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Abstract: The restoration of submerged macrophytes is commonly limited by abiotic stress. Here,
we isolated PGPR strains from the rhizosphere of submerged macrophytes using ACC deaminase
selective medium, and evaluated their growth promoting effects on Vallisneria natans (V. natans) under
low light intensity and (or) high sediment organic matter load, and also explored the indigenous
microbiome response of V. natans seedlings to PGPR inoculants. Ten isolates were chosen from
the 252 isolated strains based on the ACC deaminase activity and the production of IAA and
siderophore. M1 (Pseudomonas vancouverensis) and E15 (Enterobacter ludwigii) had the best growth
promoting effects under low light stress and under double stress of low light and high sediment
organic matter load, and the shoot height increased by 36% and 46%, respectively. The results of
indigenous microbiome analysis showed that PGPR inoculants could regulate the relative abundance
of unclassified_f_Enterobacteriaceae and improve the α-diversity of the rhizosphere bacterial community.
Under high sediment organic matter load, inoculation of PGPR obviously shifted the β-diversity of
rhizosphere bacterial communities to promote the early growth of V. natans. This study expands the
application of plant–microbe interaction in the field of freshwater ecological restoration.

Keywords: PGPR; submerged macrophytes; light intensity; sediment organic matter load; indigenous
microbiome

1. Introduction

The deterioration of aquatic ecosystems is a global issue [1]. The dominance and
community stability of submerged macrophytes have a significant impact on the health of
an aquatic ecosystem [2]. It usually takes decades for the restoration of submerged macro-
phytes in eutrophic water bodies to occur, even after the water quality has improved [3].
Consequently, the artificial restoration of submerged macrophytes is a crucial part of many
aquatic ecology restoration projects. However, low light intensity and high sediment or-
ganic matter load are prominent factors that restrict the germination and early growth of
submerged macrophytes. The light compensation point is the light intensity at which the
rate of photosynthesis is equal to the rate of respiration. The submerged macrophytes can
only accumulate dry matter and maintain continuous growth when the light intensity is
greater than the photosynthetic compensation point [4]. Most submerged macrophytes
disappeared due to the deterioration of the underwater light environment [5]. The high
sediment organic matter load may produce an anaerobic sediment environment and inhibit
the growth of submerged macrophytes [6,7]. In our previous study on the long-term mon-
itoring of the West Lake, Hangzhou, China, it was also found that the sediment organic
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matter load and the biomass of submerged macrophytes are significantly negatively corre-
lated [8]. Therefore, it is important to find a sustainable approach to enhance the growth
of submerged macrophytes under combined abiotic stress, such as limited light and high
sediment organic matter load.

Plant-growth-promoting rhizobacteria (PGPR) can promote plant growth and re-
duce the susceptibility of plants to disease. The growth-promoting effects of bacteria
such as Azotobacter, Bacillus and Pseudomonas have been widely reported [9–11]. Many
studies have demonstrated that PGPR, which has growth-promoting properties such as
1-aminocyclopropane-1-carboxylic acid (ACC) deaminase and indolyl-3-acetic acid (IAA)
production, can alleviate the inhibition of abiotic stress such as salt [12,13], drought [14],
heavy metal [15,16] and waterlogging [17] on plant growth. The direct mechanisms include
the ability to produce plant hormones [18], N2 fixation [19], phosphate solubilization [9], etc.
The indirect mechanisms (antagonism against phytopathogens) can be achieved through
siderophore production [9], synthesis of antibiotics, and competition for binding sites [20].
Additionally, previous studies have demonstrated that PGPR can promote plant growth
by modulating the structure of the rhizosphere’s indigenous microbiome [21]. The forms
of plant microbiome modulations include the colonization of microbial inoculants, tar-
geted changes toward plant-beneficial local microbiota members [22,23], and stabilizing or
increasing microbial diversity [24].

At present, it is unclear whether PGPR can enhance the growth and recovery of
submerged macrophytes in combined abiotic stress environments. Ravanbakhsh et al.
showed that ACC deaminase-producing bacteria inhibited the growth of the aquatic plant
Rumex palustris [25]. Our group has screened several bacterial strains from submerged plant
rhizospheres, and these strains effectively promoted the growth of V. natans seedlings under
high sediment organic matter load [26]. However, low light intensity, as a more common
stress factor, often coexists with high sediment organic matter load, which seriously restricts
the growth of submerged macrophytes, and increases the randomness and uncertainty
of their recovery [7]. Therefore, it is necessary to explore whether PGPR is helpful to the
recovery of submerged macrophytes under mixed abiotic stress and to understand the
modulations of PGPR inoculants on submerged macrophytes’ indigenous microbiome.

This work hypothesized that PGPR could alleviate the inhibition of mixed abiotic stress
on submerged macrophytes through indigenous microbiome modulations. The present
study aimed at (1) obtaining PGPR with multiple plant-growth-promoting (PGP) properties
from submerged macrophytes rhizospheres; (2) evaluating the growth promotion potential
of PGPR under different light intensities and sediment organic matter load using V. natans
as the test submerged macrophytes; and (3) exploring PGPR-promoting mechanisms from
the perspective of rhizosphere microbial community regulation. Our findings will establish
a theoretical foundation for the application of PGPR in freshwater ecological restoration.

