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Abstract: Machine learning (also called data-driven) methods have become popular in modeling flood
inundations across river basins. Among data-driven methods, traditional machine learning (ML)
approaches are widely used to model flood events, and recently deep learning (DL) approaches have
gained more attention across the world. In this paper, we reviewed recently published literature on
ML and DL applications for flood modeling for various hydrologic and catchment characteristics. Our
extensive literature review shows that DL models produce better accuracy compared to traditional
approaches. Unlike physically based models, ML/DL models suffer from the lack of using expert
knowledge in modeling flood events. Apart from challenges in implementing a uniform modeling
approach across river basins, the lack of benchmark data to evaluate model performance is a limiting
factor for developing efficient ML/DL models for flood inundation modeling.

Keywords: environmental modeling; deep learning; machine learning; hydrodynamic model

1. Introduction

Machine learning algorithms including traditional machine learning and more ad-
vanced deep learning models, have shown promising results for flood inundation modeling.
Very recently, Bentivoglio et al. [1] reviewed the application of deep learning models for
flood inundation modeling. They summarized the main challenges related to application
of DL models as generalization ability, and modeling complicated interactions in flood
events. Sit et al. [2] covered applications of DL models on a broad range of events including
floods and weather forecasting. They concluded that because rainfall and runoff are both
time series data, recurrent neural network (RNN) models are among the best suited for
these events. They also highlighted the lack of a well curated dataset in the water modeling
fields. Mudashiru et al. [3] reviewed the application of ML models to flood hazard maps
and determined that uncertainty quantification is a limitation of ML. Ghorpade et al. [4]
reviewed five papers and compared traditional ML and DL methods. They highlighted
the effects of data (e.g., water flow, rain fall and humidity) and superiority of DL models
for flood modeling. Mosavi et al. [5] reviewed several papers that used ML methods to
estimate flood inundation, and investigated the robustness, effectiveness, accuracy, and
speed of these models. As a result, they introduced the most promising prediction methods
for both long- and short-term flood events.

Although these papers provide comprehensive information on ML and DL models,
their focus was only ML or DL models. In this work, we reviewed physically based models
used to generate flood inundation data for ML models and provided technical information
about both ML and DL models and then surveyed papers that applied these models to
predict flood events. Further, we discuss the strengths and weaknesses of such data-
driven methods (e.g., ML, DL) to model flood events and describe challenges and missing
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technologies that can be explored by the community to boost speed and performance
of flood prediction. Table 1 highlights the differences between our review and similar
existing surveys.

Table 1. Comparison of our systematic review to other related studies.

Topic
Reference

[6] [5] [2] [4] [3] [1] Ours

Physical based models
√ √ √

Machine learning models
√ √ √ √

Deep Learning models
√ √ √ √

Extension to real-time response
√ √

Model interpretation methods
√

Embedding expert knowledge
√

Our paper is organized as follows: In Section 2, we briefly describe the common
hydrodynamic, machine learning and deep learning methods used in this research field.
Section 3 summarizes the formulation of traditional and DL methods and application
of these methods for flood inundation modeling along with a review over datasets. We
organize publications according to traditional ML and more advanced DL approaches.
Section 4 highlights the strength and limitations of current methods and explains open
research challenges. Finally, key findings of this review are summarized in Section 5.

2. Overview of Methods
2.1. Hydrodynamic Models

Hydrodynamic (HD) models have been used for several decades to describe the
dynamics of flood inundation systems [6–8]. Based on the complexity of the river-floodplain
network in question and data availability for model configuration and calibration, one
can select a simple (e.g., one dimensional, 1D), or more complex two dimensional (2D)
or coupled 1D and 2D model [6,9]. The 1D model is easy to configure and takes less
computational time [3,10]. However, it is extremely difficult to represent complicated
floodplain features using one-dimensional models, especially if the water level varies across
the cross-section [3,6]. A 2D model is often considered superior compared to 1D because of
its flexibility in reproducing river bathymetry in the model. Nonetheless, the application
of traditional fixed grid 2D models is not always sufficient to reproduce river conveyance.
This is because model grids are not aligned with the riverbanks and, in many cases, the
lowest points in the river are not adequately represented in the model [6,11]. The grid
size must be small enough to actually model the hydraulic effects producing the hydraulic
gradients through the floodway, particularly for sharp bends and narrow channels [6,12,13].
If the grids are solely chosen to make sure the floodway is adequately modeled, this will
lead to a computationally slow model that produces unnecessarily detailed results for much
of the floodplain. More recently, flexible mesh (FM, also called irregular grid) models have
been found to be superior to regular grid models in terms of accuracy and computational
time [12,14]. The use of a flexible mesh model can overcome many of the limitations of
regular grid models as they allow complicated floodway geometries to be modeled with
precision. They do not require the remainder of the floodplain to be modeled at the same
spatial resolution since they allow the computational mesh to be aligned and refined to suit
the geometry of the floodplain [12,15].

While hydrodynamic modeling tools are highly effective in producing detailed char-
acteristics of flood inundation with high accuracy, they require large amounts of data for
model configuration and calibration [3,6]. Modeling inundation in a large catchment is often
a challenge because the hydraulic models need to be large enough to cover the entire flood-
plain system and at the same time, they need to be sufficiently detailed to represent small
rivers, floodplain pathways and wetlands in the model [6,12]. Moreover, hydrodynamic
models are computationally expensive and inefficient for multiple scenario modeling [16].
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Advances in modeling tools (e.g., multi-zone flexible mesh models) and computing power
(e.g., graphics processing unit or GPU) have allowed the implementation of sophisticated
hydrodynamic models in large floodplains with greater spatial detail [11,17,18]. However,
the computational time is still a major constraint for national-scale flood modeling. In
recent years, efforts are being made to complement traditional flood modeling methods
with ML approaches for a faster and more reliable flood modeling [19].

2.2. Machine Learning Approaches

Machine learning is concerned with designing algorithms that automatically extract
useful insights from data [20]. Here the emphasis is placed on “automatic”. Where
traditional approaches might focus on scientific or statistical models that describe a process
or mechanism that can be interpreted, machine learning is often more concerned with
general-purpose methods that are relatively agnostic to the domain. As such, predictions
are usually the usable output of applying machine learning to a problem, not interpretable
models in a traditional sense. In the case of fluid modeling for example, an instantiation of
the Navier-Stokes equation can make predictions and provide an interpretable mechanistic
scientific model, whereas most classical machine learning models provide only predictions.
Machine learning makes use of tools from other fields including statistics, probability,
computer science, linear algebra, functional analysis and geometry. Machine learning
methods that aim to align more closely with traditional model-based approaches are
emerging technology. However, they do not seem to have yet been adopted by the flood
inundation modeling community and do not appear in any of the papers we survey.

