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Abstract: Effective water quality management and reliable environmental modeling depend on the
availability, size, and quality of water quality (WQ) data. Observed stream water quality data are
usually sparse in both time and space. Reconstruction of water quality time series using surrogate
variables such as streamflow have been used to evaluate risk metrics such as reliability, resilience,
vulnerability, and watershed health (WH) but only at gauged locations. Estimating these indices for
ungauged watersheds has not been attempted because of the high-dimensional nature of the potential
predictor space. In this study, machine learning (ML) models, namely random forest regression,
AdaBoost, gradient boosting machines, and Bayesian ridge regression (along with an ensemble
model), were evaluated to predict watershed health and other risk metrics at ungauged hydrologic
unit code 10 (HUC-10) basins using watershed attributes, long-term climate data, soil data, land
use and land cover data, fertilizer sales data, and geographic information as predictor variables.
These ML models were tested over the Upper Mississippi River Basin, the Ohio River Basin, and
the Maumee River Basin for water quality constituents such as suspended sediment concentration,
nitrogen, and phosphorus. Random forest, AdaBoost, and gradient boosting regressors typically
showed a coefficient of determination R2 > 0.8 for suspended sediment concentration and nitrogen
during the testing stage, while the ensemble model exhibited R2 > 0.95. Watershed health values
with respect to suspended sediments and nitrogen predicted by all ML models including the ensemble
model were lower for areas with larger agricultural land use, moderate for areas with predominant
urban land use, and higher for forested areas; the trained ML models adequately predicted WH in
ungauged basins. However, low WH values (with respect to phosphorus) were predicted at some
basins in the Upper Mississippi River Basin that had dominant forest land use. Results suggest that
the proposed ML models provide robust estimates at ungauged locations when sufficient training
data are available for a WQ constituent. ML models may be used as quick screening tools by decision
makers and water quality monitoring agencies for identifying critical source areas or hotspots with
respect to different water quality constituents, even for ungauged watersheds.

Keywords: machine learning; water quality; risk analysis; ungauged watersheds; random forest
regression; AdaBoost; gradient boosting; Bayesian ridge regression

1. Introduction

The quality of water resources, be it streams, rivers, lakes, reservoirs, ground water,
or oceans, determines the well-being of human populations and other natural or physical
systems that rely on it. Extensive changes to land use, e.g., from forest or grass land to
agricultural or urban land use, may result in detrimental effects on both the quantity and
the quality of water [1]. For example, agriculture activities such as tilling, application of
fertilizers and pesticides, and lack of cover during non-growing seasons can all lead to the
pollution of local streams and rivers, as well as final receiving waters such as lakes, seas, and
oceans [2,3]. Urban activities such as lawn maintenance and landscaping, transportation,
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construction, and untreated domestic and industrial wastewater also lead to the pollution
of water resources [4]. Fecal indicator bacteria such as Escherichia coli can be part of runoff
pollution and can contaminate waters in the nearshore and coastal regions [5]. When the
levels of nitrate + nitrite are above permissible limits in the streams, they can pose both
non-carcinogenic and carcinogenic risks to public health and can affect general ecosystem
functioning [6]. When water is polluted, it often results in health issues among human
beings, animals, plants, etc., as well as affecting several ecosystem services [7].

As sampling and laboratory analyses can be expensive and time consuming, it is often
impossible to get sufficient spatial and temporal coverage of water quality (WQ) samples
for assessment. Therefore, water resources professionals have to rely on techniques such
as time series reconstruction using statistical [8,9] or physically based models [10,11] to
overcome the limitation of sparse water quality data. However, popular distributed water
quality models such as HSPF (hydrologic simulation program, Fortran; [11]) and SWAT
(soil and water assessment tool; [10]), are often challenged by the lack of sufficient data
for calibration, computer effort, and user expertise. These models do not lend themselves
for use in ungauged basins. Deploying any of the above models as a quick and simple
screening tool to identify potential source areas for contaminants might be overkill.

Several studies have used machine learning (ML) models for identifying water bodies
from satellite images [12], water demand forecasting [13], sediment transport modeling [14–16],
ecological modeling [17–21], estimating design floods [22], flood susceptibility and risk
assessment [23,24], flood prediction [25,26], outbreak of harmful algal blooms [27], ML-
based satellite image analysis [28,29], as well as water quality assessment [30–44].

Risk-based frameworks have been used in several studies to evaluate the health of
water resources systems such as reservoirs [45] and watersheds [8,46,47]. More recently,
Mallya et al. [48] proposed a new vulnerability risk measure and composite watershed
health index that conveniently ranges between zero and one and uses reliability, resilience,
and vulnerability (R-R-V) risk metrics in its computation. A value of zero indicates poor
watershed health with respect to a chosen water quality parameter, whereas a value of one
indicates high watershed health. However, decisions are desired at different scales and for
ungauged watersheds. To address this need, the following are the study objectives:

1. To evaluate machine learning (ML) models to predict watershed health at ungauged
basins with respect to suspended sediment concentration (SSC) and nutrients (nitrogen
and phosphorus). ML models, namely random forest, AdaBoost, gradient boosting
regressor, and Bayesian ridge regression, were chosen in this study because these
models do not make any assumptions about input data distributions, they work
well with high dimensional datasets, and they avoid overfitting by using random
combinations of predictor variables to develop uncorrelated set of models.

2. To identify predictors such as watershed attributes (e.g., drainage area, stream order,
drainage density, watershed slope, etc.), long-term climate data (monthly, seasonal and
annual precipitation, and/or temperature data), soil data, land use/land cover data,
and fertilizer sales data to train machine learning models for predicting watershed
health over any area of interest within three Midwest river basins.

3. To develop spatial maps of watershed health at HUC-10 resolution to aid decision
makers in identifying critical source areas in the Midwest river basins.

2. Study Area and Datasets

The study area (see Figure 1) consists of the Upper Mississippi River Basin (UMRB),
the Ohio River Basin (ORB), and the Maumee River Basin (MRB or the Lake Erie wa-
tershed, USA side only). These river basins are spread across multiple states located in
Midwest and Northeastern United States. The drainage areas for UMRB, ORB, and MRB
are 490,000 square kilometers, 490,600 square kilometers, and 56,926 square kilometers,
respectively. These river basins have dominant agricultural land use, therefore there is keen
interest in studying the quantity and quality of water resources over the region.