2. Materials and Methods
2.1. Rhizosphere Samples Collection

Two regions of the West Lake in Hangzhou, China (Maojiabu and Xilihu), have sig-
nificantly different sediment organic matter loads and submerged macrophytes coverage
according to years of ecological survey [8,27]. These variations provided suitable sites
for collecting rhizosphere samples at various sediment organic matter loads. For PGPR
isolation, we obtained rhizosphere samples from submerged macrophytes including Hy-
drilla verticillata, Vallisneria natans, Potamogeton maackianus, Potamogeton wrightii, which are
located in different lake habitats with different light intensities and sediment organic matter
loads at West Lake. In addition, in order to expand the sampling area, we collected some
rhizosphere samples from Donghu in Wuhan and Shahu in Yinchuan, China. Tempera-
tures in the sampling areas were 19–37 ◦C (Hangzhou), 21–34 ◦C (Wuhan), and 11–36 ◦C
(Yinchuan) during the sampling period (June 2020). We also obtained V. natans rhizosphere
samples from a microecosystem in which the V. natans growth was obviously inhibited by
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the sediment with high organic matter. Details of the collected rhizosphere samples are
shown in Table S1.

The roots and closely attached sediment of submerged macrophytes were cut with
sterilized scissors, placed in sterile bags, stored at 4 ◦C, and sent to the laboratory for
rhizosphere bacteria separation as soon as possible. The rhizosphere samples of Chara
vulgaris were taken from the rhizoid, and the other procedures were the same. Three
replicates of rhizospheric samples were collected.

2.2. Isolation of Rhizosphere Bacteria That Produce ACC Deaminase

The collected rhizosphere samples (3–5 g) were transferred into sterile water. Shaking
(200 rpm, 28 ◦C, 30 min) led the bacteria to be released into the sterile water. Bacteria
capable of producing ACC deaminase were isolated according to the method described
by Penrose and Glick [28]. Following the serial dilution method, the enriched bacteria
liquid was spread on Dworkin and Foster (DF) minimal medium [29] amended with 3 mM
ACC in place of (NH4)2SO4, as the sole nitrogen source, and incubated at 28 ◦C for 24–72 h.
Following incubation, single bacterial colonies were selected based on the differences in
their shapes and colors, and they were then grown individually to generate new individual
cultures. After purification, single individual bacterial colonies were stored in glycerol
stock (20%) at −80 ◦C for subsequent use.

2.3. Determining the Selected Strain’s Plant-Growth-Promoting (PGP) Properties

ACC deaminase activity was quantified using the Penrose and Glick method [28] based
on the strain’s capacity to utilize ACC as a nitrogen source. The unit enzyme activity is the
amount that ACC deaminase catalyzes ACC to produce a-ketobutyric acid per minute. The
unit enzyme activity was divided by the total protein content to obtain the ACC deaminase
activity of the bacteria. The ACC deaminase activity was expressed as nmol α-ketobutyrate
mg−1 h−1. IAA production was measured based on Gordon and Weber [30]. Chrome
Azurol S agar plates were used to evaluate the siderophores’ production [31], and the
diameter of orange halos surrounding bacterial colonies was measured to indicate iron
chelation.

2.4. Identification of the Selected Strains and Construction of Phylogenetic Tree

For the selected strains with better comprehensive PGP properties, 16S rRNA gene
sequencing was carried out, and the sequence was determined using Tsingke Biotechnology
Co., Ltd. (Beijing, China). The details are provided in the supplementary materials. Using
the BLAST tools on the NCBI website (http://www.ncbi.nlm.nih.gov/BLAST (accessed on
30 January 2021)), the sequences were compared. The neighbor-joining algorithm in MEGA
11 was used to create the phylogenetic tree. The 16S rRNA gene sequences were uploaded
to NCBI GenBank database, and the accession number is listed in Table 1.

2.5. Effects of PGPR on V. natans Seed Germination and Early Growth under Different Abiotic
Stress Environments
2.5.1. Setting of Environmental Stress Conditions

Through preliminary experiments, the growth conditions of plants under different
gradients of light intensity and sediment organic matter load were compared. The light
gradient was 0.08%, 4%, 11%, 21%, 34%, 51% and 100% (5000 Lux); 1000 Lux and 5000 Lux
were set as low light conditions (LL) and suitable light conditions (SL). Sediments from
Maojiabu and Xilihu, two different regions of West Lake in Hangzhou, China, were chosen
as suitable (SO) and high sediment organic matter loads (HO). Chemical properties of
the two type sediments are shown in Table 2. For the activity of sediment organic matter,
according to the concentration of KMnO4 oxidant, sediment organic matter was divided
into four parts, including high active organic matter (can be oxidized by 33 mmol /L
KMnO4), middle active organic matter (can be oxidized by 167 mmol /L KMnO4), low
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active organic matter (can be oxidized by 333 mmol /L KMnO4), and inactive organic
matter (cannot be oxidized by 333 mmol /L KMnO4) [32].

