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Abstract: Coastal environments need continuous environmental risk assessment, especially with
increasing coastal development and human activities. The present work evaluates the distribution,
contamination, and environmental risk of potentially toxic elements (PTEs) in coastal sediments
between Al-Jubail and Al-Khafji cities along the Arabian Gulf, Saudi Arabia, and documents the
influence of background references applied in pollution indices. Thirty-two sediment samples were
collected for analysis of Ni, Cu, Cr, As, Zn, Pb and Hg using ICP-AES. The ranges of PTEs (mg/kg)
were in the following order: Cr (3.00–20.0), Ni (2.00–32.0), Zn (2.00–14.0), As (2.00–4.00), Pb (1.50–5.00),
Cu (1.00–5.00), and Hg (0.50–1.00). The coastal sediments show severe enrichment with As and Hg,
and no to minor enrichment and a low contamination with Cr, Cu, Cr, Zn, and Pb. Based on sediment
quality guidelines, concentrations of Cu, Pb, Zn, As, and Cr do not represent a concern for benthic
communities, while Ni and Hg show a risk for benthic communities in four and 17 sampled areas,
respectively. Multivariate analysis indicated a geogenic source for Zn, Cr, Cu, Ni, and Pb, mixed
natural and anthropogenic sources for As, and an anthropogenic source for Hg, mostly from oil
pollution, sewage, and industrial effluents spreading near Al-Jubail industrial city.

Keywords: risk assessment; background references; potentially toxic elements; ICP-AES; Arabian
Gulf; Saudi Arabia

1. Introduction

The worldwide coastal areas have been subjected to a strong pressure due to human
settlement and the high amount of industrial and residential wastes, causing problems for
marine organisms and human health [1–3]. PTEs enter the coastal environment through
natural and anthropogenic sources, especially with the rapid development over the past
decades [4,5]. However, PTEs can be remobilized to the water column and accumulate in
marine organisms in thousands of times through transfer in the marine food chain leading
to potential ecological risks and a huge threat to public safety and health [6,7].

The lack of environmental quality standards and the lack of information related to
the PTE levels presented in these environments before human settlement and industrial
development were the main obstacles and difficulties related to assess the anthropogenic
impacts on coastal ecosystems [8]. To evaluate the PTE enrichment or the degree of
contamination in sediment compared to reference reflects a natural condition; pollution
indices, such as the enrichment factor, contamination factor, and pollution load index
were frequently used [9,10]. The background level refers to the normal concentrations of
metals found in environments without any anthropogenic intervention [11]. The use of
contamination indices to evaluate the impact of pollutants in marine sediments requires
background references, which are not always available at the local scale. Thus, most of the
worldwide studies use backgrounds defined as global references.

The coastal zones of the Arabian Gulf have been subjected to intensive monitoring
studies [12–23]. The shoreline between Al-Jubail and Al-Khafji cities is primarily made
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up of sand, with some artificially and naturally occurring rocky areas, which are mostly
bioeroded by different bivalves, annelids, sponges, gastropods, and barnacles [24–26]. The
shoreline sediments still lack the information about contamination and risk assessment
of PTEs, and the impacts of the natural and anthropogenic substances on the marine
benthic communities and human health. Therefore, the present work aims to document
the contamination and spatial distribution of Ni, Cu, Cr, As, Zn, Pb and Hg in marine
sediments near one of the most industrialized areas along the Arabian Gulf, and to evaluate
the ecological risk of PTEs on benthic assemblages, using different background references
in contamination indices.

2. Materials and Methods
2.1. Study Area and Sampling

The study area is located between Al-Jubail and Al-Khafji cities along the Arabian
Gulf coast, between N27◦00′84′′–N28◦18′26′′ and E49◦40′00′′–E48◦31′37′′ (Figure 1). It
is assumed to be nearby the Al-Jubail industrial city, which is highly populated with
intense petrochemical industrial activities, desalinization plants, and fertilizer and cement
factories [16,19,27]. The coastal sediment in the study area contains both biogenic and
terrestrial components. The biogenic quotient consists of fragments and whole foraminiferal
tests, bivalves, gastropods, echinoids, ostracods, corals, and algae, which drifted from
offshore to the beach during storms and tides (landward migration). The terrestrial part,
composed of quartz grains and rock fragments, came to the beach from the hinterland
Quaternary sediments. Sediment samples were collected from thirty-two sampling sites
from the intertidal zone at 0.15 to 0.50 m water depth (3 replicates from each site). Sediments
were collected in plastic bags for storage and transportation. The sediments were dried
to constant mass in a 115 ◦C drying oven and sieved using a nest of sieves (>500 µm,
500–250 µm, 250–125 µm, 125–63 µm, and <63 µm).
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2.2. Analytical and Assessment Methods