Water 2023, 15, 586 3 of 23

Water 2023, 15, x FOR PEER REVIEW 3 of 24 
 

 

490,000 square kilometers, 490,600 square kilometers, and 56,926 square kilometers, re-
spectively. These river basins have dominant agricultural land use, therefore there is keen 
interest in studying the quantity and quality of water resources over the region. 

The following datasets were used in this study: (i) streamflow from the United States 
Geological Survey (USGS) daily streamflow dataset and water quality data from the 
United States Geological Survey-National Water Quality Assessment (USGS-NAWQA) 
stations, (ii) geographic data such as Hydrologic Unit Code 10 (HUC-10) boundaries and 
stream network shapefiles from the USGS National Hydrography Dataset (NHD), (iii) 
land use data from the 2011 National Land Cover Database (NLCD), (iv) soil data such as 
hydrologic soil group and available water storage (AWS) in the top 25 cm of soil from the 
Soil Survey Geographic Database (SSURGO), (v) precipitation (PRCP) and minimum and 
maximum temperature (TMIN and TMAX) data from the Historical Climate Network 
(HCN) stations, (vi) fertilizer sales data available from the United States Department of 
Agriculture’s National Agricultural Statistics Service (USDA-NASS), and (vii) drainage 
areas, slope, stream order, and latitude and longitude information from 30 m resolution 
digital elevation model data (DEM). Readers are referred to the Supplementary Infor-
mation for additional details on the datasets used in the study. 

 
Figure 1. Study area consists of the Upper Mississippi River Basin, the Ohio River Basin, and the 
Maumee River Basin. Green circular markers denote the geographic location of USGS-NAWQA sta-
tions, where data for water quality constituents such as suspended sediment concentration, nitro-
gen, and phosphorus are available. 

3. Methodology 
3.1. Risk and Watershed Health Measures 

Figure 1. Study area consists of the Upper Mississippi River Basin, the Ohio River Basin, and the
Maumee River Basin. Green circular markers denote the geographic location of USGS-NAWQA
stations, where data for water quality constituents such as suspended sediment concentration,
nitrogen, and phosphorus are available.

The following datasets were used in this study: (i) streamflow from the United States
Geological Survey (USGS) daily streamflow dataset and water quality data from the United
States Geological Survey-National Water Quality Assessment (USGS-NAWQA) stations,
(ii) geographic data such as Hydrologic Unit Code 10 (HUC-10) boundaries and stream
network shapefiles from the USGS National Hydrography Dataset (NHD), (iii) land use
data from the 2011 National Land Cover Database (NLCD), (iv) soil data such as hydrologic
soil group and available water storage (AWS) in the top 25 cm of soil from the Soil Survey
Geographic Database (SSURGO), (v) precipitation (PRCP) and minimum and maximum
temperature (TMIN and TMAX) data from the Historical Climate Network (HCN) stations,
(vi) fertilizer sales data available from the United States Department of Agriculture’s
National Agricultural Statistics Service (USDA-NASS), and (vii) drainage areas, slope,
stream order, and latitude and longitude information from 30 m resolution digital elevation
model data (DEM). Readers are referred to the Supplementary Information for additional
details on the datasets used in the study.

3. Methodology
3.1. Risk and Watershed Health Measures

The mathematical formulation of risk and the composite watershed health measures
used in this study are described here.

Reliability (p) is defined as the probability of the system to be in a compliant state (S):

p = 1− P{Xt ∈ F} = 1− 1
n ∑n

t=1 zt (1)
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where Xt is the water quality concentration at time t, zt = 1 when Xt ∈ F and 0 when
Xt ∈ S, and n is the total number of data points. The state is said to be non-compliant (F)
when the water quality exceeds the user defined standard concentration (X∗), i.e., Xt > X∗.

Resilience (r) is defined as the probability of the system to recover from a non-
compliant state:

r = P{Xt+1 ∈ S|Xt ∈ F} = P{Xt+1 ∈ S ∩ Xt ∈ F}
P{Xt ∈ F} =

∑n
t=1 yt

∑n
t=1 zt

=
l
m

(2)

where yt = 1 when Xt+1 ∈ S and Xt ∈ F and 0 otherwise, zt = 1 when Xt ∈ F and 0 when
Xt ∈ S, m is the number of instances the water quality standard is violated (m = ∑n

t=1 zt),
and l is the number of transitions from non-compliant to compliant state or l = ∑n

t=1 yt.
Vulnerability is the magnitude of damage during a non-compliant event. During risk

analysis for a water quality constituent, vulnerability may denote the total magnitude of
violations or damage caused in dollar amounts. In order for the vulnerability and thus the
watershed health measures to range from 0 to 1 for consistency, Mallya et al. [48] introduced
a new measure called opposite of vulnerability:

v = exp
{
− 1

m ∑n
t=1 log

[
QtXtt
QtX∗t

]
H[Xt − X∗]

}
(3)

The Heaviside step function H[.] is equal to 1 when Xt > X∗ and 0 otherwise. The
terms QtXtt and QtX∗t represent water quality load and the standard load at time t,
respectively. When the deviations of Xt from X∗ are large, v is closer to zero and, when the
deviations are small, v is closer to 1. Note that Equation (3) can be written as

v = ∏m
i=1

(
QiX∗∆t
QiXi∆t

) 1
m

(4)

where i refers to the ith time instance where Xt > X∗ and m is the number of violation
instances. Note that when an upper threshold value is not to be exceeded as the water

quality criterion, e.g., for oxygen, Equation (4) becomes v = ∏m
i=1

(
QiXi∆t
QiX∗∆t

) 1
m , where i refers

to the ith time instance where Xt < X∗. Equation (4) implies that v is the geometric mean
of the severity of the violations.

Vulnerability can be calculated as:

Vul = 1− v (5)

Using the risk indices described above, Mallya et al. [48] proposed a conservative
measure for watershed health:

h = (p× r× v)
1
3 (6)

When p = r = v = 1, h = 1 (i.e., watershed is healthy) and, when one of them is zero,
h = 0 (i.e., watershed is unhealthy).