Table 1. Phylogenetic affiliation and the traits of each chosen PGPR strain, including 1-
aminocyclopropane-1-carboxylate (ACC) deaminase activity (nmol ketobutyrate mg−1 protein h−1),
indole-3-acetic acid (IAA) production (µg mL−1 ± SD), and siderophore production (colony diameter
in mm).

Selected
Strains Family Name Strain Species

GenBank
Accession
Number

ACC
Deaminase
Activity

IAA
Production

Siderophore
Production P.S.

C2 Pseudomonadaceae Pseudomonas
plecoglossicida ON955842 5223 ± 651 2.22 ± 0.21 1.1 ± 0 ACC deaminase

activity group

C17 Enterobacteriaceae Citrobacter
farmeri ON936096 ND 41.30 ± 1.23 0.7 ± 0 Higher IAA

production group

D2 Achromobacteriaceae Achromobacter
insuavis ON936100 3608 ± 2050 2.75 ± 0.37 0.98 ± 0.10 ACC deaminase

activity group

E15 Enterobacteriaceae Enterobacter
ludwigii ON936101 ND 30.45 ± 0.56 0.88 ± 0.03 Higher IAA

production group

F19 Enterobacteriaceae Klebsiella
grimontii ON936099 ND 42.42 ± 1.09 0.85 ± 0.06 Higher IAA

production group

F25 Enterobacteriaceae Klebsiella
michiganensis ON936102 ND 42.72 ± 2.15 0.88 ± 0.05 Higher IAA

production group

H13 Enterobacteriaceae Klebsiella
oxytoca ON936097 ND 29.22 ± 0.84 1.10 ± 0.14 Higher IAA

production group

H22 Pseudomonadaceae Pseudomonas
migulae ON936103 6357 ± 1927 1.62 ± 0.25 1.9 ± 0.08 ACC deaminase

activity group

L4 Xanthomonadaceae Stenotrophomonas
pavanii ON936098 376 ± 20.32 1.98 ± 0.31 0.42 ± 0.05 ACC deaminase

activity group

M1 Pseudomonadaceae Pseudomonas
vancouverensis ON955843 6541 ± 326 3.16 ± 0.21 1.53 ± 0.10 ACC deaminase

activity group

The test of the PGP traits was performed in three replicates for all strains.

Table 2. Chemical properties of the sediment obtained from Maojiabu (sediments with low organic
matter levels) and Xilihu (sediments with high organic matter levels), the two different areas of West
Lake, Hangzhou, China. Organic matter (OM); Total nitrogen (TN); Nitrite nitrogen (TN); Ammonium
nitrogen (NH3-N); Total phosphorus (TP); Inorganic phosphorus (IP); Organic phosphorus (OP).

Sediment Chemical
Properties

Sediments with Low OM
Levels

Sediments With High OM
Levels

OM (mg g−1) 7.555 ± 0.219 26.390 ± 0.011
High active OM (mg g−1) 0.908 ± 0.071 3.464 ± 0.058
Middle active OM (mg g−1) 1.145 ± 0.167 5.925 ± 0.141
Low active OM (mg g−1) 0.921 ± 0.132 5.987 ± 0.109
Inactive OM (mg g−1) 4.581 ± 0.009 11.014 ± 0.012
TN (mg g−1) 0.660 ± 0.021 2.388 ± 0.065
NO2-N (mg kg−1) 0.003 ± 0.006 0.025 ± 0.020
NH3-N (mg g−1) 0.056 ± 0.002 0.067 ± 0.000
TP (mg g−1) 0.780 ± 0.016 1.173 ± 0.011
IP (mg g−1) 0.492 ± 0.133 0.554 ± 0.021
OP (mg g−1) 0.288 ± 0.016 0.619 ± 0.011

Each test was performed in three replicates for the two sediments.

In order to evaluate the effects of PGPR on the germination and early growth of V.
natans under different environmental stress conditions, four environmental conditions
were set in this experiment: (a) Suitable environment: suitable light intensity and suitable
sediment organic matter load (SL + SO); (b) Single high sediment organic matter load
stress: suitable light intensity and high sediment organic matter load (SL + HO); (c) Single
low light stress: low light intensity and suitable sediment organic matter load (LL + SO);
(d) Double stress: low light intensity and high sediment organic matter load (LL + HO).
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This experiment was carried out in a standard laboratory located in Wuhan, China. Plants
were grown at 25 ± 2 ◦C, 12 h light. The sediment was laid in plastic pot (10 cm bottom
diameter, 14 cm height, 11 cm top diameter) at a height of 3 cm; then, slowly, we added
9 cm ultrapure water to the upper part of sediment. The seeds of V. natans were sterilized
with 70% ethanol for 3 min, washed with sterile water three times, and dried in the shade.
A total of 0.02 g sterilized V. natans seeds were sown equally on the surface of sediment.

