9Z)) 1.5407 0.0172 18.9561 ↑
Nucleosides,

nucleotides, and
analogues

5′-methylthioadenosine 1.4422 0.0028 0.6312 ↓

Phenylpropanoids and
polyketides

2′,7-dihydroxy-4′-methoxy-8-prenylflavan 1.7849 0.0105 1565.9867 ↑
1-(4-hydroxy-3,5-dimethoxyphenyl)-7-(4-hydroxy-3-

methoxyphenyl)-3,5-heptanediol 1.5020 0.0028 10.0861 ↑

Ethyl trans-p-methoxycinnamate 1.7784 0.0035 213.7491 ↑
Benzyl cinnamate 1.3512 0.0105 0.6595 ↓

Organoheterocyclic
compounds

Enrofloxacin 1.6447 0.0014 94.0261 ↑
Flumioxazin 1.6558 0.0049 11.2860 ↑

Benzenoids Acetylsalvipisone 1.6715 0.0130 121.9760 ↑
Note: “↑” indicates that the metabolite content in the treatment group is higher than that in the control group, and
“↓” indicates that the metabolite content in the treatment group is higher than that in the control group.

Table 3. The difference in metabolites in the negative ion mode.

Super Class Name (MS2) Vip p-Value Fold Change

Lipids and lipid-like molecules Gamma-linolenic acid 1.1277 0.0282 3.6790 ↑
Androsterone sulfate 1.7047 0.0082 2726.9810 ↑

Nucleosides, nucleotides, and analogues 5′-methylthioadenosine 1.7020 0.0427 169.6809 ↑
Benzenoids 4-dodecylbenzenesulfonic acid 1.5190 0.0079 9.1142 ↑

Organic acids and derivatives
Sarcosine 1.1400 0.0230 0.5179 ↓
L-proline 1.0763 0.0363 0.5444 ↓
Taurine 1.1467 0.0233 0.5079 ↓

Note: “↑” indicates that the metabolite content in the treatment group is higher than that in the control group, and
“↓” indicates that the metabolite content in the treatment group is higher than that in the control group.

3.3.2. Pathway Analysis of Differential Metabolites

There were eight relevant metabolic pathways in the negative and positive ion modes
(lnp values > 0): taurine and hypotaurine, pyrimidine, arginine and proline, glyoxylic acid
and dicarboxylic acid metabolism, the tricarboxylic acid cycle (TCA cycle), phenylalanine
metabolism, tyrosine and tryptophan biosynthesis, and glycerophospholipid metabolism
(Figure 5A,B).
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3.4. Correlation Analysis

The correlation between liver tissue differential genes and differential metabolites of
zebrafish was analyzed.

Under the negative ion model (Figure 6A), the correlation between seven metabo-
lites and 18 genes was analyzed. fgf9 showed a significant negative correlation with four
metabolites (4-dodecylbenzenesulfonic acid, 5′-methylthioadenosine, androsterone sul-
fate, and gamma-linolenic acid), fgf19 and nos2a showed a significant negative correlation
with three metabolites (4-dodecylbenzenesulfonic acid, 5′-methylthioadenosine, and an-
drosterone sulfate), and mel and captlab showed a significant positive correlation with the
three metabolites.
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gls2a, ccl19a1, and ccl19a2 were significantly negatively correlated with gamma-linolenic
acid and androsterone sulfate. cxcl18b and inhbab were significantly negatively correlated
with gamma-linolenic acid, and inhbab and ecil1 showed a significant positive correlation
with gamma-linolenic acid. calca and hadbab showed a significant positive correlation with
taurine, sarcosine, and L-proline. vip, tphla, got2a, fabp6, and elovl6 were not correlated with
these seven metabolites.