3.2. Machine Learning Models

In this study, four machine learning models, namely, random forest, AdaBoost, gra-
dient boosting, and Bayesian ridge regression were adopted to predict watershed health
indices for sediments and nutrients at ungauged basins. Brief mathematical descriptions of
these models are presented below.

3.2.1. Decision Trees

Decision trees [49] are a non-parametric supervised learning technique used for classi-
fication and regression problems. Decision trees can handle mixed data types (numerical
and categorical) and can model complex functions. The goal is to develop a model that
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predicts the value of a response variable by learning simple decision rules inferred from the
predictor vectors. Given predictor vectors xj ∈ Rn, j = 1, . . . , p and response vector y ∈ R,
a decision tree recursively partitions the space to obtain groupings of samples that meet
certain threshold criteria (tm) at each node of the decision tree.

Let the data at node m be represented by D. Then, at this node for each candidate
split θ = (j, tm) consisting of feature j and threshold tm, partition the data into Dle f t(θ) and
Dright(θ) such that:

Dle f t(θ) = (x, y)
∣∣∣xj ≤ tm (7)

Dright(θ) = D\Dle f t(θ) (8)

Thus, Dright(θ) contains all the elements of the set D that are not in Dle f t(θ). The
impurity at m is computed as:

G(D, θ) =
nle f t

Nm
H
(

Dle f t(θ)
)
+

nright

Nm
H
(

Dright(θ)
)

(9)

where nle f t and nright denote the number of samples in each partition
[

Dright(θ) and Dle f t(θ)
]
,

Nm is the number of samples at node m and the function H() is the mean squared error in
regression problems, i.e., if

cm =
1

Nm
∑

i∈Nm

yi (10)

H(Xm) =
1

Nm
∑

i∈Nm

(yi − cm)
2 (11)

θ∗ = argminθG(D, θ) (12)

One selects the parameters that minimize the impurity where argmin refers to the
argument of the minimum, i.e., set of values θ∗ for which the function G() attains the
smallest value. Recursion for subsets Dle f t(θ

∗) and Dright(θ
∗) follows until the maximum

allowable depth for the tree is reached and Nm < minsamples or Nm = 1.

3.2.2. Random Forest

Random forest (RF; [50]) consists of an ensemble of B decision trees {T1(X), . . . , TB(X)},
where X =

{
x1, . . . , xp

}
is a p-dimensional vector of attributes for an annual data point

that belongs to a drainage area or a HUC-10 basin. The RF model generates B outputs
{ŷ1 = T1(X), . . . , ŷB = TB(X)}, where ŷb, b = 1, . . . , B, is the prediction for an annual sample
by the bth tree. The average output of all B trees are reported as the final prediction, ŷ.

Suppose we have a total of N annual samples (a collection of annual data from
all stations in the study area where the chosen water quality constituent is monitored)
in the training set, then we can represent the explanatory variables (Xi, i = 1, . . . , N),
where Xi =

(
x1i, x2i, . . . , xpi

)
and target variable (yi) as D = {(X1, y1), . . . , (XN , yN)}. The

random forest model works as follows:

1. First N random samples (X, y) are drawn with replacement (also known as bootstrap-
ping or bagging). Here, the assumption is that the N samples are independent and
identically distributed.

2. Using these N samples, we train a decision tree such that, at each node, the best split
is decided using a randomly selected subset of mtry attributes. An unpruned decision
tree may be grown such that no further splits are possible at the end nodes. However,
in this approach we treated both the depth of the tree and the number of attributes
(mtry) used at each node as variables.

3. The above two steps are repeated until B decision trees are grown.

The RF algorithm is quite robust, even when we have several hundreds, if not thou-
sands, of explanatory variables. As individual trees are grown using a small random subset
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of attributes (mtry), the trees within the forest are not only relatively unique but the time
required to train a RF model is also reduced compared with that of a single decision tree
(DT). The variable mtry was treated as a model parameter in this study and an optimum
value was found using a 5-fold cross validated grid search. If one chooses to avoid setting
this as a model parameter, then the recommended value for mtry is the square root of the
number of attributes (i.e.,

√
p). Typically, the RF model does not have to be pruned, i.e., it

can be grown to maximum depth without loss of generalization or overfitting [49] but, to
obtain fairly unique trees (that result in a robust RF model), the depth of the tree was also
treated as a model parameter and was tuned using the grid search approach.

In this study, for consistency the performances of all machine learning models were
evaluated on an independent test data set that was not used during training. However,
in many applications (including this study) the data available are limited. To address
this limitation, a k-fold cross-validation (CV) approach (where the model is trained on
k-1 subsets, tested on the kth subset, and repeated k times or until each subset is used for
testing) was used. The RF model internally performs cross-validation during the training
phase using out-of-bag (OOB) samples. Specifically, as bootstrapped samples are used for
training each decision tree, the unused samples, referred to as OOB samples, are used to
evaluate the performance of each tree within the RF model. The mean square error (MSE)
(or other similar error metrics) on OOB predictions is calculated for each DT and then
the average mean error statistic from the k-fold CV is reported for the model. A trained
DT can provide easy-to-comprehend relationships between the attributes and the target
and therefore reveals both important attributes and those that have least predictive power.
Since a RF model is an ensemble of DTs, it can also reveal the importance of the attributes.

3.2.3. AdaBoost

The boosting algorithm AdaBoost [51] is used to fit a sequence of weak learners, such
as small decision trees, on continuously modified versions (by weighting) of the training
data. The predictions from each learner are then combined through a weighted summation
(or voting in case of classification problems) to produce the final prediction. The data are
modified after each boosting process by applying weights w1, w2, . . . , wN to each training
sample, where N is the total number of samples. During the first iteration, the weights,
wi...N , are all set to 1

N . For each successive iteration, the sample weights are modified [49]
and the learning algorithm is reapplied to the re-weighted data. At the end of any boosting
step, training examples that were incorrectly predicted by the boosted model will have
their weights increased, whereas the weights are decreased for those examples that were
predicted correctly. Therefore, for every iteration, the weak learner is forced to concentrate
on the examples that were missed previously. For regression problems, a weak regressor
such as a decision tree regressor [49] is used to obtain a fit on the dataset. Then, additional
copies of the regressor are fit on the same dataset but where the weights of instances are
adjusted according to the error of the current prediction. As such, subsequent regressors
focus more on difficult cases.