In this section we briefly describe common concepts in machine learning that are
relevant to flood inundation modeling. These are data, models, learning, and generaliza-
tion. Since we do not aim to provide a comprehensive introduction to machine learning,
we provide an imprecise definition of these concepts and elaborate further for each in-
dividual method as necessary. The interested reader can consult [20] for a modern and
comprehensive foundation of machine learning.

Data are observations that are represented on a computer. For example, the water level
of a river at 6 sensor locations along the river at intervals of 12 h over a week-long period
might be represented in a 14 × 6 element matrix, Y, where the 14 rows represent increasing
12-h periods and the 6 columns each represent fixed sensor locations. The rainfall over each
12-h period at 5 local weather stations might be represented by a 14 × 5 element matrix, X.
Each row of the matrix represents a data point, and each column represents an attribute.
Not all data are tabular and admit a matrix representation, but this data format is used
by many of the methods we review. The data X are sometimes called features, inputs, or
regressors and the data Y are often called labels, targets, or responses. In some cases, labels
are not available for every input, or even for any input.

Models are mathematical objects that can ostensibly be configured to agree with the
data in some approximate sense. For example, we might conjecture that every row in Y
can be recovered by applying a fixed but unknown linear function to the corresponding
row in X and adding some unobserved noise. That is, for the i-th rows xi and yi of X and Y,
yi = Wxi + ε, where W is a 6 × 5 element matrix and ε is a 6-element vector containing noise
with known statistical properties. The model that a practitioner uses should be selected
according to the data. For example, some data targets are real-valued, and regression
models are most suitable for this kind of data. Some data targets are categorical variables,
and classification models should be used. Note that the usage of the term model in a
machine learning context does not necessarily agree with the definition in broader science,
machine learning models rarely describe an interpretable data-generating process.

The process of learning aims to configure the parameters of the model so that they
agree with the data. In our previous example, this might mean using the linear relationship
and the statistical properties of the noise to find the value of parameters W that maximize
the likelihood of observing the data. The word training is sometimes loosely used to refer to
this process, especially if the model in question is a deep learning model. While maximum
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likelihood estimation (MLE) and maximum a posteriori estimation (MAPE) methods form
the dominant basis for configuring machine learning parameters, optimization objectives
that are not a likelihood or posterior are sometimes used. These objectives are sometimes
called loss functions. Non-optimization learning, including probabilistic sampling-based
approaches also exist. Depending on whether labels Y are available, learning might
be described as supervised or unsupervised. Supervised techniques map X to Y and
unsupervised techniques aim to draw insight from X alone. The term self-supervised is
sometimes used to describe methods that are in some sense a mixture of supervised and
self-supervised techniques.

Generalization aims to capture how well the model can make predictions on data
that was not used during learning. That is, in some precise sense, given a new matrix X∗
consisting of observations at the same weather station but over a new week, how well does
the learned linear relationship predict the true water level Y∗ at the same 6 sensor locations?

In the subsections below, we briefly describe some machine learning approaches. Deep
learning techniques are presented separately from machine learning techniques so that
terminology is consistent with the papers we review, although this distinction is somewhat
artificial. It is important to note that both ML and DL are part of artificial intelligence
(AI). The ML algorithms learn from structured data to identify patterns in that data and
DL algorithms are based on highly complex neural networks that detect patterns in large
unstructured data sets.

2.2.1. Classification and Regression

Two useful and commonly encountered descriptions of problems in machine learning
contexts are classification and regression. The problem of classification is to associate every
row xi in X to one of k discrete values 1, 2, . . . , k. In a typical setting, the magnitude and
ordering of the values k values is not informative—for example, 2 is not “greater than” 1.
For example, we might be interested in deciding whether an input image xi represents a
horse, truck or dog takes a value 1, 2 or 3. The problem of regression is to associate every
row xi in X to a value. In a typical setting, unlike in classification, the magnitude and
ordering can be important. For example, we might be interested in deciding whether an
input spatial coordinate xi is not flooded, mildly flooded, or severely flooded taking values
1, 2 and 3. As another example, we might be interested in associating to every input spatial
coordinate xi a real-valued number representing the flood level in meters.

2.2.2. Traditional Machine Learning Models

Kernel methods: Kernel methods that are easiest to describe are those that use the
so-called kernel trick. Suppose we have access to some n × d data matrix X and an abstract
algorithm whose prediction depends on X only through the product XXT>. Here n is the
number of training examples, d is the dimensionality of each training input, XT denotes
the transpose of X, and XXT is an n × n matrix. If we instead ran our algorithm over some
transformation of the data φ(X), where φ is a function that maps every d-element row of X
to a D-element row, the prediction of the algorithm now depends on the matrix φ(X)φ(XT),
which is also an n × n matrix. Under minimal assumptions, given φ(X)φ(XT), the memory
requirements and computational complexity of the algorithm do not depend on D. The data
represented in the new space may reveal a structure that was not obvious in the original
space. This means that we may lift our original training inputs to a higher dimensional
space without incurring additional costs and with potential benefits for the predictor (see
Figure 1 for detail). The dimensionality D of the space to which φ maps may be very large,
or even infinite.

More generally, kernel methods make use of the theory of the reproducing kernel
Hilbert space (RKHS), the details of which are beyond the scope of this paper. Briefly,
the RKHS can be thought of as very rich function class with elements that cannot always
be expressed with a finite number of parameters. Remarkably, the RKHS can be used as
a function class in a learning problem for a very large set of losses, and this loss can be
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minimized with respect to a finite number of parameters using the so-called representer
theorem [21].
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Figure 1. (Left) Original data X∈R20×2 does not exhibit obvious structure with respect to labels
(indicated by color). (Right) After mapping to φ(X) ∈ R20×3 given some matrix A, the data is
observed to lie on the surface of a quadratic. Kernel methods make use of a mapping φ(X) by
operating on the kernel matrix φ(X)φ(XT) ∈ RN×N without defining φ explicitly but instead in terms
of the kernel matrix φ(X)φ(XT).

The process of taking an existing algorithm that operates on XXT and replacing it
with a kernel matrix φ(X)φ(XT) or using the representer theorem is commonly referred
to as kernelizing the algorithm. Examples of kernelized algorithms include the support
vector machine (SVM) [22], the support vector regression (SVR) machine [23], kernel ridge
regression (KRR) [24] and principal component analysis (PCA) [25]. Kernel methods
enjoy a rich theory and historical connection with statistical learning theory [26]. As such,
mathematically provable generalization guarantees are available for many kernel methods.

Generalized linear models: Generalized linear models (GLMs) [27] are best described
as classical statistical methods that generalize ordinary least squares (OLS) regression.
In probabilistic terms, OLS assumes that target data Y are samples from a conditionally
Gaussian likelihood with a mean that is an unknown parameterized linear transformation
of input data X. The parameters of the linear transformation can be computed by solving a
linear system, or by running an optimizer such as Newton’s method or gradient descent on
the negative log likelihood.