The dried sediments were ground using a mortar and pestle to a particle size less than
150 µm. The dried, ground sediments from each site were digested. Approximately 0.50 g
of each prepared sample is digested with aqua regia (a mixture composed of one mole of
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nitric acid and three moles of hydrochloric acid) for 45 min, in a graphite heating block.
After cooling, the resulting solution is diluted to 12.5 mL with deionized water. Analysis
of Ni, Cu, Cr, As, Zn, Pb and Hg were performed in the ALS Geochemistry Lab, Jeddah
branch, Saudi Arabia using a Perkin-Elmer Optima 3100XL axial viewing inductively
coupled plasma-atomic emission spectroscopy (ICP-AES, Waltham, MA, USA) equipped
with a cyclonic spray chamber and a GemTip cross-flow nebulizer. The detection limits in
ICP-AES for the analysis of PTEs were between 1.0 and 10,000 mg/kg. Table S1 presents
the location (GPS) of the sampling sites and the PTE concentrations (mg/kg). A complete
description of this instrument, as well as instrumental parameters and conditions for the
determined PTEs in this study, are detailed elsewhere [28,29].

Validation of the ICP–AES technique was performed with regard to the linearity,
limit of detection (LOD), and limit of quantification (LOQ). Three samples were analyzed
in duplicate to verify the precision of analysis. The LOD value was the concentration
that corresponds to three times the standard deviation of the measurements for the blank
solutions divided by the slope of calibration curves for each element, while the LOQ
value was the concentration that corresponds to ten times the standard deviation of the
measurements for the blank solutions divided by the slope of calibration curves for each
element [30,31]. The relative standard deviations (RSD%) for all elements were lower
than 13.5%, demonstrating that the method offered good precision [28]. The relative
recovery values (R%) ranged between 80–120%, demonstrating that the method offered
good accuracy. The calibration procedure was performed by the preparation of a stock
standard solution of all investigated elements with concentrations of 1000 mg/kg. The
single element solutions of each of the investigated elements with concentrations 1, 5, and
10 mg/kg, respectively, was prepared from stock solutions by dilution with tridistilled
water. The ALS Geochemistry Laboratory has established a sound quality control/quality
assurance experience and protocol over many similar studies throughout the years.

The enrichment factor (EF), contamination factor (CF), and pollution load index (PLI)
were used to evaluate the sediment contamination with particular PTEs [32]. The sediment
quality guideline (SQG) procedure was used to predict the adverse effects produced by
polluted sediments on aquatic organisms [33,34]. These indices are classified in Table 1,
and calculated according to the following formulas [9,11,35,36]:

EF = (M/X) sample ÷ (M/X) background

CF = Co ÷ Cb

PLI = (CF1 × CF2 × CF3 × CF4 . . . × CFn)1/n

m− ERM−Q =
∑Q

i−1

(
Ci

ERMi

)
n

where M, Co, and Ci are the analyzed metal; X is the concentration of a normalizer element
(Fe); Cb is the referred metal on the background; and PLI is calculated using the n-th
root of the product of n contamination factors (CFs) for the tested PTEs. ERMi is the
ERM value of metal i, and n is the number of metals. The chemical concentrations in the
19th percentile are known as effects range—low (ERL), and those in the 50th percentile
are effects range—median (ERM) [34]. The ecological risk assessment (ERA) of Long
et al. [33] was used to evaluate the hazard of the contaminated sediments, considering the
mean ERM quotient (m-ERM-Q). Thus, the m-ERM-Q represents the effects of multiple
anthropogenic contaminations. Two of the famous and widely used background references
were applied herein to document their difference on pollution indices and, consequently,
the risk assessment [37,38]. Hierarchical clustering analysis (HCA), Pearson’s correlation
coefficients, and principal component analysis (PCA) were applied as multivariate statistical
tools (using Microsoft Excel 2016 and SPSS 16.0 statistical software) to identify the possible
sources of PTEs in the investigated sediment.
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Table 1. Classification of the indices applied in this work.