3.2.4. Gradient Boosting

Gradient boosting regression trees [49] use an additive model of the form:

F(X) = ∑M
m=1 hm(X) (13)

where hm(X) are weak learners, such as decision trees, F(X) is the final model, and M is
the total number of weak learners. Similar to other boosting algorithms, gradient boosting
involves using a forward stage wise additive model:

Fm(X) = Fm−1(X) + hm(X) (14)



Water 2023, 15, 586 7 of 23

For every iteration, a weak learner (such as the decision tree) hm(X) is chosen to
minimize the loss function Lm (least squares) given the current model Fm−1.

hm = argmin
h

Lm = argmin
h

n

∑
i=1

l(yi, Fm−1(xi) + hm(xi))

Using first-order Taylor approximation

l(yi, Fm−1(xi) + hm(xi)) ≈ l(yi, Fm−1(xi)) + hm(xi)

[
∂l(yi, F(xi))

∂F(xi)

]
F=Fm−1

The term
[

∂l(yi ,F(xi))
∂F(xi)

]
F=Fm−1

may be denoted as gi, which is the derivative of the loss

with respect to the second parameter evaluated at Fm−1(x). Removing the constant terms
results in:

hm ≈ argmin
h

n

∑
i=1

h(xi)gi

This minimization problem is solved numerically using steepest gradient descent [52].

3.2.5. Bayesian Ridge Regression

A Bayesian ridge regression is a probabilistic model of the regression problem of
the form [53]:

p(y|X, w, α) = N(y|Xw, α) (15)

The prior for the parameter w may be chosen as a spherical Gaussian with precision λ−1.

p(w|λ) = N
(

w
∣∣∣0, λ−1 Ip

)
By choosing this prior, the Bayesian ridge regression uses regularization with L2-norm,

which means that the outliers are assigned more weights. Alpha (α) is a regularization
parameter that controls the amount of shrinkage. It is treated as a random variable and is
estimated from the data. Large values of alpha result in greater shrinkage, thus making the
coefficients (w) sparser and more robust to collinearity. The priors over α and λ are chosen
to be gamma distributions. The parameters of the model are estimated by maximizing the
marginal log likelihood [54].

The machine learning models described in this section are available in the Scikit-learn
machine learning toolbox for Python [55]. For models that use decision trees as weak
learners, i.e., random forests, AdaBoost, and gradient boosting regressor, the value of
the max_features parameter (where max_features are the number of predictor variables to
consider when looking for the best split of each decision tree) was found to be optimum at
p/3, using the grid search approach [56]. Here, p refers to the total number of attributes or
explanatory variables in the input dataset.

4. Results and Discussion
4.1. Prediction of Watershed Health

Following Hoque et al. [8], continuous daily time series of streamflow data and sparse
observations of water quality data recorded at USGS-NAWQA stations were used to obtain
a reconstructed continuous time series of daily water quality load using relevance vector
machines. Then, using user-defined standards for each water quality parameter, the above-
described risk and watershed health measures were computed for each year during the
study period (1966–2014). The computed watershed health index (WH) for each water
quality parameter formed the target vector y during the training phase of the machine
learning models. Watershed attributes, long-term climate data, and soil and land-use data
compiled over each area draining to USGS-NAWQA stations formed the predictor series X.
During the training phase, data (X and y) from 80% of the stations were used. Each model
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performance was validated using data from the remaining 20% of the stations to obtain
the annual time series of the watershed health predictions (ypred). During the training
phase (i.e., using data from 80% of the stations), the robustness of the trained machine
learning models was validated using five-fold cross validation (CV), see Table 1. Using the
ensemble model, the WH index with respect to each constituent (sediment and nutrients)
was predicted for ungauged HUC-10 basins using predictor variables (X) compiled over
these ungauged basins.

Table 1. Goodness of fit measures of ML models and top five predictors of watershed health. The
coefficient of determination R2 for the training set is the average value obtained during 5-fold cross
validation, while the value given between the parentheses is the R2 value for the test set.

SSC Nitrite + Nitrate Orthophosphate

Number of stations 151 70 49

US EPA standard (mg/L) 30 10 0.1

R2 training (testing)

Random forest 0.98 (0.95) 0.98 (0.81) 0.99 (0.26)

Gradient boosting 0.99 (0.94) 0.99 (0.84) 0.98 (0.57)

AdaBoost 0.87 (0.84) 0.99 (0.88) 0.94 (0.32)

Bayesian ridge 0.75 (0.68) 0.75 (−1.31) 0.83 (−22)

Ensemble 0.98 (0.98) 0.97 (0.98) 0.98 (0.99)

Top 5 predictors Forest land-use percentage Agricultural land-use percentage Water land-use percentage

Water land-use percentage Available water storage in top
25 cm of soil Average fertilizer sales

Longitude Drainage area Longitude

Agricultural land-use percentage Forest land-use percentage Forest land-use percentage

Drainage area Longitude Percentage area with hydrologic
soil group B

4.1.1. Watershed Health for Suspended Sediment Concentration

SSC load was first reconstructed following Hoque et al. [8] to obtain daily continuous
time series of SSC loads at each of the 151 USGS-NAWQA stations in the study area where
sparse SSC observations were available. Then, by setting the WQ standard to 30 mg/L [57],
risk measures such as R-R-V and WH measures were computed for each year during the
study period. This annual series of watershed health (WH) index (with respect to SSC)
at each USGS-NAWQA station forms the target series (y) for training machine learning
models. The data for predictor variables (X) (except fertilizer sales, as SSC is not directly
influenced by fertilizer application) that were compiled for each drainage area of USGS-
NAWQA station were used during the training and testing phase; those that were compiled
for ungauged HUC-10 basins were used during the prediction phase.

Random Forest Regression Model

A random forest regression model with 500 decision trees was used for predicting
watershed health at ungauged HUC-10 basins. The model was first trained using data
available at USGS-NAWQA stations. As described above, the annual series of WH mea-
sure (y = (y1, . . . , yN)) and 81 explanatory variables (X, including watershed attributes,
climate, soil, and land-use data) at about 80% of the USGS-NAWQA stations (out of
total 151 stations) were used for training. A five-fold CV was performed to check the
robustness of the trained model. The model performance was evaluated using the coef-
ficient of determination, R2, which was found to have an average value of 0.98 from the
five-fold CV (Table 1).