GLMs allow target data Y to be samples from a more general conditional distribution
with a canonical parameter that is an unknown linear transformation of input data X. This
general conditional distribution is a so-called exponential family. The parameters of the
linear transformation are typically found using iteratively reweighted least squares, which
is just Newton’s method applied to the negative log likelihood. The negative log likelihood
is guaranteed to be convex, and so a properly configured convex optimizer is guaranteed
to converge to a global minimum under mild conditions.

GLMs allow one to model situations in which the observed data is not Gaussian.
For example, if the data is strictly positive, a Gaussian likelihood is inappropriate, but
an exponential likelihood might be appropriate. If the data is integer-valued, a discrete
distribution such as the Bernoulli, binomial or Poisson might be used. Just as the Gaussian
likelihood corresponds with a squared Euclidean metric, more generally exponential family
likelihoods correspond with a certain pasteurization of Bregman divergences [28]. Various
machine learning extensions and interpretations of GLMs are available, for example ker-
nelized GLMs [29], although to the best of our knowledge these have not been applied to
flood inundation prediction.

Decision trees, random forest and boosted regression tree: Decision trees [30] are
models that use simple decision rules learned from data that can be applied in regression
or classification settings. Given a training dataset consisting of inputs and targets, decision
trees aim to iteratively partition the input space so that targets with the same or similar
values are grouped together. At each iteration, a candidate split is made by selecting
some feature and threshold its value. A loss function then measures how desirable the
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split is, and a split that attempts to minimize this loss is chosen. One example of a loss is
the entropy.

Random forest (RF) combines decision trees with bootstrap aggregating (bagging).
A random forest is an ensemble of decision trees, each of which is trained on a subset of
the training data that is random uniformly sampled with replacement. Other variants of
ensembled decision trees include the boosted regression tree. A schematic diagram of RF
algorithm is illustrated in Figure 2.
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Figure 2. Schematic diagram of Random Forest (RF), the final decision inferred from majority voting
using results from each decision tree.

Boosted regression tree (BRT) combines a boosting algorithm with regression tree to
increase the performance and reduce the model variance [31].

Other ML related models:
Functional data analysis (FDA): In the example 14 × 5 data matrix in Section 2.2, each

row is a data point that is a 5-dimensional vector. Functional data analysis is concerned
with data where each data represents a function (hence the name functional). The most
common mathematical formulations for dealing with data points are stochastic processes. A
stochastic process is capable to represent objects that can be intuitively described as random
function. The data points in an FDA technique may represent functions on a regular grid,
irregular grid, or even different grids. Due to this advantage, FDA is particularly suitable
for dealing with datasets with missing, sparse or irregularly sampled entries.

FDA is a collection of techniques that take this functional view and consists of tech-
niques that generalize methods that work on vector-valued data to function-valued data.
For example, FDA techniques for regression, classification, dimensionality reduction and
clustering exist. PCA and linear regression are described in Ramsay and Dalzell [32].

Multivariate discriminant analysis (MDA) is a data mining technique which is used to
reduce data dimensionality. Using MDA, the multivariate signals are projected down to an
N-1 dimensional space. The N represents the number of categories [33].

Multigene genetic programming (MGGP) is known to be a variant of genetic pro-
gramming [34]. This symbolic optimization method first generates a model (e.g., a tree
based model) to map the input to the output data and the updates the model during the
training process.

2.2.3. Deep Learning Models

This section summarizes cornerstone neural network architectures used by papers
reviewed in this study. Unfortunate historical factors mean that terminology is not always
consistent. For example, some use the artificial neural network (ANN) to refer to all deep
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learning models, whereas some use ANN to refer to a multilayer perceptron (MLP). Our
exposition also serves to clarify the terminology employed in our paper. Examples of some
of the deep learning models are shown in Figure 3.
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Figure 3. Schematic of some popular DL models used in flood modeling, MLPs can be used for
both classification and regression and consist of input, output and hidden fully connected layers,
Autoencoders: these models consist of two main parts to encode and decode the data, Recurrent
Neural networks (RNN) are designed to extract best out of time-series data.

Multilayer perceptron: MLPs are flexible function classes that are used as machine
learning models. In their most basic form, MLPs compute an output f (x) = z(L) by iteratively
applying a sequence of L mappings called fully connected layers,

z(l) = σ(l)
(

w(l)z(l−1) + b(l)
)

, 1 ≤ l ≤ L (1)

to an initial input z(0) = x. Here the weights and biases {(w(l), b(l))}L
l=1 are parameters

of the model, and the activation functions {σ(l)}L
l=1 are non-linear functions applied

coordinate-wise to each vector input. A graphical depiction of an MLP is given in Figure 3.
MLPs can be trained in a similar fashion to GLMs—one typically minimizes a negative

log likelihood (or Bregman divergence) or other objective function with respect to the
parameters using a numerical solver. In fact, one may show that the mean predicted by a
GLM takes the form of a single-layer MLP with the so-called inverse link function as the
activation function.

Unlike GLMs, the objective is often non-convex in the parameters when L > 1, and so
the numerical solver is unlikely to converge to the global minimum and might not even
converge to a local minimum.

The number of parameters in an MLP is typically much larger than a GLM, and so
applying second-order or approximate second-order methods can be computationally chal-
lenging. Typically, MLPs are applied to datasets larger than would be considered by GLMs,
so that the full dataset cannot necessarily be stored in memory and computing the loss (and
the first and second derivatives of the loss) is challenging. For these reasons, commonly
employed optimization methods for training neural networks are variants of stochastic
gradient descent (SGD) [35,36]. There is even evidence to suggest that SGD is important
for generalization performance [37]. The most fundamental and famously unresolved
theoretical problem in deep learning is understanding why neural networks trained using
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variants of SGD generalize well in practice [38–41]; efforts towards understanding progress
in this direction are beyond the scope of this paper.

MLPs serve as the most basic neural network prototype. Despite their simplicity,
fundamental issues around their large parameter counts, non-convex optimization objec-
tives and generalization performance are inherited by the rest of the deep learning models
that follow.

Convolutional neural networks (CNNs): The layer (Equation (1)) is parameterized
by unconstrained weights w(l) and biases b(l) which define an affine transformation. One
may constrain the weights w(l) to reflect certain locality bias in the input data. This is
especially important if the input data is an image, where one expects neighboring pixels to
be related. This is the principle behind convolutional layers, which may be viewed as a very
large, sparse fully connected layer with repeated entries. Convolutional layers are typically
followed by nonlinearities, mirroring the structure in MLPs, and by certain aggregation
layers. Aggregation layers include maximum pooling and average pooling.