EF

EF < 1 no enrichment
EF < 3 minor enrichment
EF = 3–5 moderate enrichment
EF = 5–10 moderately severe enrichment
EF = 10–25 severe enrichment
EF = 25–50 very severe enrichment
EF > 50 extremely severe enrichment

CF

CF < 1 low contamination
1 ≤ CF <3 moderate contamination
3 ≤ CF < 6 considerable contamination
CF ≥ 6 very high contamination

PLI
PLI < 1 unpolluted
PLI > 1 polluted

m-ERMQ

m-ERMQ < 0.1 9% probability of toxicity
0.1 ≤m-ERMQ < 0.5 21% probability of toxicity
0.5 ≤m-ERMQ < 1.5 49% probability of toxicity
1.5 ≤m-ERM-Q 76% probability of toxicity

3. Results and Discussion
3.1. Distribution of PTEs

The average concentrations of PTEs (mg/kg) had the following descending order: Ni
(11.76) > Cr (8.68) > Zn (6.18) > Pb (2.57) > Cu (2.44) > As (2.38) > Hg (0.76). Table 2 illustrated
the minimum, maximum, and average (mg/kg, dry weight) of the investigated PTEs along
with those from background references and other coastal sediments. The average value of
Hg exceeds those from Earth’s crust and Gulf of Suez coastal sediment [37–39]. Differently,
As, Cu, Ni, Pb, and Zn reported average values less than Earth’s crust backgrounds and
Mediterranean Sea coastal sediment [40]. The average Cr value exceeds those recorded
from coastal sediment of the Mediterranean Sea (Egypt) and Ras Abu Ali Island, Saudi
Arabia [40,41]. Figure 2 presents the distribution of the PTEs in the sampling sites. Q-mode
HCAour clusters the thirty-two samples into three clusters (Figure 3). The first cluster
includes 17 samples (S3, S7, S8, S10, S13–S16, S18, S22–S24, S26–S28, S32), the second cluster
accounts for 11 samples (S1, S2, S4–S6, S9, S11, S12, S19, S25, S29), and the third cluster
includes four samples (S17, S20, S30, and S31). The first cluster reported the lowest values
of all PTEs, indicating natural factors and implying the role of clayey sediment in the
accumulation and adsorption of the PTEs [4,22,42]. Samples of the second cluster account
for the highest values of Pb, Hg, and As, while samples of the third cluster reported the
highest concentrations of Cu, Cr, Ni, and Zn.

Table 2. Minimum, maximum and average values of PTEs (mg/kg, dry weight) in the study area,
along with those from background references and other coastal sediment.

Location and References As Cr Cu Ni Pb Zn Hg

Present study
Minimum 2.00 3.00 1.00 2.00 1.50 2.00 0.50
Maximum 4.00 20.0 5.00 32.0 5.00 14.0 1.00
Average 2.38 8.68 2.44 11.76 2.57 6.18 0.76

Earth’s crust [37] 13.0 90.0 45.0 68.0 20.0 95.0 0.40
Continental crust [38] 1.80 100 55 75.0 12.50 70.0 0.08
Suez Bay, Gulf of Suez, Egypt [39] 8.98 1.66 5.58 2.78 3.96 0.27
Rosetta, Mediterranean Sea, Egypt [40] 298 0.18 24.57 481 385 183
Ras Abu Ali Island, Saudi Arabia [41] 2.47 7.86 4.14 13.0 3.50 6.89
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3.2. Contamination and Risk Assessment of PTEs

In order to estimate the anthropogenic effects of marine sediments through enrichment
factors, the choice of a background metal concentration is crucial. The main drawback
of using crustal average values is that it ignores natural geochemical variability, which
can result in the detection of erroneous anomalies or the failure to detect anomalous
concentrations above the pristine local background at all [43]. Average values of Cr, Cu,
Cr, Zn, and Pb were less than 3.00 (Table 3), indicating no to minor enrichment, and may
be derived entirely from natural crustal materials with minor anthropogenic effects for
Pb [11,44–46]. These PTEs show minor difference in EF average values among the two used
background references (Figure 4).

However, arsenic (As) revealed severe enrichment in EF average values (14.50 and
16.58), and show minor differences based on the background values (Table 3, Figure 4).
Moreover, the average values of EF for Hg varied from 16.73 to 21.40, indicating severe
enrichment, mostly derived from anthropogenic effects. The considerable difference be-
tween the two averages is attributed mostly to the difference in the abundance of mercury
in the Earth’s crust (0.40 mg/kg for Turekian and Wedepohl [37]; and 0.08 mg/kg for
Taylor [38]), as well as the difference in Fe content as a normalizing element between the
two backgrounds.
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Table 3. The average values of enrichment factor (EF) and contamination factor (CF), based on
background values.