The trained model was then confirmed using the test dataset. An R2 for the test
set is shown between parentheses in Table 1. Watershed attributes (X) at the remaining
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20% of the stations were used as inputs to the trained model and the predicted WH
values were compared with those values computed from observed WQ data obtained
from gauging/sampling stations following Mallya et al. [48]. Henceforth, we refer to WH
values computed from observed WQ data as reference WH values. An R2 value of 0.95
was obtained on the test set. Though the R2 statistic is high, there was significant scatter
about the best-fit (1:1) line indicating under- or overprediction for some cases. Similar RF
model test performance for risk measures reliability, resilience, and vulnerability of SSC
was obtained.

As an example, over three USGS-NAWQA stations (each belonging to one of the three
river basins UMRB, ORB, and MRB), the time series comparison of reference WH versus
predicted watershed health measures (with respect to standard chosen for SSC, i.e., 30 mg/L)
is presented in Figure 2a–c. The reference WH values are denoted using a line plot with
red markers, and the predictions from the random forest model are shown using a line plot
with blue circular markers. While some predictions are close to the reference values (notice
that the y-axis is zoomed in to highlight the differences; if the y-axis is scaled between zero
and one then these differences do not get highlighted), they are either overpredicted in some
instances (Figure 2a) or underpredicted (Figure 2b) during other instances. In addition, the
annual pattern (rise and fall) of watershed health variation during the study period may not
necessarily be captured (for example, see Figure 2a,b vs. Figure 2c).
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The random forest regression model also computes the impurity or error (e.g., root
mean squared error) at different nodes of all decision trees in the model during the training
phase (five-fold CV) by removing one explanatory variable at a time. The overall errors are
compiled for each variable and then sorted and scaled between 0 and 100%. The variable
that results in the highest model error is the most important and vice-versa. Figure 3
shows the top 15 (out of 81) variables that were important in explaining watershed health
(with respect to SSC) according to the random forest model. The percentage areas under
forest, water, and agricultural land use were among the top five variables, along with
drainage area and geographic location. Among the climate variables, annual precipitation
and annual average values of maximum and minimum temperature were most influential.
Percentages of forest land use (less susceptible to soil erosion), agricultural land use (source
of sediments, although depending on soil conservation practices), and longitude were
identified as important predictors for watershed health (with respect to SSC) over the three
river basins (Table 1).
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Figure 3. Variable importance for top 15 out of 81 explanatory variables according to random forest
model trained on watershed health (with respect to SSC) at USGS-NAWQA stations.

After the training and testing phases, the random forest model was used to obtain
predictions of risk measures (annual series) at HUC-10 basins using attributes (X) collected
over these ungauged basins as an input to the model. Figure 4 shows a map of the study
region, where each HUC-10 basin is color-coded using predictions of watershed health
(with respect to SSC) for the year 2014. The circular markers denote the location of stations
where SSC observations were available. The circular makers are also color-coded with
watershed health values for 2014 computed using daily reconstructed SSC series for that
year. Five different colors for watershed health increments of 0.2 were used in Figure 4.
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The lightest shade represents high watershed health and the darkest shade represents low
watershed health. The HUC-10 basins located in the uppermost reaches of the river basins
have high watershed health that deteriorates for downstream watersheds. In addition, the
HUC-10 basins with high watershed health coincide with areas dominated by forest land
use, e.g., north of UMRB, east of MRB, and east and southeast of ORB. Likewise, those with
low watershed health belonged to regions with dominant agricultural land use.
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Figure 4. Prediction of watershed health (with respect to SSC) at ungauged HUC-10 basins for the
year 2014 using random forest regression model. Circular markers denote the location of USGS-
NAWQA stations where SSC measurements were available and are color-coded based on watershed
health for year 2014.

Other Regression Models

The performance of gradient boosting, adaptive boosting (AdaBoost), and Bayesian
ridge regression models for predicting risk measures at ungauged HUC-10 basins is shown
in Table 1 and is also discussed in the Supplementary Information. During the testing phase,
the gradient boosting regression model yields a R2 value of 0.94, which is comparable to
that obtained from the random forest model. While most points lie along the best fit line,
there is considerable scatter, indicating a lack of strong prediction power. Similarly, the
AdaBoost regression model for WH (with respect to SSC) provided a relatively weaker fit
with an R2 value of 0.84. The Bayesian ridge regression had the worst performance among
the four models used in the study, with an R2 value of 0.68.

Ensemble of Model Outputs

The WH outputs (from the training phase, i.e., 80% of USGS-NAWQA stations) from
the four ML models were used as explanatory variables (X) in a separate random forest
model with 50 decision trees. The target variable (y) for this model was the annual series
of computed WH index, as before. The training and testing were performed in a similar
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manner using 80–20% split of stations. A five-fold CV was performed during the training
phase to evaluate the robustness of the model and an average R2 value of 0.98 was achieved.
The trained ensemble (random forest) model was then evaluated on the test set. The
R2 value was 0.98 on the test dataset.

The performance of the ensemble model was compared at each station. As an example,
Figure 5 shows a comparison of time series plots of reference WH (with respect to SSC) (i.e.,
computed according to Mallya et al. [48]) and ML model predictions at USGS-NAWQA
station 04193500 Maumee River at Waterville, OH, which was part of the test set. The
method of Mallya et al. [48] utilizes relevance vector machine to reconstruct SSC (or any WQ
constituent of interest) from sparse observations and provides corresponding predictive
uncertainty. A Monte Carlo approach provides estimates of WH, which are thus are based
on actual observations. The WH series obtained by Mallya et al. [48] serves as a reference
for evaluating ML models in this study. Only results for the period 1986–2014 are shown
for brevity. In addition, a 90 percent prediction interval for each ML model is shown as
the grey-shaded region in the plot. Figure 5a,b indicate that random forest regression and
gradient boost regression models predict annual WH values close to the reference WH
values derived from observations, as in Mallya et al. [48]. The majority of the reference
WH values, shown as red-hollow circular markers, lie within the 90 percent prediction
interval bands of these two ML models. Figure 5c shows that the AdaBoost regressor
overpredicts WH values (shown as solid-blue circular markers) for most of the years.
Figure 5d shows that Bayesian ridge regression performs relatively poorly in predicting
annual WH values at this station. The majority of the WH values are underpredicted and
some reference points lie outside the 90 percent prediction interval. The ensemble model
predictions (Figure 5e) better match the reference WH values compared with individual
model predictions (Figure 5a–d). Similar results were observed at other testing stations but
have not been included here for brevity.