A CNN or ConvNet comprises at least one convolutional layer. A convolutional layer
applies multiple cascaded convolution filters to extract intricate knowledge from the input.
Depending on the dimension and nature of input data, convolution kernels can be one,
two or three dimensions. Another common layer used within a CNN is a pooling layer. A
pooling layer is used to reduce the size of the input while keeping the positional knowledge
intact. A frequently used pooling method within CNN literature is Maximum Pooling.

Autoencoders: Autoencoders consist of two networks, the encoder and decoder, in
series. The encoder maps the input to another space (typically of lower dimension) called
the embedding space, and the decoder attempts to map from the embedding space back to
the input. The parameters of the encoder and decoder are jointly learned by minimizing
and objective that says that the input of the encoder should in some sense be close to the
output of the decoder. The encoder and decoder may consist of any layers, for example
fully connected or convolutional layers. The output of the decoder is called the bottleneck
layer, named as such for the shape as shown in Figure 3.

U-Net: A U-Net is a variant of an autoencoder that includes skip connections. It was
originally designed for biomedical image segmentation [42] with a particular architecture
(number of layers, sequence of layers, dimensions of layers, type of activation function,
etc.) but now refers to a more general U-Net type structure.

Generative adversarial network (GAN) is a generative model, aiming to generate
samples from a distribution given only a finite number of samples from that distribu-
tion [43]. GANs consist of two networks, a generator and a discriminator. The generator
aims to generate artificial samples from the target distribution, and the discriminator aims
to distinguish between real samples and artificial samples. The parameters of the generator
and discriminator are jointly optimized according to this objective.

Recurrent neural networks (RNNs) models introduce the notion of time into a deep
learning model by including recurrent edges that span adjacent time steps [44]. RNNs are
termed recurrent as they perform the same task for every element of a sequence, with the
output being dependent on the previous computations. Long short-term memory (LSTM)
type DL models were proposed to provide more flexibility to RNNs by employing an
external memory, termed the cell state to deal with the vanishing gradient problem [45].
Three logic gates are also introduced to adjust this external memory and internal memory.
Gated Recurrent Unit (GRU) is a variant of LSTMs which combine the forget and input
gates making the model simpler [46].

3. Application of Machine Learning for Flood Inundation Modeling
3.1. Traditional Machine Learning Approaches

We organize our discussion on traditional machine learning approaches in terms of
the task (classification, regression) that they solve. Each task can be solved using a number
of models, which we described in Section 2.2. A summary of these works is presented in
Table 2.
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3.1.1. Classification

El-Haddad et al. [47] investigated four data mining/machine learning models to
predict flood susceptibility maps in Wadi Qena Basin in Egypt. They set up a classification
problem that classifies regions in a fine grid as having or not having a flood occur at
a particular time points. The model accepts input data X containing flood influencing
variables over a geographical region including slope angles, land-use data, lithological
data, a topographic wetness index, altitude, slope length, shape, and aspect. The model
returns binary outputs that are made to agree with response data Y, indicating whether
a flood occurred or not. The data to train the models was obtained from 342 inundation
locations and included of three flood influencing factors (distance from main channel, land
use/cover and lithological units).

Four classification models were employed for these tasks: boosted regression tree
(BRT), logistic regression (a type of GLM), a pipeline of functional data analysis techniques
(FDA), and multivariate discriminant analysis (MDA). It is not clear which instance of GLM
is used; the authors mention that logistic regression (corresponding with Bernoulli targets)
and linear regression (corresponding with Gaussian targets) are used, but only provides
results for a model referred to as GLM. The reported results are that BRT, FDA, GLM, and
MDA models can generate a flood susceptibility mapping with a reasonable accuracy.

Avand et al. [48] investigated the effects of digital elevation model (DEM) spatial
resolution on ML classification models including RF, MLP and GLM. In this study 220 flood
locations from Yasouj-Dena watershed (Iran) were chosen along with 14 causative factors
in the flood as independent variables. The data generated from two flood models were of
size 12.5 and 30 m. They divided the Flood Probability Map (FPM) into five classes as very
low, low, moderate, high, and very high. Their results indicated that using 12.5 m spatial
resolution data to predict flood map is more consistent and accurate with the flood points
in the study area in comparison to 30 m spatial resolution data.

Madhuri et al. [49] applied five ML classification models, namely (i) Logistic Regres-
sion, (ii) Support Vector Machine, (iii) K-nearest neighbor (KNN), (iv) Adaptive Boosting
(AdaBoost) and (v) Extreme Gradient Boosting (XGBoost) to classify locations into flooded
or no flooded regions. They used 10-fold cross validation method to train and validate these
ML methods. Among the applied ML models, XGBoost demonstrated the best performance
for both flood prediction and flood susceptibility mapping.

Talukdar et al. [50] utilized six machine learning techniques including ANN, SVM, RF,
Maximum likelihood, Parallelepiped, Spectral Information Divergence to map the wetland
inundation and investigated the changes in inundated area through wetland fragmentation
analysis. In this work, the area of wetland predicted by each classifier is different, the
maximum and minimum wetland areas generated by ANN and SVM classifier respectively.
Regarding the validation of ML model on this data, SVM demonstrated the highest accuracy
and parallelepiped showed the least. One of the challenges related to this study is the lack
of high-resolution data for wetlands to model the flood.

Ma et al. [51] introduced the XGBoost model to assess the flash flood risk and applied
this model to predict flash flood risk in data obtained from Yunnan Province, China. They
compared their proposed model with the least squares support vector machine (LSSVM),
which indicated the high performance and effectiveness of XGBoost. Their results also
showed that the accuracy of the model depends on the amount of flash floods fall into a
region. For the low-risk areas flash flood did not impact the results of LSSVM and XGBoost,
whereas for medium-risk area LSSVM worked better and for high and highest-risk areas
XGBoost demonstrated higher accuracy.

Karimi et al. [52] predicted the daily wetland inundation pattern of a segment of the
Darling River in Australia using RF. Their study showed that topography and discharge are
the most influential variables in predicting inundation occurrence. While due to computing
efficiency the ML model approach was a reasonable option to model long-term daily
inundation, yet this model suffered from lack of generalization to new data.
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Table 2. Summary of traditional ML approaches for inundation analysis.

Authors Publication Year Application Approach

Avand et al. [48] 2022 Effects of DEM resolution RF, MLP, and GLM
Yan et al. [53] 2021 Estimating flow depth MGGP
El-Hedad et al. [47] 2021 Flood risk assessment BRT, FDA, GLM, MDA
Madhuri et al. [49] 2021 Flood risk assessment Logistic Regression, SVM, KNN
Ma et al. [51] 2021 Flood risk assessment XGBoost, LSSVM
Hou et al. [54] 2021 Urban flooding RF, KNN
Yuan et al. [55] 2021 Road flooding RF, AdaBoost
Talukdar et al. [50] 2021 Wetland inundation RF, SVM, MLP
Karimi et al. [52] 2019 Wetland inundation RF

3.1.2. Regression

Hou et al. [54] developed a hydrodynamic based urban flood model to generate data
to train ML models for urban flood prediction. They used k-nearest neighbor algorithm
(KNN) and RF as their ML models and showed combination of these models could perform
better than using them separately to predict inundation area, depth and volume. The final
forecast results for the test study area could be obtained by merging the results inferred
from hydrodynamic numerical model and ML results.

