Data Integration for Investigating Drivers of Water Quality Variability in the Banja Reservoir Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Dataset
2.2.1. Satellite-Derived Parameters
2.2.2. Hydrological Parameters
2.2.3. Meteorological Variables
2.2.4. Statistical and Spatial Analysis
3. Results
3.1. Temporal Series
3.2. Cross Correlation
3.3. Analysis of Turbidity Spatial Patterns during Specific Events
4. Discussion and Practical Application
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Robert, E.; Grippa, M.; Kergoat, L.; Pinet, S.; Gal, L.; Cochonneau, G.; Martinez, J.-M. Monitoring Water Turbidity and Surface Suspended Sediment Concentration of the Bagre Reservoir (Burkina Faso) Using MODIS and Field Reflectance Data. Int. J. Appl. Earth Obs. Geoinf. 2016, 52, 243–251. [Google Scholar] [CrossRef]
- Rossi, N.; DeCristofaro, L.; Steinschneider, S.; Brown, C.; Palmer, R. Potential Impacts of Changes in Climate on Turbidity in New York City’s Ashokan Reservoir. J. Water Resour. Plan. Manag. 2016, 142, 04015066. [Google Scholar] [CrossRef]
- Hsieh, Y.P.; Nemours, D.; Bugna, G. A Field-Scale Soil Erosion Study: An Example from a North Florida Farm. CATENA 2022, 218, 106551. [Google Scholar] [CrossRef]
- Delia, K.A.; Haney, C.R.; Dyer, J.L.; Paul, V.G. Spatial Analysis of a Chesapeake Bay Sub-Watershed: How Land Use and Precipitation Patterns Impact Water Quality in the James River. Water 2021, 13, 1592. [Google Scholar] [CrossRef]
- Zhao, Y.; Xia, X.H.; Yang, Z.F.; Wang, F. Assessment of Water Quality in Baiyangdian Lake Using Multivariate Statistical Techniques. Procedia Environ. Sci. 2012, 13, 1213–1226. [Google Scholar] [CrossRef]
- Dai, X.; Zhou, Y.; Ma, W.; Zhou, L. Influence of Spatial Variation in Land-Use Patterns and Topography on Water Quality of the Rivers Inflowing to Fuxian Lake, a Large Deep Lake in the Plateau of Southwestern China. Ecol. Eng. 2017, 99, 417–428. [Google Scholar] [CrossRef]
- Zhang, L.; Xin, Z.; Feng, L.; Hu, C.; Zhou, H.; Wang, Y.; Song, C.; Zhang, C. Turbidity Dynamics of Large Lakes and Reservoirs in Northeastern China in Response to Natural Factors and Human Activities. J. Clean. Prod. 2022, 368, 133148. [Google Scholar] [CrossRef]
- Li, X.; Zhang, Y.; Ji, X.; Strauss, P.; Zhang, Z. Effects of Shrub-Grass Cover on the Hillslope Overland Flow and Soil Erosion under Simulated Rainfall. Environ. Res. 2022, 214, 113774. [Google Scholar] [CrossRef]
- Moreno Madriñán, M.J.; Al-Hamdan, M.Z.; Rickman, D.L.; Ye, J. Relationship Between Watershed Land-Cover/Land-Use Change and Water Turbidity Status of Tampa Bay Major Tributaries, Florida, USA. Water, Air, Soil Pollut. 2012, 223, 2093–2109. [Google Scholar] [CrossRef]
- Hou, X.; Feng, L.; Duan, H.; Chen, X.; Sun, D.; Shi, K. Fifteen-Year Monitoring of the Turbidity Dynamics in Large Lakes and Reservoirs in the Middle and Lower Basin of the Yangtze River, China. Remote Sens. Environ. 2017, 190, 107–121. [Google Scholar] [CrossRef]