2.5.2. Bacterial Inoculation and Plant Treatments

The strains with better comprehensive PGP properties were screened from the isolated
and purified strains to test their capacity to promote V. natans seed germination and early
growth under different environmental conditions. A bacterial solution was prepared
according to Zhang et al. [33]. To the inoculated group, 5 mL (2 × 108 CFU/mL) of bacterial
suspension was added every 5 days for a total of eight additions, and to the control group
we added sterile water. Ultrapure water was added every 3 days to replenish evaporated
water. For each treatment, three pot replicates were set.

The experiment lasted for 41 days, which was adequate for the development of
treatment-related differences in growth. At the end, the number of seedlings and shoot
height were recorded. The roots and attached sediment were collected in sterile water
and shaken at 28 ◦C 200 rpm for 30 min. Then, the root tissues were taken out and the
suspension was centrifuged at 12,000× g 4 ◦C for 10 min. The precipitation was collected
and stored at −80 ◦C for rhizosphere indigenous microbiome analysis [34].

2.5.3. Rhizosphere Indigenous Microbiome Analysis

On the rhizosphere sediment samples of the controls and the treatments in which
the strains showed a significant growth-promoting effect in various environments, we
performed a bacterial 16S rRNA gene profiling using Illumina sequencing (Illumina, San
Diego, CA, USA) according to the standard protocols by Majorbio Bio-Pharm Technology
Co. Ltd. (Shanghai, China). The details are provided in the supplementary materials. The
raw rRNA gene sequence data were uploaded to the NCBI Sequence Read Archive (SRA)
database under accession number PRJNA867510.

2.6. Data Analysis

The alpha diversity (α-diversity) of microbial communities was estimated using the
Simpson diversity index [35], which was calculated as follows:

Simpson diversity index = 1 − ∑Sobs
i=1 ni(ni − 1)
N(N − 1)

where Sobs is the number of OTUs actually observed, ni is the number of sequences con-
tained in the ith OUT, and N is the number of all sequences. The beta diversity (β-diversity)
of microbial communities was analyzed with principal component analysis (PCA), and
adonis was used to analyze the differences between the two groups: the non-inoculated
control and the PGPR-inoculated group.

Statistical analysis of data was performed using R (version 4.1.3). Univariate ANOVA,
with LSD post hoc test, was performed to assess the significant differences in relative shoot
height between different experimental groups. Significant differences of bacterial relative
abundance and Simpson diversity index between the inoculated and the control groups
were analyzed via Student’s t test. Linear regression was used to analyze the correlation
between bacterial community characteristics and shoot height. Before all tests, data were
checked for normality and homogeneity. When the residuals did not meet normality or
homogeneity in linear regression, p values were obtained using the lmorigin function and
permutation tests [36,37]. Significance levels for all tests were set at p-value < 0.05.
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3. Results and Discussion
3.1. Screening of PGPR from Submerged Macrophytes’ Rhizosphere
3.1.1. PGPR Isolation and Their PGP Properties

Through the screening of ACC deaminase selective medium, 252 isolates with ACC
deaminase activity were obtained (Table S1). All strains were examined for ACC deaminase
activity, IAA and siderophore production. In plants, ACC is the immediate precursor of
ethylene. ACC exudated from plant roots under stress conditions may be transferred into
ACC deaminase-producing bacteria cells based on the concentration gradient or candidate
attractants such as chelators, exopolysaccharides, peptides/chaperones, or hormones [38].
Bacteria with ACC deaminase activity can convert ACC into 2-oxybutyrate and NH3,
which can inhibit the formation of excessive ethylene in a host under stress and increase
the host’s stress tolerance [39]. The amount of ACC deaminase activity required for a
bacterium to grow on ACC is approximately 20 nmol α-ketobutyrate mg−1 h−1 [28]. In
this study, all strains could successfully grow in the ACC deaminase selective medium;
however, their ACC deaminase activity varied greatly. There are only 11 isolates recorded
with ACC deaminase activity, ranging from 376 to 6540 nmol α-ketobutyrate mg−1 h−1

(Figure S1). Auxins are powerful molecules and control plant cells’ division, expansion,
and differentiation [40]. IAA is a common endogenous auxin in plants. Matsuda et al.
discovered that, in addition to plants, a significant number of microorganisms also contain
IAA synthesis-related genes [41]. Numerous studies have demonstrated the value of IAA-
producing PGPR in reducing the abiotic stress of plants [9,15,40]. In this study, the amounts
of produced IAA vary greatly among the bacterial strains. A total of 98 isolates could
produce IAA in the presence of Tryptophan, 33 isolates of which were observed to possess
higher IAA production, ranging from 29.22 to 43.01 µg mL−1 (Figure S2), while others
produced only 1–11 µg mL−1. There were no overlapping strains among strains with
ACC deaminase activity and higher IAA production. They were divided into the ACC
deaminase activity group and the higher IAA production group. This result was in line with
the findings of Hanaka et al. [42], who reported that IAA concentration and ACC deaminase
activity were conversely related. This phenomenon may be based on the activation of ACC
synthase through IAA, which may inhibit ACC deaminase activity [43,44]. As an important
element for plant growth, the majority of the iron in soil cannot be directly absorbed by
plants. The siderophores produced by bacteria can chelate with iron to make it more
available [45,46]. In this study, except L4, the strains in the group of ACC deaminase
activity group had a higher siderophore production (orange halo diameter of 0.98–1.9 cm),
while the higher IAA production group had a lower siderophore production (0.6–1.1 cm)
(Figure S2).