The trained ensemble model is used for estimating the WH index over ungauged
HUC-10 basins using predictions from individual ML models as inputs. The spatial
map of ensemble-predicted watershed health is obtained for different years of the study
period (1966–2014). In general, the predictions from the ensemble model are similar to
those predicted using the random forest model (Figure 4); the HUC-10 basins with high
watershed health belong mostly to the regions with dominant forest land use and those
with low watershed health are in regions with dominant agricultural land use.

The variation of spatial extent of various watershed health categories with time was
also examined. First, the WH index was discretized into five groups in increments of 0.2.
Then, the percentages of total area in each of these five discrete groups were calculated
for each year. Figure 6 shows the percentage variation of each group over the entire study
period. About 15% of the study area had poor watershed health (0.0–0.2), about 40% had
watershed health in the range of 0.2 to 0.4, 20% of the area had watershed health between
0.4 to 0.6, 10% of the area under 0.6 to 0.8, and 15% in the range 0.8 to 1.0. The percentage
area in the last three groups of relatively medium to good watershed health (0.4–0.6, 0.6–0.8,
and 0.8 to 1.0) remained relatively unchanged over the study period. There were small
variations for the remaining two, relatively poor watershed health categories (0–0.2, 0.2–0.4),
but did not show any long-term trend. The results in Figure 6 correspond to the chosen
standard of 30 mg/L for SSC. Mallya et al. [48] note that the percentage areas in each of the
five discrete groups is sensitive to the choice of this numerical standard.
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Figure 5. Time series comparison of watershed health (with respect to SSC) estimated from ob-
servations as in Mallya et al. [48] at USGS-NAWQA station 04193500 Maumee River at Waterville,
OH, which was part of the test set versus ML model predictions using (a) random forest regressor,
(b) gradient boosting regressor, (c) AdaBoost regressor, (d) Bayesian ridge regressor, and (e) ensemble
RF regressor. Only values for the period 1986–2014 are shown for brevity. Red-line plot with red-
colored hollow circular markers indicates reference WH values. Blue-line plot with solid blue-color
circular markers indicates predictions from ML models. The shaded-grey region represents 90 percent
prediction interval for the ML models.



Water 2023, 15, 586 14 of 23

Water 2023, 15, x FOR PEER REVIEW 14 of 24 
 

 

colored hollow circular markers indicates reference WH values. Blue-line plot with solid blue-color 
circular markers indicates predictions from ML models. The shaded-grey region represents 90 per-
cent prediction interval for the ML models. 

The trained ensemble model is used for estimating the WH index over ungauged 
HUC-10 basins using predictions from individual ML models as inputs. The spatial map 
of ensemble-predicted watershed health is obtained for different years of the study period 
(1966–2014). In general, the predictions from the ensemble model are similar to those pre-
dicted using the random forest model (Figure 4); the HUC-10 basins with high watershed 
health belong mostly to the regions with dominant forest land use and those with low 
watershed health are in regions with dominant agricultural land use. 

The variation of spatial extent of various watershed health categories with time was 
also examined. First, the WH index was discretized into five groups in increments of 0.2. 
Then, the percentages of total area in each of these five discrete groups were calculated 
for each year. Figure 6 shows the percentage variation of each group over the entire study 
period. About 15% of the study area had poor watershed health (0.0–0.2), about 40% had 
watershed health in the range of 0.2 to 0.4, 20% of the area had watershed health between 
0.4 to 0.6, 10% of the area under 0.6 to 0.8, and 15% in the range 0.8 to 1.0. The percentage 
area in the last three groups of relatively medium to good watershed health (0.4–0.6, 0.6–
0.8, and 0.8 to 1.0) remained relatively unchanged over the study period. There were small 
variations for the remaining two, relatively poor watershed health categories (0–0.2, 0.2–
0.4), but did not show any long-term trend. The results in Figure 6 correspond to the cho-
sen standard of 30 mg/L for SSC. Mallya et al. [48] note that the percentage areas in each 
of the five discrete groups is sensitive to the choice of this numerical standard. 

 
Figure 6. Percentage of total study area under different categories of watershed health (five catego-
ries defined in increments of 0.2, with respect to SSC) using the ensemble model during the period 
1966–2014. 
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4.1.2. Watershed Health for Nutrients

As the study region has dominant agricultural land use, the performances of machine
learning models to predict the WH index at ungauged HUC-10 basins with respect to
nutrients, namely nitrogen and phosphorus, were also evaluated.

Watershed Health for Nitrite + Nitrate

Nitrite + nitrate observations (parameter code: 00631) available at 70 USGS-NAWQA
stations were used to evaluate the performance of ML models with respect to nitrogen. As
with other water quality constituents, only sporadic data samples were available at these
stations. Therefore, daily reconstructed load series of nitrite + nitrate were first obtained
following Hoque et al. [8]. Then, using a standard of 10 mg/L [57], the annual series of
risk measures reliability, resilience, and vulnerability were calculated and the annual series
of WH index was obtained using Equation (6). Similar to SSC, the four machine learning
models for WH index were trained and tested (using 80–20% split) using attributes (X)
collected for USGS-NAWQA drainage areas and predictions were obtained for ungauged
HUC-10 basins (Table 1). For nitrogen and phosphorus analysis, we also included average
and total fertilizer sales data as inputs. Therefore, we had a total of 83 explanatory variables
in the analysis. The R2 values of ML models for WH index (with respect to nitrogen) during
training and testing phases, along with the top five explanatory variables according to the
RF model are presented in Table 1.