In the positive ion model (Figure 6B), fabp6, hadhab, and tphla showed no correlation
with 36 metabolites, 2,3 dinor-6-keto-protaglandinF1a, 3-chlorotysine, 5′-methythioadenosine,
linoleamide, nervonyl carnitine, and taurine while also showing no correlation with 18 genes.
calca was positively correlated with three metabolites [1-isothiocyanato-6-(methylsulfinyl) hex-
ane, PC (18:1(11Z)/14:0), and PS (18:0/22:6 (4Z, 7Z, 10Z, 13Z, 16Z, 19Z)] and negatively cor-
related with four metabolites (acetylsalvipisone, flumioxazin, 2′,7-dihydroxy-4′-methoxy-8-
prenylflavan, 17-phenyl-18,19,20-trinor-prostaglandin E2).

ccl19a1 and ccl19a2 were positively correlated with three metabolites (2-diethylaminoethanol,
alanyl-asparagine, benzyl cinnamate and PC (18:1(11Z)/14:0)) and negatively correlated with
three metabolites [enrofloxacin, L-acetylcarnitine, lysoPC (P-18:1(9Z)].



Water 2023, 15, 521 11 of 16

exc118b was positively correlated with six metabolites [2-diethylaminethanol, alanyl-
asparagine benzyl-cinnamate, ganodermic, PC (18:1(11Z)/14:0), and PS (18:0/22:6 (4Z,
7Z, 10Z, 13Z, 16Z, 19Z)] and negatively correlated with four metabolites (2′,7-dihydroxy
-4′-methoxy-8-prenylflavan, 17-phenyl-18,19,20-trinor-prostaglandin E2, acetylsalvipisone,
and enrofloxacine).

eci1 had a significant positive correlation with two metabolites (acetylsalvipisone and
enrofloxacine) and a negative correlation with five metabolites (2-diethylaminethanol, alanyl-
asparagine, benzyl cinnamate, ganodermic acid TQ, and N-(2-Methylpropyl) acetamide).

elov16 was positively correlated with four metabolites (dihydrocaffeic acid 3-sulfate,
L-acetylcarnitine, leucyl-serine, and perilloside B) and negatively correlated with eight metabo-
lites (3-hydroxyisovalerylcarnitine, 5′-methylthioadenosine, beta-guanidinopropionic acid,
betaine, creatine, creatinine, furanone A, and L-carnitine).

fgf19 was positively correlated with five metabolites (3-hydroxyisovalerylcarnitine,
L-carnitine, PC (16:1(9Z)/P-18:0), PC (18:1(11Z)/P-16:0), and schleicherastatin 5) and nega-
tively correlated with two metabolites [L-carnitine and lysoPC (P-18:1(9Z)].

fgf9 was positively correlated with ten metabolites (2-diethylaminoethanol,
3-hydroxyisovalerylcarnitine, alanyl-asparagine, benzyl cinnamate, ganodermic acid TQ,
L-carnitine, N-(2-methylpropyl) acetamide, PC(16:1(9Z)/P-18:0), PC (18:1(11Z)/14:0), and
schleicherastatin 5) and negatively correlated with four metabolites [acetylsalvipisone,
enrofloxacin, L-acetylcarnitine, and lysoPC (P-18:1(9Z)].

gls2a was positively correlated with six metabolites (2-diethylaminoethanol, alanyl-
asparagine, benzyl cinnamate, ganodermic acid TQ, PC (18:1(11Z)/14:0), and perilloside B)
and negatively correlated with two metabolites (3-chlorotyrosine and enrofloxacin).

got2a was positively correlated with four metabolites (1- (4- hydroxy -3,5-dimethoxyphenyl)-
7-(4-hydroxy-3-methoxyphenyl)-3,5-heptanediol, dihydrocaffeic acid 3-sulfate, leucyl-serine,
and perilloside B) and negatively correlated with ten metabolites (1-Isothiocyanato-6-
(methylsulfinyl) hexane, 3-hydroxyisovalerylcarnitine, beta-guanidinopropionic acid, be-
taine, creatine, creatinine, furanone A, L-carnitine, N-(2-methylpropyl) acetamide, and
nervonyl carnitine).