Yan et al. [53] leveraged the MGGP as an optimization method to model the spatial
distribution of flow depth in fluvial systems. They employed their model on data generated
from a section of the Ottawa River and divided the region into sub-regions. The MGGP
model was separately trained for each sub-region which resulted in 500 models. Although
this approach reduced the complexity, sub-regions (meshes) have no inner connection
during training, which can reduce the final performance.

3.2. Deep Learning Approaches

Due to their high performance and capability to represent complicated functions to
map data from one domain to another, deep learning models have been widely used in
different fields. In recent years, deep learning has received more attention within the flood
modeling community to model flood inundation and predict water depth and extent. In
this section, we review papers which modeled the flood inundation through deep learning;
a summary of these works is presented in Table 3.

3.2.1. Multilayer Perceptron (MLP)

Berkhahn et al. [56] developed an MLP to predict the water levels during flash flood
events. The input to the MLP is rain events at different time steps and the output is the
maximum water level. They tested their model on synthetic rain event data obtained from
two modified urban catchments. The results inferred from the MLP model were compared
with those from the physical model. They demonstrated the capability of MLP in predicting
water levels for pluvial floods in real-time.

Tamiru and Wagari [57] integrated machine learning with HEC-RAS (a software for
modeling river flow [58]) as hydraulic model to estimate runoff and the extent of flood in
Baro River Basin, Ethiopia. They first trained an MLP using spatiotemporal data including
daily rainfall and temperature data of the same period (1999–2005) and the Topographical
Wetness Index to predict runoff. The output of the ANN model then passed to HEC-RAS
software to generate the flood extent along the river. The outcomes of this research study
denoted that integration of ANN and HEC-RAS to generate stream flow and water depth
respectively could produce high quality water inundation which can be used for risk
management system.

Hosseiny et al. [59] developed a hybrid model for flood inundation. Their pipeline
consists of a two-dimensional hydraulic model, iRIC (International River Interface Cooper-
ative) and ML model. The ML model has two parts; (i) random forest (RF) to identify wet
or dry nodes over the domain, (ii) MLP model to estimate river depth in wet nodes. Using
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this pipeline, they achieved a high accuracy in classifying wet and dry area and predict the
water depth.

Chu et al. [60] modeled the flood inundation and investigated the application of ANN
for the flood inundation model. The ANN-based emulation modeling framework consists
of the generalized regression neural network (GRNN) which is feed forward network and
does not require an iterative training. They showed that GRNN is able predict flood extend
with high accuracy in a shorter time in comparison to physical model. Zhu et al. [61]
deployed an MLP model similar to Chu et al. [60]. Their model takes the hydrographs of
the rivers that contribute to the flooding in the urban area as inputs, and the outputs are
the water depths at each pixel in all grids. They trained MLP models for their case study
area and investigated several optimization algorithms. The comparison of results showed
superiority of the MLP models that were trained on hybrid dataset (synthetic + real) over
synthetic dataset.

3.2.2. Convolutional Neural Networks

One dimensional CNN: Kabir et al. [62] investigated the application of CNN model
to predict inundation from flash flooding and compared it with support vector regression
(SVR) as a traditional ML model. Their model consists of two 1D-convolutional layers and
three MLPs. The inputs to the model are the upstream flow discharge values at different
time steps and the outputs is an array of water depth based on the number of cells in the
simulation domain. The objective function to train the CNN model is the mean square
error (MSE). The water depth predicted by the CNN for the real events then converted to
spatially distributed flood maps and compared with the output of traditional DEM.

Their results indicate that their one-dimensional CNN model can predict the water
depth throughout the whole flood event with a reasonable accuracy and can outperform
the SVR models. The accuracy of SVR models can be increased by increasing the number
of samples which results in an increase in the number of SVR models and thus the com-
putational time. Further, one CNN model is sufficient to learn to predict the water depth
from inflows, whereas the number of SVR models is dependent on the number of locations.
For instance, in this study 18 SVR models are separately trained to predict water depth at
18 different locations while only one CNN model is trained to perform the same task.

Segmentation-based approaches: Hosseiny [63] studied a segment of the Green River,
120 km downstream of the Flaming Gorge Dam in the northeast corner of Utah, USA. They
modified the U-Net [42] to predict water depth and extent. The main reasons to choose this
model were the capability of U-Net to learn from relatively small amount of data and their
geometry. The input to their U-Netriver was a composite image with two bands including
the ground elevation and flooding discharge of size 128 × 128 pixel, and the output was
water depth. The objective function to train the network was MSE. The application of
the U-Netriver for different discharges demonstrated its capability of detecting the river
geometry including the river width, shape, curves, and even the river splits around the
island. In comparison to traditional ML model [59] applied on the same data, their model
not only demonstrated a reduction of 29% in the reported error, but also eliminated the
requirement of a separate classifier to classify grids to the wet or dry regions. One of the
main weaknesses of this model is its generalizability. While the trained model showed high
performances for the lower depth values (lower discharges), it requires an improvement to
deal with high discharges or out of training discharge data.

Löwe et al. [64] also developed a U-Net based model called U-Flood to predict the
urban pluvial flood water depth. They investigated 11 spatial variables that could be
generated from geographic data as direct inputs to U-Flood and fused the rainfall data
obtained from gauges observation to the middle layer of the U-Flood to predict flood depth.

They investigated two approaches to find the optimal number of spatial variables
as input data to the U-Flood model as Spearman correlation [65] and forward selection.
Their results denoted that combination of five spatial data (e.g., flow direction, water depth,
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velocity and terrain curvature) as input could yield the best performance. Further, they
applied PCA to reduce the number of inputs from 11 to 7 and inferred comparable results.

They also investigated the hyper-parameters and structure of the proposed U-Flood.
Their results showed that a U-Flood with 28 million trainable parameters could be an
optimal network. One of the challenges in this paper was the demands for considering the
number temporal raining events due to the computational limitation by CNN.

3.2.3. Autoencoder Approaches

Guo et al. [66] investigated the application of autoencoders as a deep learning model
on data obtain from three catchments named Luzern, Zurich, Switzerland, and Coimbra,
Portugal. Unlike Hosseiny [63] and Löwe et al. [64] their proposed model does not include
skip connections. Their CNN model accepts two types of data as input; (i) terrain patches
which represent the surface features of size 256 × 256 × 5 (height, width and five channels),
(ii) rainfall hyetographs as one-dimensional vector which represents the average rainfall
intensity in a 5-min interval. The output of the network is the prediction of the water depth.
One of the challenges within flooding data is the variation of water depth in different areas
(shallow/deep water) which results in imbalance data, this has been addressed by using a
weighted mean square error as the objective function to learn the water depth from input
data. The results of test data were reported using the mean absolute error (MAE). The
validation results indicate that Autoencoders can be a reliable fit to predict water depth
(shallow and deep) for pluvial events. In this study, both spatial (elevation) and vectors
(hyetographs) were used as input to the DL model and the results demonstrated high
accuracy and the ability of the DL model to be generalized to real rain fall events.