3.1.2. Strains’ Identification and Selection

The strains with better comprehensive PGP properties were identified via 16S rRNA
gene sequencing. Based on the results of 16S rRNA gene sequencing, the same species were
eliminated. Finally, ten strains were chosen to test their effects on seed germination and
the early growth of V. natans under different stress conditions. The ten isolates belonged to
Pseudomonas spp., Citrobacter spp., Achromobacter spp., Enterobacter spp., Klebsiella spp. and
Stenotrophomonas spp., and their PGP properties are shown in Table 1. Three Pseudomonas
strains displayed various PGP properties, including the production of ACC deaminase,
IAA, siderophore. Moon and Ali screened two Pseudomonas strains from the rhizosphere
of coastal sand dune plants, which showed comprehensive PGP properties, consistent
with the results of this study [47]. The ten strains’ adjacency phylogenetic tree is shown in
Figure 1. Most of these strains were derived from the V. natans’ rhizosphere in different
habitats, except for C2 and C17, which were from Chara vulgaris (Table S1).
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3.2. PGPR’s Effect on Seed Germination and Early Growth of V. natans

Low light intensity stress significantly inhibited the seed germination and early growth
of V. natans, and the double stress of low light intensity and high sediment organic matter
load made the inhibition more obvious (Figures S3 and S4). The shoot height of V. natans
seedlings without PGPR inoculation was 5.84 ± 0.47 cm, 6.31 ± 0.65 cm, 2.72 ± 0.33 cm
and 2.37 ± 0.29 cm under SL + SO, SL + HO, LL + SO and LL + HO, respectively, and
the seedlings’ number was 30 ± 1, 30 ± 1, 23 ± 1, 22 ± 1, respectively. Similar to our
study, under low light intensity and high sediment organic matter load stress conditions,
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the inhibition of submerged plants has been reported by Schelske et al. [5] and Chappuis
et al. [48]. Although, in our preliminary experiment, the total leaf length of the adult
V. natans in the high sediment organic matter load reduced by about a 1/3 at 40 days
when compared to the suitable conditions (C. Wang, unpublished), the growth of V. natans
seedlings did not show growth inhibition. PGPR inoculation showed different effects on
V. natans’ growth under four different stress conditions (Figure 2). Under single stress of
low light intensity (LL + SO), M1 (Pseudomonas vancouverensis) with higher ACC deaminase
activity showed the largest growth promotion effect (relative height = 1.36 ± 0.18). Under
double stress of low light intensity and high sediment organic matter load (LL + HO), E15
(Enterobacter ludwigii) with higher IAA production had the largest growth-promoting effect
(relative height = 1.46 ± 0.17) (Figure 2). The results clearly indicated that the two isolates
can be of great value in enhancing V. natans seedlings’ growth under the corresponding
stress condition. More importantly, the maximum growth-promoting efficiency of PGPR
inoculation under single low light stress and double stress conditions (LL + SO and LL +
HO) was comparable to that under suitable conditions (SL + SO) (p > 0.05) (Table S2). These
findings suggested that the two bacterial strains (E15 and M1) which belong to the genera
Enterobacter and Pseudomonas would be interesting candidates as commercial microbial
agents for the artificial restoration of submerged macrophytes. In agriculture, Enterobacter
spp. and Pseudomonas spp. have been applied as agronomic inoculants for crops such
as chickpea [20] and rice [49] in order to improve their quality or yield. Although PGPR
inoculation did not generally increase the germination rate of V. natans seeds, the maximum
number of seedlings could reach 41 ± 4 (Figure S4). These findings collectively showed
that the selected PGPR inoculation is a feasible method for promoting V. natans seedlings’
growth under low light intensity and (or) high sediment organic matter load. Therefore,
more PGPR strains from submerged macrophytes could be found in order to investigate
their potential to assist in the recovery of submerged macrophytes. These strains could be
anaerobes suitable for growing in rhizosphere under hypoxic or anaerobic conditions, as
well as antagonistic bacteria against the phytopathogen [50,51]. In addition, combining
different strains may be more effective in promoting the growth of plant [52], which should
be taken into account in future studies.
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Figure 2. Relative shoot height of V. natans in different PGPR inoculation treatments (a). Morphologi-
cal differences of V. natans with or without PGPR inoculation (b). CK: non-inoculation control; C2,
C17, D2, E15, F19, F25, H13, H22, L4 and M1 present the inoculation treatments with the correspond-
ing strains. Different letters indicate statistically significant differences (p < 0.05, Univariate ANOVA).
Ten replicates of each treatment were used for height measurement.
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3.3. Indigenous Microbiome Response of V. natans Seedlings to PGPR Inoculants
3.3.1. PGPR Inoculation Increased the Relative Abundance of
Unclassified_f_Enterobacteriaceae in Indigenous Microbiome