Inhab was positively correlated with five metabolites (2-diethylaminoethanol, alanyl-
asparagine, benzyl cinnamate, ganodermic acid TQ, and N-(2-methylpropyl) acetamide)
and negatively correlated with three metabolites (1-(4-hydroxy-3,5 -dimethoxyphenyl)-7-(4-
hydroxy-3-methoxyphenyl)-3,5-heptanediol, enrofloxacin, and lysoPC(P-18:1(9Z)).

mel showed a positive correlation with two metabolites (3-chlorotyrosine and ethyl
trans-p-methoxycinnamate) and a negative correlation with three metabolites (PC (16:1(9Z)/
P-18:0), PC (18:1(11Z)/P-16:0), and schleicherastatin 5).

nos2a showed a correlation with four metabolites (3-hydroxyisovalerylcarnitine, L-
carnitine, PC(16:1(9Z)/P-18:0), and schleicherastatin 5) and a negative correlation with
L-acetylcarnitine.

vip was positively correlated with two metabolites (1-isothiocyanato-6-(methylsul
-finyl) hexane and betaine) and negatively correlated with five metabolites (17-phenyl-
18,19,20-trinor-prostaglandinE2, 2′,7-dihydroxy-4′-methoxy-8-prenylflavan, acetylsalvip-
isone, dihydrocaffeic acid 3-sulfate, and flumioxazin).

These differential genes and metabolites are mainly involved in pathways related to
amino acid and fatty acid metabolism (Table 4).

Specifically, two genes (got2a, nos2a) and four metabolites (sarcosine, L-proline, cre-
atine, and creatinine) participated in arginine and proline metabolism, one gene (got2a)
and one metabolite (5′-methylthioadenosine) participated in cysteine and methionine
metabolism, two genes (hadhab, tph1a) participated in tryptophan synthesis, and three
metabolites (betaine, creatine, and phosphatidylserine) participated in glycine, serine, and
threonine metabolism.
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Table 4. Differential genes and metabolites in KEGG-related pathways after cyantraniliprole exposure
(padj < 0.05, |log2 (Fold change)| ≥ 1).

KEGG Pathway Genes and Metabolites

dre01040: biosynthesis of unsaturated fatty acids—Danio rerio
(zebrafish) (2)

cpd: C06426 (6Z,9Z,12Z)-octadecatrienoic acid||dre:317738
elovl6: elongation of very long-chain fatty acids protein 6

dre00062: fatty acid elongation—Danio rerio (zebrafish) (2) dre:317738 elovl6||dre:793834 hadhab: mitochondrial
trifunctional protein, alpha subunit

dre01212: fatty acid metabolism—Danio rerio (zebrafish) (3)
dre:317738 elovl6||dre:793834 hadhab: mitochondrial

trifunctional protein, alpha subunit||dre:560000 cpt1ab:
carnitine O-palmitoyltransferase 1, isoform X2 in liver

dre00071: fatty acid degradation—Danio rerio (zebrafish) (3)
dre:334101 eci1:eci1 enoyl-CoA delta isomerase 1,

mitochondrial||dre:793834 hadhab: mitochondrial trifunctional
protein, alpha subunit||dre:560000 cpt1ab

dre00564: glycerophospholipid metabolism—Danio rerio
(zebrafish) (3)

cpd: C04230 1-acyl-sn-glycero-3-phosphocholine||cpd:C00157
phosphatidylcholine||cpd:C02737 phosphatidylserine

dre00260: glycine, serine, and threonine metabolism—Danio
rerio (zebrafish) (3)

cpd: C00719 betaine||cpd:C00300 creatine||cpd:C02737
phosphatidylserine

dre00270: cysteine and methionine metabolism—Danio rerio
(zebrafish) (2)

cpd: C00170 5′-methylthioadenosine||dre:406688 got2a:
aspartate aminotransferase 2a

dre00330: arginine and proline metabolism—Danio rerio
(zebrafish) (6)