3.2.4. Adversarial Approaches

Hofman et al. [67] proposed a generative adversarial network (FloodGAN) to predict
pluvial flooding caused by nonlinear spatial heterogeny rainfall events. Their method
consists of three stages as follow: (i) generate synthetic data from rainfall events, (ii) train the
FloodGAN model to learn the relationship between rainfall distribution and corresponding
water depth by which it can predict the depth, and (iii) online prediction of water elevation
from rainfall events.

Results showed similar root mean square error (RMSE) for water depth estimation
when compared to other simulation-based screening approaches [68]. While the proposed
model could predict the water depth in depression area well, prediction of shallow flooding
on surface flow paths outside depressions remains a challenge.

FloodGAN directly infers the flood hazard maps from raw rainfall images, this image-
to-image translation approach allows end to end training paradigm for flood prediction
with a reasonable accuracy. In addition, the FloodGAN was tested on both synthetic
and real rainfall dataset and demonstrated generalizability of the proposed model along
with a dramatic computational enhancement (106 times faster than 2D hydraulic models).
However, FloodGAN trained using only synthetic data and the results compared to a
hydraulic model rather than any other deep learning algorithm. In addition, they only
focused on predicting maximum inundation extent and water depth for up to 1-h rainfall
events and did not include the prediction of flow velocities. Another drawback of the
proposed model is that it does not take the serial correlation of time series data of flooding
into account and the prediction results are limited to quasi-static flood hazard maps.

3.2.5. Spatio-Temporal Analysis Approaches

Recent studies investigated the adoption of deep learning approaches for flood re-
lated tasks. Zhou et al. [19] modeled time series and reduced information redundancy in
flood inundation data using long-short-term memory networks and a spatial reduction
model. They developed 500 LSTM to model flood for 125 representative locations, and
their experimental results showed only 125 LSTM were enough to reconstruct the flood
inundation surface.
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Wei [69] predicted the water levels in catchment areas during typhoons through
sequential neural networks (SNNs), multiple input functional neural networks (MIFNNs)
and conventional regression-based (REG) model. The SSN model consists of dense LSTM
layers and take 1-D data (e.g., water levels at river station, rainfall intensity, and reservoir
release of Feitsui Reservoir) as input, whereas the MIFNNs model is designed to take 2-D
data (e.g., radar reflectivity mosaics obtained from the central weather bureau) as input
and passing them to convolutional layers and then concatenate the feature extracted from
CNN with 1-D data and pass them to LSMT layers to predict the water level. In their study
they investigated 16 typhoons which caused major rainfall in the Hsintien River (Taiwan).
The drainage area of the studied region is approximately 916 km2 with a total length of
84.6 km.

The results from Wei [69] indicated that MIFNN model had the best performance in
comparison to SNN and REG model. This means that using multi modal data such as radar
reflectivity images and water levels at river stations along with a MIFNN like model could
enhance the performance of water level prediction.

Tsakiri et al. [70] developed a hybrid model for forecasting river flood events. This
hybrid model consisted of multiple linear regression models (MLR) or the MLP model
and time series decomposition to predict the water discharge. Their results proved that
before the application of any model it is necessary to decompose the time series for water
discharge into long-, seasonal-, and short-term components. The comparison of MLP and
MLR showed superiority of MLP in forecasting the water discharge.

Table 3. Summary of DL approaches for flood inundation modeling.

Authors Publication Year Application Approach

Guo et al. [66] 2021 Urban flood emulation Autoencoder
Löwe et al. [64] 2021 Urban flood depth (pluvial) U-Net
Hosseiny [63] 2021 Flood depth U-Net
Hosseiny et al. [59] 2020 Flood depth MLP & RF
Wei [69] 2020 Flood depth LSTM
Zhou et al. [19] 2021 Flood inundation LSTM
Zhu et al. [61] 2021 Flood Inundation MLP
Hofman et al. [67] 2021 Flood inundation (pluvial) GAN
Tamiru and Wagari [57] 2021 Flood inundation MLP & HEC-RAS [58]
Chu et al. [60] 2020 Flood inundation GRNN
Kabir et al. [62] 2020 Flood inundation (fluvial) 1-D CNN & SVR
Tsakiri et al. [70] 2018 Flood inundation Linear regression, MLP
Berkhahn et al. [56] 2019 Flood inundation (pluvial) MLP

3.3. Datasets

One of the main components of ML approaches is a well curated dataset. This section
briefly describes the datasets that are used in previous studies to train and validate DL or
ML algorithms.

Yan et al. [53] investigated the fluvial flood event in a segment of the Ottawa River,
Canada covering an area of 3.2 × 1.40 km2. They used TELEMAC-MASCARET hydrody-
namic model [71] simulated water level data to train their MGGP model. They divided
the study region into 34 sub-regions and provided around 10,000 data points for each
sub-region.

El-Haddad et al. [47] study covered an area of 14.5 km2 in the Wadi Qena Basin
in Egypt. The data were derived from 342 inundation locations by analyzing satellite
imagery and geological and topographical maps. They used 30 × 30 m pixel flood data and
considered three flood influencing factors (e.g., distance from main channel, land cover and
soil type) for training their data mining/machine learning models About 70% of the data
were used for training the model and the remaining 30% data were used for validating.
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Avand et al. [48] studied 220 flood locations from Yasouj-Dena watershed in Iran.
They investigated 14 causative factors of floods as independent variables and assessed the
impacts of spatial resolution on ML classification models. They used DEMs of size 12.5
and 30 m spatial resolution derived from ALOS PALSAR [72] and Advanced Space-borne
Thermal Emission and Reflection Radiometer (ASTER) [73] respectively. They divided the
flood probability map (FPM) into five classes as very low, low, moderate, high, and very
high and evaluated predicted flooded area with measured flood data.

Madhuri et al. [49] used data from 295 flood locations in Greater Hyderabad Municipal
Corporation in India. Their study covered an area of 625 km2 and it was divided into
16 zones. They used a geo-spatial database based on ASTER DEM (30 × 30 m spatial
resolution) using eight flood factors [74,75]. Their ML models were evaluated against
historical flood data of 2000, 2006 and 2016.

Hou et al. [54] investigated multiple ML models for urban flood forecasting in the
Shaanxi Province, China. They validated their model for the part of Fengxi New Town
covering an area of 2.43 km2. They used hydrodynamic model simulated inundation data
and rainfall characteristic parameters to train ML models. Data from 150 rainfall events
were used for training and 30 events for validating ML models.