Indices and Background References Pb Zn Ni Cu Cr As Hg

EF
Turekian and Wedepohl [37] 1.27 0.61 2.01 0.47 0.90 14.50 21.40
Taylor [38] 2.27 0.99 1.89 0.48 0.90 16.58 16.73

CF
Turekian and Wedepohl [37] 0.13 0.07 0.20 0.05 0.10 1.40 2.47
Taylor [38] 0.21 0.09 0.16 0.04 0.09 1.32 1.38

Water 2023, 15, x FOR PEER REVIEW 6 of 11 
 

 

Table 3. The average values of enrichment factor (EF) and contamination factor (CF), based on back-
ground values. 

Indices and Background References Pb Zn Ni Cu Cr As Hg 

EF 
Turekian and Wedepohl [37] 1.27 0.61 2.01 0.47 0.90 14.50 21.40 
Taylor [38] 2.27 0.99 1.89 0.48 0.90 16.58 16.73 

CF 
Turekian and Wedepohl [37] 0.13 0.07 0.20 0.05 0.10 1.40 2.47 
Taylor [38] 0.21 0.09 0.16 0.04 0.09 1.32 1.38 

However, arsenic (As) revealed severe enrichment in EF average values (14.50 and 
16.58), and show minor differences based on the background values (Table 3, Figure 4). 
Moreover, the average values of EF for Hg varied from 16.73 to 21.40, indicating severe 
enrichment, mostly derived from anthropogenic effects. The considerable difference be-
tween the two averages is attributed mostly to the difference in the abundance of mercury 
in the Earth’s crust (0.40 mg/kg for Turekian and Wedepohl [37]; and 0.08 mg/kg for Tay-
lor [38]), as well as the difference in Fe content as a normalizing element between the two 
backgrounds. 

 
Figure 4. Distribution of EF and CF average values of PTEs based on background values [37,38]. 

The coastal sediment in the area between Al-Jubail and Al-Khafji shows a low con-
tamination factor for Pb, Zn, Ni, Cu, and Cr (average CF < 1.00), with minor differences 
among the used backgrounds (Table 3, Figure 4). Moreover, As and Hg show average CF 
values varied from 1.32 to 1.40 and from 1.38 to 2.47, respectively, based on the applied 
backgrounds, indicating a moderate contamination factor [35]. The pollution load index 
(PLI) is used to assess HM contamination at a particular site [47,48]. Results of PLI indicate 
unpolluted sediments (PLI < 1.00), mostly due to low contamination factors for all PTEs 
(Table 3). Average values of PLI varied from 0.17 to 0.19, based on used background val-
ues [37,38]. The higher PLI values were recorded in S17, S20, S30 and S31 (Figure 5). How-
ever, the results of pollution indices (EF, CF, and PLI) support the results of the Q-mode 
HCA and indicate that samples of the first cluster were not polluted, while samples of the 
second and third clusters show some enrichment of anthropogenic effects, especially for 
Hg and As. 

Figure 4. Distribution of EF and CF average values of PTEs based on background values [37,38].

The coastal sediment in the area between Al-Jubail and Al-Khafji shows a low con-
tamination factor for Pb, Zn, Ni, Cu, and Cr (average CF < 1.00), with minor differences
among the used backgrounds (Table 3, Figure 4). Moreover, As and Hg show average CF
values varied from 1.32 to 1.40 and from 1.38 to 2.47, respectively, based on the applied
backgrounds, indicating a moderate contamination factor [35]. The pollution load index
(PLI) is used to assess HM contamination at a particular site [47,48]. Results of PLI indicate
unpolluted sediments (PLI < 1.00), mostly due to low contamination factors for all PTEs
(Table 3). Average values of PLI varied from 0.17 to 0.19, based on used background
values [37,38]. The higher PLI values were recorded in S17, S20, S30 and S31 (Figure 5).
However, the results of pollution indices (EF, CF, and PLI) support the results of the Q-mode
HCA and indicate that samples of the first cluster were not polluted, while samples of the
second and third clusters show some enrichment of anthropogenic effects, especially for
Hg and As.