cpd: C00213 sarcosine||cpd:C00148 L-proline||dre:406688
got2a: aspartate aminotransferase 2a||dre:404036 nos2a: nitric

oxide synthase 2a, inducible||cpd:C00300
creatine||cpd:C00791 creatinine

dre00380: tryptophan metabolism—Danio rerio (zebrafish) (2) dre:793834 hadhab:hadhab mitochondrial trifunctional protein,
alpha subunit||dre:352943 tph1a: tryptophan 5-hydroxylase 1

dre02010: ABC transporters—Danio rerio (zebrafish) (3) cpd: C00148 L-proline||cpd:C00245 taurine||cpd: C00719
betaine

dre04080: neuroactive ligand–receptor interaction— Danio rerio
(zebrafish)(3)

cpd: C00245 taurine||dre:436744 calca: calcitonin gene-related
peptide 2 precursor||dre:795653 vip: VIP peptides

dre01200: carbon metabolism—Danio rerio (zebrafish) (2)
dre:406688 got2a:got2a aspartate aminotransferase

2a||dre:793834 hadhab: mitochondrial trifunctional protein,
alpha subunit

dre03320: PPAR signaling pathway—Danio rerio (zebrafish) (2) dre:415166 fabp6:fabp6 gastrotropin||dre:560000 cpt1ab

One gene (elovl6) and one metabolite ((6Z,9Z,12Z)-octadecatrienoic acid) participated
in unsaturated fatty acid biosynthesis, two genes (elovl6, hadhab) participated in fatty acid
elongation, three genes (elovl6, hadhab, and cpt1ab) participated in fatty acid metabolism,
another three genes (eci1, hadhab, and cpt1ab) participated in fatty acid degradation, two
genes (fabp6, cpt1ab) participated in the PPAR signaling pathway, and three metabolites
(L-proline, taurine, and betaine) participated in ABC transporters.

4. Discussion

The LC50 of cyantraniliprole was 3.5 mg/L(96 h), which indicates moderate toxicity to
zebrafish according to the acute toxicity test. This result is inconsistent with that of tilapia
(slight toxicity) [5], which may be caused by the different size of the fish.

In the present study, we studied the changes in transcriptome and metabolome in
the liver of zebrafish exposed to sublethal doses of cyantraniliprole. A previous study
reported that cyantraniliprole could induce DNA damage in the liver cells of tilapia [5].
We also found that cyantraniliprole induced differential expression of multiple genes and
metabolites in the liver of zebrafish. The correlation of differential genes and metabolites
suggested that gls2a, inhab, cxcl18b, elovl6, fgf9, and got2a were associated with more than
eight metabolites and involved in multiple metabolic pathways.

The conversion of glutamate and glutamine involves three key enzymes, of which
glutamine synthase catalyzes glutamine production from glutamate, while GLS and GLS2
catalyze the breakdown of glutamine to glutamate. In the present study, one paralog of
glutaminase2 (Gls2a) was identified in the liver of zebrafish, which is consistent with the
report of specific gls2a expression in the liver of 120 hpf wild-type zebrafish larvae [23].
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Furthermore, the obtained result indicated that gls2a was negatively correlated with 3-
chlorotyrosine in phenylalanine metabolism downstream of glutamine and positively
correlated with alanyl-asparagine.

Elovl6 participates in insulin resistance, obesity, and adipogenesis [24]. Furthermore, a
previous study showed that Elovl6 expression is up-regulated in human hepatoma cells
and is associated with nonalcoholic steatohepatitis-induced hepatocarcinogenesis [25]. In
our study, Elovl6 was up-regulated after exposure to the sublethal dose of cyantraniliprole,
indicating that long-term exposure can lead to liver damage. In addition, the up-regulation
of Elovl6 led to a decrease in the content of creatine and creatinine in the amino acid
metabolism pathway.