Talukdar et al. [50] studied a wetland of size 3669.58 km2 in the Sunamganj district of
Bangladesh. They used 30 m resolution satellite data acquired from the Landsat imagery.
They reported that lack of high-resolution data for wetlands was a major challenge for
validating ML models for wetland inundation.

Ma et al. [51] investigated flash flood in the Yunnan Province in China using XGBoost
ensembles method. They used measured and satellite-based flash flood data for the period
of 2011 to 2015 for training the ML models. Another set of flood data from 2018–2019 were
used for verifying the accuracy of risk maps derived from ML model.

Karimi et al. [52] studied inundation pattern of a segment of the 1200 km2 of Darling
River in Australia (1200 km2) using RF machine learning technique. They used a set
of dependent variables (e.g., inundation area) and another set of independent variables
(e.g., topographic, climatic), describing hydrological and physical characteristics of the
study area to configure and validate the ML models. The dependent variables were 30 m
resolution gridded inundation map obtained from Landsat imagery. From the raster data
10,000 points were randomly selected for the ML model.

Tsakiri et al. [70] studied the Mohawk River basin in the USA with length of 240 km.
They used precipitation time series, daily water discharge, temperature, groundwater level,
wind, speed and tide data to develop their DL models. They derived the water discharge
and groundwater data from the United States Geological Survey (USGS) gage stations
from 2005 to 2013. To explain the water discharge time series, they used Decomposition–
Kolmogorov–Zurbenko. The atmospheric data were obtained from the National Oceanic
and Atmospheric Administration (NOAA) database.

Zhu et al. [61] dataset included 360 flood events: 180 were synthetic flood events
generated by FloodEvac tool, and 180 were additional real flood events from three major
rivers in Kulmbach, Germany in the period of 1970 to 2017. The area of the study was
divided into a 50 by 50 mesh covering 2500 grids.

Berkhahn et al. [56] generated flood data for validating their ANN models using a
physically based coupled surface and sewer network model, commonly known as Hystem-
Extran 2D [76]. They tested the ANN models for 3 grid sizes of 3, 6 and 9 m and applied
the models for 2 case studies, one with flat land and the other with steep slope.

Tamiru and Wagari [57] generated inundation data from an area of 74,100 km2 in Baro
River Basin (Ethiopia). The data was collected and generated for seven years from 1999 to
2005. They also curated test data for three years from 2006 to 2008.

Chu et al. [60] studied a part of the Burnett River in Central Queensland, Australia.
The river system has a total catchment area of more than 33,000 km2 and the area of the
study is 2720 m × 2860 m. This area is represented by 19,448 grid cells of size 20 m by
20 m by using the TUFLOW hydrodynamic model [77]. Their DL models were tested for
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10 flood events including three historical events (i.e., year 1971, 2010 and 2013) and seven
“design events”.

Zhou et al. [19] studied flood inundation in the Burnett River system downstream of
Paradise Dam in Queensland, Australia. The data for this area was generated by developing
a 2D hydraulic model using TUFLOW [77]. This model contains 3,697,597 grid cells of size
20 m by 20 m and covers almost 1479 km2 area.

Wei [69] used gauged rainfall and water level data from 3 river stations for 16 typhoons
in the Hsintien River in Taiwan. They also used hourly reflectivity data from 2952 radar
mosaics for spatial rainfall data to train and validate their SNN and MIFNN models. The
drainage area of the studied region is approximately 916 km2 with a 84.6 km river reach.

Hofman et al. [67] studied an area of 2 km by 2 km of the city center of Aachen,
Germany. They generated 901 synthetic rainfall events and grouped them into eight classes
of 5 mm/hour steps. They simulated water levels corresponding to each rainfall event
using the MIKE 21 hydrodynamic model [78].

Guo et al. [66] used simulated data in their study which is generated from two
DEM software; (i) CADDIES cellular-automata flood model [79], and Infoworks ICM
software [80]. In general, 18 one-hour rainfall events were created based on return periods
for the simulations. The grid size of the simulated data for the raster is 1 m with minimum
time step of 0.01 s. A total of 10,000 patch locations were randomly sampled for each
catchment area and the data were split into train and test data.

Löwe et al. [64] used MIKE21 hydrodynamic model [78] to generate flood maps from
53 rain events (available in this study), the size of each patch was 256 m by 256 m pixels. In
addition, rainfall data including the rainfall intensity collected from observed data of 1 min
resolution from 10 rain gauges distributed across Denmark was processed and resulted in
53 events.

Hosseiny [63] used a two-dimensional hydraulic model (iRIC, [81]) to generate flood
discharge and depth data. They used 8.3 × 8.3 m gridded elevation and discharge data for
training their DL model (U-Netriver) and depth data for validating their U-Netriver model.
They investigated an area of 260 × 251 pixel (4.5 km2) of which 128 × 128 pixels were
randomly selected for training the model.

The study of Kabir et al. [62] covered an area of 14.5 km2 of the urbanized area of
Carlisle city in England. They generated flood depth data for training the CNN deep
learning model from eight synthetic hydrographs using LISFLOOD-FP hydrodynamic [82].
They divided the study area into 581,061 grids and used water depth as the controlling
parameter for validating the CNN model. In addition to synthetic depth data for training,
two sets of measured data for 2005 and 2015 floods were used to validate the CNN model.

A summary of all datasets is presented in Table 4. It demonstrates a wide variability
in the source of data and models that were used to generate input data. All studies
emphasized the importance of large data sets for training and validating ML models. The
majority of these studies used hydrodynamic model-generated flood data for training
ML/DL algorithms because measured and/or remotely sensed flood inundation data were
insufficient for training/validating such models. Lack of publicly available benchmark
data limits the rigorous testing of ML and DL technologies in the field of flood inundation.
These challenges are also mentioned in other studies (e.g., Sit et al. [2]).

Table 4. Summary of datasets used in the reviewed papers.

Event & Location Publicly
Available Coverage Data

Type
(Real/Synthetic
Events)

Data Quantity Authors

Inundation, USA Yes 3.5 km Syn 2100 image Hosseiny [63]
Urban flood, Unknown No 96,233 m2 Syn, real 9623 cells Berkhahn et al. [56]
Flood inundation, AUS No 33,000 km2 real 19,448 grid cells Chu et al. [60]
Flood, Ethiopia Yes 74,100 km2 Syn, real 10 years of data Tamiru and Wagari [57]
Inundation, UK Yes 14.5 km2 Syn, real 581,061 cells Kabir et al. [62]
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Table 4. Cont.