Table 4 presents the range of ERL and ERM values of the sediment quality guideline
in the seven PTEs [33], and the percentages of samples within the ranges of the SQG.
Cu, Pb, Zn, As, and Cr present the 100% of measurements below the ERL, indicating
that the studied coastal sediments do not pose a risk to the benthic communities, or the
adverse effects are rarely observed as a result of the presence of these metals. However, Ni
presented 87.5% below the ERL, and 12.5% between the ERL and ERM, which suggests that
the presence of Ni could represent a risk for benthic communities in four sampled areas (S17,
S20, S30, and S31). On the other hand, 47% of the Hg values located between ERL and ERM,
and 53% over the ERM imply that Hg represents an evident risk for benthic communities
in 17 sampled areas [8]. Based on SQG results, the m-ERMQ were 0.1, suggesting a 9%
probability of toxicity for benthic organisms in the study area.
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Metal Mean
Concentration

Sediment Quality
Guideline *

% of Samples within Ranges of the
Sediment Quality Guideline

ERL ERM <ERL >ERL and
<ERM >ERM

Cu 2.44 34 270 100 0 0
Ni 11.76 20.9 51.6 87.5 12.5 0
Pb 2.57 46.7 218 100 0 0
Zn 6.18 150 410 100 0 0
As 2.38 8.2 70 100 0 0
Cr 8.68 81 370 100 0 0
Hg 0.766 0.15 0.71 0 47% 53%

Note(s): * ERL = effects-range—low, ERM = effects-range—median [33].

3.3. Potential Sources of PTEs

Pearson’s correlation was conducted to identify the factors and sources of chemical
constituents in the studies on environmental pollution [20,49]. The results revealed high
positive correlations between many elemental pairs, except Hg (Table 5), implying different
behaviors and sources of Hg compared to the remaining PTEs. The high positive correlation
between Zn and all the investigated PTEs except Hg suggested that Zn, Cr, Cu, Ni, and Pb
might be associated with a natural source; in particular, their average EF were less than
3.00 [50]. Arsenic (As) is severely enriched (average EF = 10–25) and positively correlated
with Cu, Ni, and Zn, indicating mixed geogenic and anthropogenic sources [51]. Differently,
Hg is negatively and weakly correlated with the remaining PTEs, was severely enriched,
and might be derived from anthropogenic factors, mostly from oil pollution, sewage, and
industrial effluents spreading nearby Al-Jubail industrial city.

Table 5. The correlation matrix of the analyzed PTEs.

As Cr Cu Ni Pb Zn Hg

As 1
Cr 0.495 ** 1
Cu 0.520 ** 0.879 ** 1
Ni 0.556 ** 0.817 ** 0.731 ** 1
Pb 0.363 * 0.550 ** 0.551 ** 0.571 ** 1
Zn 0.580 ** 0.790 ** 0.897 ** 0.757 ** 0.680 ** 1
Hg −0.050 0.063 0.059 0.278 0.094 0.140 1

Note(s): ** Correlation is significant at the 0.01 level (2-tailed). * Correlation is significant at the 0.05 level (2-tailed).
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The principal component analysis indicates the similarity between PTEs and docu-
ments their potential pollution sources [52,53]. Herein, PCA divided the PTEs into two
components accounting for 61.72% and 15.12% of the total variance (Table 6, Figure 6).
The results of PCA strongly concur with those of the Pearson’s correlation. As, Cr, Cu, Ni,
Pb, and Zn were all highly concentrated in PC1, which primarily suggests the lithogenic
sources came from the weathering of rocks with some human contributions for As and
Pb [50,54]. PC2 presents a positive loading for Hg, indicating industrial sources may be
from petrochemicals of the Al-Jubail industrial city and domestic wastes [46].

Table 6. Principal component loadings and the explained variance for the two components.

Component

1 2

As 0.668 −0.289
Cr 0.906 −0.058
Cu 0.916 −0.087
Ni 0.888 0.176
Pb 0.724 0.032
Zn 0.937 −0.008
Hg 0.158 0.966

% of Variance 61.72 15.12
Cumulative % 61.72 76.84
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4. Conclusions

This study highlights the contamination and environmental risk of PTEs in surface
marine sediments collected from the coastal area between Al-Jubail and Al-Khafji, Saudi
Arabia. Pb, Zn, Ni, Cu, and Cr show no to minor enrichment and minor differences based
on the two background references. As and Hg suggest severe enrichment with considerable
differences regarding EF and CF. All measurements of the Cu, Pb, Zn, As, and Cr were
below the ERL of the SQG, indicating that the studied coastal sediments do not pose a risk
to the benthic communities as a result of the presence of these metals. Ni and Hg represent
a risk for benthic communities in four and 17 sampled areas, respectively. The m-ERMQ
suggests a 9% probability of toxicity for benthic organisms in the studied area. Most of
the investigated PTEs indicated natural with some anthropogenic factors, while Hg was
mostly derived from anthropogenic effects.
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