Figure 7 shows a comparison of time series plots of reference WH (with respect to
nitrogen) estimates based on observations and ML and Bayesian ridge regression models’
predictions of WH (with respect to nitrogen) at USGS-NAWQA station 04193500 Maumee
River at Waterville, OH, which was part of the test set. A ninety percent prediction interval
for each ML model is shown as a grey-shaded region in the plot. WH values predicted by
ML models are shown as solid-blue circular markers, whereas reference WH values are
shown as red-hollow circular markers. Figure 7a–c indicates that random forest regression,
gradient boost regression, and AdaBoost regression models predict annual WH values close
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to the reference WH values. All reference WH values lie within the 90 percent prediction
interval bands of these three ML models. Figure 7d shows that Bayesian ridge regression
underpredicts annual WH values and several reference points lie outside the 90 percent
prediction interval. The performance of the Bayesian regression model was similar across
several stations for nitrogen, therefore this model was excluded from the ensemble. The
ensemble model predictions (Figure 7e) were found to better match the reference WH
values based on observations compared with individual model predictions (Figure 7a–c).
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Figure 7. Same as Figure 5. Time series comparison of watershed health (with respect to nitrite
+ nitrate) estimated from observations as in Mallya et al. [48] at USGS-NAWQA station 04193500
Maumee River at Waterville, OH, which was part of the test set versus ML model predictions using
(a) random forest regressor, (b) gradient boosting regressor, (c) AdaBoost regressor, (d) Bayesian
ridge regressor, and (e) ensemble RF regressor.

Since the Bayesian ridge regression model performed poorly in the case of nitrogen
(Figure 7d and Table 1) it was not included in the ensemble. The prediction accuracy of an
ensemble model is dependent on how well each individual model included in the ensemble
performs. Individual model performance statistics such as R2 or tests such as the Friedman
test and the Nemenyi post hoc test [58] may be used to select models that can be included
in the ensemble. Figure 8 shows the watershed health predictions (for nitrite + nitrate)
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at HUC-10 basins over the study region for the year 2014 using an ensemble model. The
circular makers represent USGS-NAWQA stations and they are color-coded to represent
reference watershed health values for the year 2014. The regions with poor watershed
health (darker color shades) were found to be those with dominant agricultural land use.
HUC-10 basins with predominantly forested areas had relatively high watershed health
with respect to nitrogen. Similar to the case for SSC, percentages of forest and agricultural
land use and longitude were important predictors of watershed health (for nitrite + nitrate)
predicted by the RF model (Table 1). Worth noting is the available water storage in the top
25 cm of soil as the second most important predictor. This may underscore the role of plant
growth and the uptake of nitrate and subsurface water in nitrogen cycling (nitrification of
ammonium nitrogen as a source for nitrite + nitrate and denitrification of nitrate as a sink).
As in the case for SSC, the drainage area was identified as an important predictor of WH
index, which is not unintuitive since the greater the percentage of the drainage area used
for agricultural, the greater the potential for sediment and nutrient supplies.
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Figure 8. Prediction of watershed health (with respect to nitrite + nitrate) at ungauged HUC-10
basins for the year 2014 using the ensemble model. Circular markers denote the location of USGS-
NAWQA stations where nitrite + nitrate measurements were available and are color-coded based on
the watershed health for the year 2014.

The variation of spatial extent with time of WH for nitrite + nitrate was also investi-
gated. About 65% of the study area had high watershed health (0.8–1.0), about 20% had
watershed health in the range of 0.8 to 0.6, and the remaining portion was in the range 0.4
to 0.6. The percentage areas in each group remained relatively unchanged over the study
period. Readers are referred to the Supplementary Information for a detailed discussion of
the results for nitrogen.

Watershed Health for Orthophosphate

Orthophosphate (parameter code: 00671) values were available at a total of 49 sta-
tions over the study region. Following Hoque et al. [8], observed samples were used to
reconstruct a continuous daily time series of orthophosphate loads. Using a standard of
0.1 mg/L [57] the annual series of risk measures and WH index were obtained at each sta-
tion. Table 1 provides a summary of R2 values of ML models and the top five explanatory
variables of the WH index with respect to orthophosphate.

Figure 9 shows a comparison of time series plots of reference WH (with respect to
orthophosphate) estimates based on observations and ML and Bayesian ridge regression
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models’ predictions of WH at USGS-NAWQA station 04193500, Maumee River at Water-
ville, OH, which was part of the test set. The grey-shaded regions in the plots denote
the ninety percent prediction interval for each ML model. WH values predicted by ML
models are shown as solid-blue circular markers, while reference WH values are shown
as red-hollow circular markers. Figure 9a,b indicate that random forest regression and
gradient boost regression models predict annual WH values close to the reference WH
values, whereas the AdaBoost regression model sightly overpredicts WH values (Figure 9c).
All reference WH values lie within the 90 percent prediction interval bands of these three
ML models. Figure 9d shows that Bayesian ridge regression underpredicts annual WH
values at this station and the predicted value is outside the range 0–1. Many reference
WH values based on observations lie outside the 90 percent prediction interval (Figure 9d).
The performance of the Bayesian regression model was similar across other stations for
orthophosphate, therefore this model was excluded when calculating ensemble model
predictions. Predictions of WH using the ensemble ML model were found to be close to ref-
erence WH values, indicating its robustness (Figure 9e). It was also observed that the width
of the 90% prediction intervals were wider in the case of ML models for nutrients compared
with SSC, mostly due to a smaller number of training samples in the case of nutrients.
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Figure 9. Same as Figure 5. Time series comparison of watershed health (with respect to orthophos-
phate) estimated from observations as in Mallya et al. [48] at USGS-NAWQA station 04193500
Maumee River at Waterville, OH, which was part of the test set versus ML model predictions using
(a) random forest regressor, (b) gradient boosting regressor, (c) AdaBoost regressor, (d) Bayesian
ridge regressor, and (e) ensemble RF regressor.
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Figure 10 shows the predictions of watershed health over the entire study region for
the year 2014. The actual observations (computed values) at individual stations are shown
using color-coded circular markers. HUC-10 basins associated with lower stream orders
have higher watershed health (with respect to orthophosphate). The regions of highest
watershed health in the Ohio River Basin have dominant forest land use. However, the
same is not true for the Upper Mississippi River Basin (UMRB); some basins within UMRB
that are in the densely forested region have low watershed health. Agriculturally dominant
regions were found to have moderate watershed health. The ambiguity in the results may
be due to fewer spatially representative sampling stations for orthophosphate, but further
investigation is needed to verify this hypothesis given that forest stewardship programs
are in place in UMRB.
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Figure 10. Prediction of watershed health (with respect to orthophosphate) at ungauged HUC-10
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watershed health for the year 2014.