The inhab gene encodes the βA subunit of activin or inhibin, which is involved in
the reproductive and developmental processes of the organism [26]. Some studies have
detected that the up-regulated expression of inhab is closely related to various human
cancers, such as esophageal cancer, colon cancer, and lung cancer, and may participate in
the occurrence and development of tumors [27–31]. However, in this study, we found that
a sublethal dose of cyantraniliprole had no significant effect on inhab, which suggests that
this gene may not be the main target for inducing liver damage.

Increased NH4
+ concentration affected mRNA expression, causing an increase in

GOT1 and GOT2a, which is indicative of an increase in the transamination process of
aspartate aminotransferase that affects the tricarboxylic acid cycle [32]. In the present study,
we observed up-regulated expression of got2a in zebrafish liver after exposure to a sublethal
dose of cyantraniliprole. Our data indicated that got2a is also involved in various amino
acid metabolisms, such as arginine, proline, cysteine, and methionine metabolism, among
others. Furthermore, these results indicate that sublethal doses of cyantraniliprole induce
abnormalities in the tricarboxylic acid cycle and the metabolism of various amino acids.

KEGG pathway enrichment analysis indicated alterations in the metabolism of fatty
acids, which involved unsaturated fatty acid biosynthesis, the elongation, metabolism,
and degradation of fatty acids, glycerophospholipid metabolism, and PPAR pathways.
The PPAR pathway is associated with various liver diseases [33]. Previous studies have
shown that the expression or inactivation of PPAR is related to metabolic liver diseases,
virus-induced liver diseases, hepatocellular adenomas, and liver cancers [33]. PPAR mainly
participates in the regulation of cholesterol and bile homeostasis, inflammation, hepatocyte
differentiation, proliferation and regeneration, and other physiological functions at the
transcriptional level and is a ligand-activated nuclear receptor [33]. In the present study,
the fabp6 gene was up-regulated in the PPAR pathway, which is a key gene for unsaturated
fatty acids in the liver. γ linolenic acid in unsaturated fatty acids was also significantly
up-regulated. At the same time, Capt1b, a related gene that regulates fatty acid oxidation,
was also up-regulated, indicating that sublethal doses of cyantraniliprole affected zebrafish
liver transcription and metabolism, resulting in liver damage.

In addition, down-regulation of the ABC transporter pathway and the abnormal
metabolism of various amino acids were also seen after exposure to cyantraniliprole. It
is well known that the liver is the main organ of drug metabolism and excretion, among
which the ABC transporter family is mainly an efflux transporter [34]. Relevant studies
have suggested that changes in the expression of ABC transporter mRNA and protein are
related to various liver diseases, such as alcoholic steatohepatitis, cirrhosis, and cancer
of the liver. [35–39]. The metabolites proline, taurine, and betaine, which are associated
with ABC transporters, were all significantly elevated in this study. Relevant research
has suggested that taurine and betaine can protect the liver. Taurine combines with bile
acids and participates in the excretion of bile, which can alleviate related diseases caused
by cholestasis [40]. Betaine can reduce enterogenic endotoxemia, hyperhomocysteinemia,
hepatic endoplasmic reticulum stress response [41], and the synthesis and release of pro-
inflammatory factors by regulating the polarization process of macrophages [42]. Moreover,
it can inhibit the liver’s inflammatory response, delay the process of liver cirrhosis, and
exert an important role in protecting the liver [43].
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To sum up, transcriptomics and metabolomics showed that sublethal doses of cyantranilip-
role affect zebrafish liver fatty acid metabolism and ABC transporters, resulting in abnormal
fatty acid transcription and metabolism in the liver while stimulating the production of taurine.
During this process, increased levels of substances such as acid and betaine are produced to
protect the liver; however, the site of action of the specific pathway was not investigated in this
study. A more detailed mechanism of action remains to be studied.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15030521/s1, Table S1: The LC50 of zebrafish after exposure
to cyantraniliprole at 24 and 96 hours; Table S2: The up-regulated and down-regulated genes after
exposure to cyantraniliprole.
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