Event & Location Publicly
Available Coverage Data

Type
(Real/Synthetic
Events)

Data Quantity Authors

Fluvial, Germany No 2 × 2 km2 Syn 901 samples Hofman et al. [67]
Fluvial, Switzerland, Portugal No 10 km2 Syn 30,000 samples Guo et al. [66]
Pluvial, Denmark Yes 194 km2 Real 53 train maps Löwe et al. [64]
Flood, Iran No 2185 km2 Real 220 flood locations Avand et al. [48]
Flood, Egypt No 14.5 km2 Real 342 flood locations El-Haddad et al. [47]
Flood, India No 625 km2 Real 295 flood locations Madhuri et al. [49]
Fluvial, Canada No 3.2 × 1.40 km2 Syn, real 340,000 Yan et al. [53]
Fluvial, China No 2.43 km2 Real 180 rainfall events Hou et al. [54]
Flood wetland, Bangladesh No 3669.58 km2 Syn, real 7 images Talukdar et al. [50]
Flash flood, China No 390,000 km2 Real two sets of data, 129 counties Ma et al. [51]
Flood plain inundation, AUS No 1200 km2 Real 10,000 points Karimi et al. [52]

Flood hazard forecasting, USA No 240 km Real Discharge for 3 gauges for
2005–2013 Tsakiri et al. [70]

Flood depth, Germany No 92.7 km2 Syn, Real 360 flood events Zhu et al. [61]

4. Strength and Limitations of ML/DL Models
4.1. Strength

ML models and recently advanced DL models demonstrated outstanding performance
in modeling flood inundation with high accuracy. Using ML/DL sequential events (e.g., wa-
ter level in a period [69]), time independent events (e.g water depth based on discharge [63]
or wet or dry land prediction [59]).

The application of ML and specifically DL algorithms on flood events have shown
the remarkable ability of these models to learn to predict flood inundation. The key
challenges that are partially addressed by ML/DL models are reducing the computational
time for simulating flood forecasting to real/near real-time. For instance, a case study by
Chu et al. [60] showed that simulating a flood event using TUFLOW model takes over
200 h whereas a DL model can achieve this in 1 min.

4.2. Limitations and Open Research Challenges
4.2.1. Generalizability

One of the major limitations of ML/DL models in a real-world scenario is the gen-
eralizability of these models. In other words, these models have difficulty in predicting
something beyond the data used to train them [60]. This is even more challenging when
these models are trained with synthetic data and tested on real scenarios or when the
models are trained on data obtained from small regions. An example of the comparison of
the efficiency of ML models using different types of data is presented in [61].

While both ML and DL models showed high ability in modeling flood events, more
advanced DL models such as U-Netriver [63] and FloodGAN [67] demonstrated better
performance. Advanced DL models can cover greater regions for training whereas the ML
or basic DL models (e.g., MLP) require to be trained on small grids, this also increases the
number of ML models to model flood in a region [61].

4.2.2. Dataset

Our review on flood events datasets revealed the lack of a publicly available bench-
mark dataset to compare the performance of ML/DL flood inundation models. In other
fields such as computer vision, it is common to publish datasets and researchers will
investigate their DL models using these datasets (e.g., COCO dataset [83]). This challenge
is also mentioned in other flood study reviews (e.g., Sit et al. [2]). Flood events data are
obtained from different resources, and geopolitical limitation can make the situation even
more difficult to publish a generic dataset. We recommend publishing generic data that
includes all flood inundation related parameters from a less sensitive geopolitical region
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or synthetic data which are close to real situations. Such a dataset can help to build more
stable and generalizable DL methods for flood forecasting.

4.2.3. Embedding Expert Knowledge

ML algorithms are designed to learn a mapping function from input to output data.
In flood inundation, input data are obtained from several resources and always require
manual calibration by experts. In inundation, calibration refers to a trial-and-error process
to estimate model parameters. As in other research fields, such as biology, precious
domain knowledge can be used for training ML/DL models to improve the performance
of such models.

4.2.4. Application of Graph Neural Network and Neural Operators

In flood modeling, usually modelling domains are divided into raster grids with a
specific resolution. These grid-based data are then used to train ML/DL models to predict
water depth, flooding extent, and volume of water.. Most of the current ML/DL models that
use grid-based data to learn mapping functions, suffer from understanding the interaction
between grids whereas this is not an issue in hydraulic modelling. Graph neural networks
(GNNs) are one of the powerful ML tools that can be applied on flood events, GNNs can
interpret each gird as a node and connect them through graph construction.

4.2.5. Explainability

Machine learning models are known as black box. These models take input data from
other sources and predict the output. Providing information of why and how a certain
prediction has been made, a ML/DL model can help not only to boost the performance of
these models but also increase the trustability of such models. For instance, when more
than one input (atmospheric + geographic) is used to train a model to predict water depth,
how this extra information can participate in producing the results can be investigated
by explainability.

5. Conclusions

In this paper, we reviewed and compared ML and DL methods to model flood inun-
dation in different river basins. The applications of traditional ML and DL methods for
flood modeling have shown the remarkable ability to predict flood inundation for differ-
ent hydrological and landscape conditions. The ML/DL models are found particularly
advantageous for real-time flood simulation which is a key challenge for physically based
models because of longer simulation time. One of the major limitations of ML/DL models
is generalizability. This is even more challenging when these models are trained with
synthetic data. While both ML and DL models showed high ability for flood inundation
modeling, more advanced DL models such as U-Netriver and FloodGAN demonstrated
better performance. Apart from strengths and weaknesses of such methods, challenges
and future research avenues related to application of ML/DL models to model inundation
events have been discussed.
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Nomenclatures

AdaBoost Adaptive Boosting
ANN Artificial neural network
ASTER Advanced Space-borne Thermal Emission and Reflection Radiometer
BRT Boosted regression tree
CNN Convolutional neural network
DL Deep learning
FDA Functional data analysis
FPM Flood probability map
GAN Generative adversarial network
GLM Generalized linear models
GPU Graphics processing unit
GRNN Generalized regression neural network
GRU Gated recurrent unit
HD Hydrodynamic
HEC-RAS Hydrological Engineering Center—River Analysis System
iRIC International River Interface Cooperative
KNN k-nearest neighbour algorithm
KRR Kernel ridge regression
LSSVM Least squares support vector machine
LSTM Long short-term memory
MAE Mean absolute error
MDA Multivariate discriminant analysis
MGGP Multigene genetic programming
MIFNN Multiple input functional neural network
ML Machine learning
MLP Multilayer perceptron
MLR Multiple linear regression
MSE Mean square error
NOAA National Oceanic and Atmospheric Administration
OLS Ordinary least squares
PCA Principal component analysis
REG Conventional regression
RF Random Forest
RKHS Reproducing Kernel Hilbert Space
RMSE Root mean square error
RNN Recurrent neural network
SGD Stochastic gradient descent
SNN Sequential neural network
SVM Support vector machine
SVR Support vector regression
USGS United States Geological Survey
XGBoost Extreme gradient boosting
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