In order to achieve plant growth promotion by producing plant hormones or siderophores,
the PGPR needs to keep the number of active cells at a reasonable level [53]. The results
of bacterial 16S rRNA gene profiling showed that PGPR inoculation adjusted the relative
abundance of unclassified_f_Enterobacteriaceae in V. natans seedlings’ rhizosphere. In this
study, very few unclassified_f_Enterobacteriaceae were detected in the rhizosphere of non-
inoculated V. natans seedlings under the four stress conditions; however, after inoculated
with E15 (Enterobacter ludwigii), the relative abundance reached 1.013%, 1.684%, 51.730%
and 12.610% under SL + SO, SL + HO, LL + SO and LL + HO, respectively (Figures S5–S8).
The similarity of the corresponding OTU sequence and the 16S rRNA gene sequences
of E15 was 99.77%. In addition, under LL + SO and LL + HO, the relative abundance of
unclassified_f_Enterobacteriaceae in the rhizosphere of H13 (Klebsiella quasivariicola) inoculated
V. natans seedlings reached 4.228% and 1.036%, respectively (Figures S7 and S8). The simi-
larity of the corresponding OTU sequence and the 16S rRNA gene sequences of H13 was
98.14%. Therefore, strains E15 and H13 could colonize the rhizosphere of V. natans seedlings
and became the dominant taxa (relative abundance greater than 1%). The components
of root exudates and innate immune response may regulate the colonization process [54];
this requires further investigation. These species may promote the growth of V. natans
seedlings by producing IAA and siderophores. Under low light intensity stress, PGPR
may also promote the growth of V. natans seedlings by increasing chlorophyll content and
photosynthesis. Previous studies reported that PGPR capable of dissolving phosphorus,
and producing IAA and siderophores, can promote photosynthesis and increase the yield
of runner bean [55]. In addition, the siderophores generated by PGPR can increase the
activity of iron-containing enzymes such as catalase and peroxidase. The enhancement
of these enzymes’ activity can increase the content of chlorophyll, and then promote the
photosynthesis of plants [56]. Under high sediment organic matter load, the anaerobic
degradation of cellulose and lignin produce a variety of soluble organic substances. These
substances and other possible phytotoxins (metals, gases, and dissolved sulfides) in anaero-
bic sediment could form a hostile environment for plant growth [6]. The capacity of aquatic
plants to tolerate a hostile sediment environment may depend on oxygen transport from
shoots to roots, since oxygen, in addition to supporting root respiration, helps to detoxify.
Therefore, PGPR inoculation may promote photosynthesis, which is the important pathway
of oxygen production, and then alleviate the stress of high sediment organic matter load.

3.3.2. Rhizobacterial α-Diversity and Its Correlations with Shoot Height of
V. natans Seedlings

In the present study, compared with the non-inoculated control, separate inoculation
of the most selected strains increased the α-diversity of the rhizosphere bacterial com-
munity of the V. natans seedlings. Under SL + SO, the Simpson diversity index of the
rhizosphere microbial communities was 0.983–0.996 (Figure 3a). Except for C17- and H13-
inoculated seedlings, the Simpson diversity index of the other PGPR-inoculated seedlings
was higher than that of the non-inoculated control. Under SL + HO, the Simpson diversity
index was 0.994–0.998 (Figure 3b). Except for E15, the Simpson diversity index in PGPR
inoculation seedlings was higher than that of the control. Under LL + SO and LL + HO,
the Simpson diversity index was 0.831–0.995 and 0.988–0.998, respectively (Figure 3c,d).
In these two environments, when compared to control, the Simpson diversity index of
E15- and H13-inoculated seedlings was lower, but the Simpson diversity index of the other
PGPR-treated seedlings was higher. In addition, after excluding the inoculated groups
with a Simpson diversity index lower than that of the control, the rhizosphere bacterial
α-diversity and shoot height of V. natans seedlings showed a significant positive correlation
under SL + SO, LL + SO and LL + HO (Radj

2 = 0.396–0.527, p < 0.05) (Figure 3a–d), which
indicated that PGPR may help V. natans seedlings grow by increasing the rhizosphere
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bacterial α-diversity. Chen et al. [57] also showed that rhizosphere bacterial α-diversity
was significantly positively correlated with maize grain yield. Bacillus amyloliquefaciens
could compensate a pathogen attack on lettuce by regulating the indigenous microbial
α-diversity [24]. This pattern of action has been found in another study of Bacillus subtilis
inoculation to improve cucumber biocontrol capacity [58].