As for SSC and nitrite + nitrate, forest land-use percentage and longitude were also
identified as important predictors of watershed health for orthophosphate for the RF model
(Table 1). Average fertilizer sales percentage and areas with hydrologic soil group B were
equally important predictors. The former is an indication of the amount of orthophosphate
that farmers may have applied over agricultural fields. The moderately well-drained
hydrologic soil group B may reflect the importance of shallow subsurface water in regu-
lating and transporting dissolved mineral phosphorous. Worth noting is that tile drains
are extensively used in agricultural areas in the upper Midwest. Tile drains may act as
bypass pathways, transporting dissolved and colloidal orthophosphate from moderately
and well-drained agricultural fields to nearby streams.

Finally, we investigated the variation of spatial extent with time of WH for orthophos-
phate. Areas with moderate watershed health (0.4–0.6) were dominant with about 60%
coverage. About 3% of the total study area had watershed health in the range of 0.2 to
0.4, 60% of the area was in the range of 0.4 to 0.6, 29% of the area was in the range 0.6 to
0.8, and 8% in the range 0.8 to 1.0. The percentage area in the above three groups (0.2–0.4,
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0.6–0.8, and 0.8 to 1.0) remained relatively unchanged over the study period. No portion
of the study area had poor watershed health (0.0–0.2). There were small variations for
the area under moderate watershed health (0.4–0.6), but there was no long-term trend.
Readers are referred to the Supplementary Information for a detailed discussion of the
results for orthophosphate.

The results indicate that the overall watershed health with respect to orthophosphate
is poorer compared to that with nitrogen. This may be because orthophosphate mirrors
the sedimentary cycle [59]; this study found that most HUC-10 basins in the study area
experience poor to moderate watershed health with respect to SSC (see Figure 6).

5. Summary and Conclusions

An ensemble model obtained from four machine learning (ML) models, namely
random forest, gradient boosting, AdaBoost, and Bayesian ridge regression, was used in
this study to predict recently proposed composite watershed health metric values [48]
at ungauged basins with respect to sediments and nutrients. The ML models and their
ensemble model were tested in three major river basins, namely the Upper Mississippi
River Basin, the Ohio River Basin, and the Maumee River Basin. The ML models require
data for watershed attributes, long-term climate, soil properties, land use and land cover,
and fertilizer sales to estimate the watershed health index at the ungauged HUC-10 basins.
During the training phase, the ML models were trained using data from 80% of the stations
in the study region, with a five-fold cross-validation approach. The performance of all ML
models was evaluated on an independent test data set that was not used during training
(i.e., the remaining 20% of the stations). An ensemble model was then used to combine the
results obtained from the individual ML models. To the best of the authors’ knowledge, this
is the first such study where machine learning models are used to estimate watershed health
using WH metrics [48]. Spatial maps of the watershed health metric values at the HUC-10
basin scale were developed to aid decision makers in identifying critical source areas or
hotspots with respect to different water quality constituents. Major conclusions were:

1. For suspended sediment concentration and nitrogen, high watershed health values
were often associated with lower order streams and regions with dominant forest land
use. Regions with dominant agricultural land use had poor watershed health. Among
the predictor variables, land use, geographic position, drainage area, available water
storage in soil, hydrologic soil group, fertilizer sales (for nitrogen and orthophosphate),
and annual precipitation were found to be significant for the three WQ constituents
considered in this study.

2. As a smaller number of stations with phosphorus data were available over the region,
the resulting ML models were not robust compared with models developed for
SSC and nitrogen. Counter to expectation, even forested watersheds in the UMRB
indicated poor WH values with this constituent. More orthophosphate data would be
needed at multiple watersheds to not only obtain robust results but to also address
the question of attribution to poor (or good) watershed health.

3. Sparse water quality data can be used to predict watershed health and identify
impairment source areas in ungauged watersheds.

Individual ML models perform well when there were enough data during the training
phase (e.g., SSC). However, when data were limited (e.g., nitrogen and orthophosphate),
individual model performance dropped and the development of an ensemble model helped
to boost the performance. In this study, the uncertainty in the results of the ML models is
presented in the form of prediction intervals. When analysing the 90% prediction intervals
at test stations, except for the Bayesian ridge regressor the remaining four ML models
performed well. The 90% prediction intervals were found to be wider in the case of ML
models for nutrients, which could be attributed to the smaller number of training samples.

The WH metric predictions obtained from the ML models are dependent on the quality
of input data. However, in this study we did not analyze the sensitivity of the results to
variations in input data values or in the event of missing data. Additionally, if the input
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data to the ML models are outside the training data range, the output from the ML model
would exhibit wider uncertainty.

In this study, the ensemble model performed better than the individual models. As
observed in this study, if we have different models designed to predict WH values over
an ungauged basin, then each model may produce different values for WH. Further, each
individual model will exhibit different performance depending on the type of dataset
(SSC, nitrogen, etc.) and the number of training samples available. While one option is
to recommend the use of the best performing model [58], the preferred approach in the
machine learning community is to use an ensemble approach [60,61]. Generally, to achieve
a good ensemble model, each individual model should be as accurate as possible and
models should be diverse in their modeling approaches. While there are many strategies to
create an ensemble model [62], in this study we have used the outputs from each individual
model (random forest, gradient boosting regressor, AdaBoost, etc.) as explanatory variables
in a separate random forest (ensemble) model to generate the final WH outputs. However,
because the Bayesian ridge regression model performed poorly for nitrogen and orthophos-
phate (based on R2 values shown in Table 1), it was not used in the ensemble model. Only
the outputs from three ML models (i.e., random forest, AdaBoost, and gradient boost) were
used as input to the ensemble model for nitrogen and orthophosphate.

The risk-based methodology, machine learning modeling framework, and insights
learned from the application to three major Midwest river basins can be applied to different
water quality parameters (e.g., pesticides, pathogens, etc.) and are transferable to similar
watersheds in the US and other parts of the world. Such a screening-level data-driven
approach can inform resource managers and environmental decision makers where to
focus their resources for targeted distributed watershed modeling and localized evaluation
of best management practices.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/w15030586/s1, Figure S1: NLCD 2011 land use map over the study
area. The original land use classes have been reclassified into four broad classes – agriculture, forest,
urban, and water. See Figure S2 for percentage distribution of these broad classes in each river basin.
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