3.3.3. Structure of Rhizobacterial Communities, and Their Correlations with Shoot Height

The PGPR inoculation in the current study clearly altered the bacterial communities
structure of the V. natans seedlings’ rhizosphere in the four environmental conditions
(Figure 4). The diversion of community structure was more significantly under high
sediment organic matter load. The PCA plots showed that the rhizosphere bacterial com-
munities of the PGPR-inoculated group and the control group were divided in all the stress
conditions. At the same time, linear regression analysis of PC1 in PCA and shoot height of
V. natans seedlings showed a significant positive correlation both in SL + HO (Radj

2 = 0.659,
p < 0.05) and LL + HO (Radj

2 = 0.580, p < 0.05) (Figure 4b,d), indicating that under high
sediment organic matter load, the greater the difference in rhizosphere bacterial community
structure between PGPR inoculation groups and non-inoculated control, the greater the
growth promoting effect. Changes in microbial community structure may be caused by
specific functional species. The indigenous microbiome analysis revealed that some species’
relative abundance was down-regulated in all PGPR treatment groups under the same
stress condition (Table 3). The relative abundance of Aquicella spp. and Bacillus spp. was
significantly decreased (p < 0.05) after PGPR inoculation under SL + SO and SL + HO,
respectively (Figures S5 and S6). Under LL + SO, the relative abundance of Azotobacter
spp. and Methylocystis spp. was significantly down-regulated (p < 0.05) (Figure S7). Under
LL + HO, the relative abundance of Zavarzinia spp., Methyloversatilis spp. and Azotobacter
spp. was significantly decreased (p < 0.05) (Figure S8). Interestingly, although the down-
regulated species in the four environmental conditions were not identical, they were all
involved in the carbon and nitrogen (C/N) cycling in the rhizosphere of V. natans seedlings
(Table 3). This phenomenon may be caused by rhizosphere ecological niche competition,
where inoculated PGPR replaces indigenous microorganisms in the rhizosphere [21]. Tar-
geted shifts toward microbiota that are beneficial to plants may also be part of the regulation
of microbial community structure. Zhang et al.’s study indicated PGPR consortium could
greatly increase the abundance of Ramlibacter spp. and Comamonas spp. which commonly
have antifungal effects and relieve the disease symptoms of Phytophthora capsici infected
sweet pepper [33].
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Figure 3. Rhizobacterial Simpson diversity index and its correlations with shoot height of V. natans
under four stress conditions; (a) Suitable light intensity and suitable sediment organic matter load
(SL + SO); (b) Suitable light intensity and high sediment organic matter load (SL + HO); (c) Low
light intensity and suitable sediment organic matter load (LL + SO); (d) Low light intensity and high
sediment organic matter load (LL + HO). CK: non-inoculation control; C17, E15, F19, H13, L4 and
M1 present the inoculation treatments with the corresponding strains. Asterisk indicates significant
difference between CK and the inoculated group (* p < 0.05, ** p < 0.01, Student’s t-test). Three
replicates of each treatment were used for bacterial 16S rRNA gene profiling.
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Figure 4. Principal component analysis (PCA) of the structure of bacterial communities and the
correlations with shoot height of V. natans under four stress conditions; (a) Suitable light intensity
and suitable sediment organic matter load (SL + SO); (b) Suitable light intensity and high sediment
organic matter load (SL + HO); (c) Low light intensity and suitable sediment organic matter load (LL
+ SO); (d) Low light intensity and high sediment organic matter load (LL + HO). The gray circle is
marked as the control group without bacteria addition, and the PGPR-inoculated group is outside
the circle. Adonis was used to analyze the differences between the two groups: the non-inoculated
control and the PGPR-inoculated group. Three replicates of each treatment were used for bacterial
16S rRNA gene profiling.
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Table 3. Significantly down-regulated species after PGPR inoculation in the four environmental
conditions and their ecological functions.

Environmental Conditions Species Function

SL + SO Aquicella Nitrogen fixation (KEGG).

SL + HO Bacillus Heterotrophic nitrate denitrification [59];
Nitrogen fixation [40].

LL + SO
Azotobacter Nitrogen fixation [60].
Methylocystis Nitrogen fixation and aerobic methanooxidation bacteria [61].

LL + HO
Zavarzinia Benzene and baphthalene degradation and aerobic

carboxidotrophic [62].

Methyloversatilis Possess a wide range of metabolic capacities; denitrification and
nitrogen fixation [63].

Azotobacter Nitrogen fixation [60].

4. Conclusions

This study showed inoculation with the selected PGPR strains is a feasible method for
promoting V. natans seedlings’ growth under low light intensity and (or) high sediment or-
ganic matter load. On the one hand, these stains may promote the early growth of V. natans
by producing ACC deaminase, IAA and siderophore. On the other hand, the regulation of
a rhizosphere bacterial community structure by changing the relative abundance of inocu-
lated strain or bacteria related to C/N cycling, and increasing the α-diversity of bacterial
community, may be another mechanism through which PGPR promoted the growth of
V. natans seedlings. The strains (E15 and M1) could be interesting targets for the creation
of new industrial microbial agents for artificial restoration of submerged macrophytes.
This finding provides an effective and environmentally friendly strategy for restoring
submerged macrophytes under low light intensity and (or) high sediment organic matter
load. This study expands on the application of plant–microbe interaction in the field of
freshwater ecological restoration.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15030590/s1, Figure S1: A schematic drawing in one environ-
mental conditions; Figure S2: The growth-promoting properties of the isolated strains and correlation
analysis; (a) ACC deaminase activity; (b) IAA production (>29 µg mL−1); (c) Siderophore production;
Figure S3: Shoot height of V. natans in different PGPR inoculation treatments under four stress con-
ditions; (a) Suitable light intensity and suitable sediment organic matter load (SL+SO) and suitable
light intensity and high sediment organic matter load (SL + HO); (b) Low light intensity and suitable
sediment organic matter load (LL + SO) and low light intensity and high sediment organic matter
load (LL + HO). CK: non-inoculation control; C2, C17, D2, E15, F19, F25, H13, H22, L4 and M1 present
the inoculation treatments with the corresponding strains; Figure S4: Seedling numbers of V. natans
in different PGPR inoculation treatments under four environments. Explanations as in Figure S3;
Figures S5–S8: Relative abundance of the 15 top-ranked genera of bacteria with significant differences
between inoculated group and uninoculated control group in the rhizosphere of V. natans seedlings
under four environments. CK: uninoculated control; C17, E15, F19, H13, L4 and M1 present the
inoculated group with the corresponding strains. Asterisk indicates significant difference between
CK and the inoculated group (p < 0.05, Student’s t test); Table S1: Environmental characteristics of the
living position of submerged macrophytes and isolated PGPR strain numbers; Table S2: The highest
growth promoting effect and their significant differences under the four environments (p < 0.05,
Univariate ANOVA). The details of 16S rRNA gene sequencing; The details of 16S rRNA gene high
throughput sequencing technique. References [64–69] is cited in the supplementary materials.
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66. Magoč, T.; Salzberg, S.L. FLASH: Fast length adjustment of short reads to improve genome assemblies. Bioinformatics 2011, 27,
2957–2963. [CrossRef] [PubMed]

67. Stackebrandt, E.; Goebel, B.M. A place for DNA-DNA reassociation and 16S ribosomal-RNA sequence-analysis in the present
species definition in bacteriology. Int. J. Syst. Bacteriol. 1994, 44, 846–849. [CrossRef]

68. Edgar, R.C. UPARSE: Highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 2013, 10, 996–998. [CrossRef]
69. Wang, J.; Yu, D. Influence of sediment fertility on morphological variability of Vallisneria spiralis L. Aquat. Bot. 2007, 87, 127–133.

[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1038/s41579-019-0284-4
http://doi.org/10.1007/s12223-022-00959-4
http://doi.org/10.1007/s10750-015-2321-2
http://doi.org/10.1016/j.ecoenv.2018.03.001
http://doi.org/10.1111/1758-2229.13064
http://doi.org/10.1111/1758-2229.13058
http://www.ncbi.nlm.nih.gov/pubmed/35599340
http://doi.org/10.1080/17429145.2022.2091801
http://doi.org/10.4067/S0718-95162010000100006
http://doi.org/10.1111/1758-2229.12934
http://doi.org/10.1016/j.scienta.2012.12.006
http://doi.org/10.1016/j.apsoil.2010.02.003
http://doi.org/10.1111/1751-7915.13693
http://doi.org/10.1186/s40168-020-00892-z
http://doi.org/10.1016/j.biortech.2005.01.040
http://doi.org/10.1007/s00253-012-4159-0
http://doi.org/10.1128/AEM.00969-14
http://www.ncbi.nlm.nih.gov/pubmed/24928870
http://doi.org/10.3389/fmicb.2017.01845
http://www.ncbi.nlm.nih.gov/pubmed/29033909
http://doi.org/10.1099/ijs.0.000190
http://www.ncbi.nlm.nih.gov/pubmed/26231539
http://doi.org/10.1038/s41586-022-04769-z
http://www.ncbi.nlm.nih.gov/pubmed/35477154
http://doi.org/10.1093/bioinformatics/bty560
http://www.ncbi.nlm.nih.gov/pubmed/30423086
http://doi.org/10.1093/bioinformatics/btr507
http://www.ncbi.nlm.nih.gov/pubmed/21903629
http://doi.org/10.1099/00207713-44-4-846
http://doi.org/10.1038/nmeth.2604
http://doi.org/10.1016/j.aquabot.2007.04.002

	Introduction 
	Materials and Methods 
	Rhizosphere Samples Collection 
	Isolation of Rhizosphere Bacteria That Produce ACC Deaminase 
	Determining the Selected Strain’s Plant-Growth-Promoting (PGP) Properties 
	Identification of the Selected Strains and Construction of Phylogenetic Tree 
	Effects of PGPR on V. natans Seed Germination and Early Growth under Different Abiotic Stress Environments 
	Setting of Environmental Stress Conditions 
	Bacterial Inoculation and Plant Treatments 
	Rhizosphere Indigenous Microbiome Analysis 

	Data Analysis 

	Results and Discussion 
	Screening of PGPR from Submerged Macrophytes’ Rhizosphere 
	PGPR Isolation and Their PGP Properties 
	Strains’ Identification and Selection 

	PGPR’s Effect on Seed Germination and Early Growth of V. natans 
	Indigenous Microbiome Response of V. natans Seedlings to PGPR Inoculants 
	PGPR Inoculation Increased the Relative Abundance of Unclassified_f_Enterobacteriaceae in Indigenous Microbiome 
	Rhizobacterial -Diversity and Its Correlations with Shoot Height of V. natans Seedlings 
	Structure of Rhizobacterial Communities, and Their Correlations with Shoot Height 


	Conclusions 
	References