- Liu, J.; Yang, H.; Gosling, S.N.; Kummu, M.; Flörke, M.; Pfister, S.; Hanasaki, N.; Wada, Y.; Zhang, X.; Zheng, C.; et al. Water Scarcity Assessments in the Past, Present, and Future. Earth’s Futur. 2017, 5, 545–559. [Google Scholar] [CrossRef]
- Mekonnen, M.M.; Hoekstra, A.Y. Four Billion People Facing Severe Water Scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef]
- Elsayed, S.; Ibrahim, H.; Hussein, H.; Elsherbiny, O.; Elmetwalli, A.H.; Moghanm, F.S.; Ghoneim, A.M.; Danish, S.; Datta, R.; Gad, M. Assessment of Water Quality in Lake Qaroun Using Ground-Based Remote Sensing Data and Artificial Neural Networks. Water 2021, 13, 3094. [Google Scholar] [CrossRef]
- Gad, M.; Saleh, A.H.; Hussein, H.; Farouk, M.; Elsayed, S. Appraisal of Surface Water Quality of Nile River Using Water Quality Indices, Spectral Signature and Multivariate Modeling. Water 2022, 14, 1131. [Google Scholar] [CrossRef]
- Bresciani, M.; Stroppiana, D.; Odermatt, D.; Morabito, G.; Giardino, C. Assessing Remotely Sensed Chlorophyll-a for the Implementation of the Water Framework Directive in European Perialpine Lakes. Sci. Total Environ. 2011, 409, 3083–3091. [Google Scholar] [CrossRef]
- Dörnhöfer, K.; Oppelt, N. Remote Sensing for Lake Research and Monitoring—Recent Advances. Ecol. Indic. 2016, 64, 105–122. [Google Scholar] [CrossRef]
- Elsayed, S.; Gad, M.; Farouk, M.; Saleh, A.H.; Hussein, H.; Elmetwalli, A.H.; Elsherbiny, O.; Moghanm, F.S.; Moustapha, M.E.; Taher, M.A.; et al. Using Optimized Two and Three-Band Spectral Indices and Multivariate Models to Assess Some Water Quality Indicators of Qaroun Lake in Egypt. Sustainability 2021, 13, 10408. [Google Scholar] [CrossRef]
- Smith, M.E.; Bernard, S. Satellite Ocean Color Based Harmful Algal Bloom Indicators for Aquaculture Decision Support in the Southern Benguela. Front. Mar. Sci. 2020, 7, 61. [Google Scholar] [CrossRef]
- Vaičiūtė, D.; Bučas, M.; Bresciani, M.; Dabulevičienė, T.; Gintauskas, J.; Mėžinė, J.; Tiškus, E.; Umgiesser, G.; Morkūnas, J.; De Santi, F.; et al. Hot Moments and Hotspots of Cyanobacteria Hyperblooms in the Curonian Lagoon (SE Baltic Sea) Revealed via Remote Sensing-Based Retrospective Analysis. Sci. Total Environ. 2021, 769, 145053. [Google Scholar] [CrossRef]
- Free, G.; Bresciani, M.; Pinardi, M.; Peters, S.; Laanen, M.; Padula, R.; Cingolani, A.; Charavgis, F.; Giardino, C. Shorter Blooms Expected with Longer Warm Periods under Climate Change: An Example from a Shallow Meso-Eutrophic Mediterranean Lake. Hydrobiologia 2022, 849, 3963–3978. [Google Scholar] [CrossRef]
- Coffer, M.M.; Schaeffer, B.A.; Foreman, K.; Porteous, A.; Loftin, K.A.; Stumpf, R.P.; Werdell, P.J.; Urquhart, E.; Albert, R.J.; Darling, J.A. Assessing Cyanobacterial Frequency and Abundance at Surface Waters near Drinking Water Intakes across the United States. Water Res. 2021, 201, 117377. [Google Scholar] [CrossRef] [PubMed]
- Schenk, K.; Heege, T.; Haas, E.; Bartosova, A.; Launay, M.; Ribeiro, M.L.; Giardino, C.; Bresciani, M.; Matta, E.; Amadori, M.; et al. Web-Based Sediment Analysis Using Satellite, Modelling and in Situ Data and Its Application in European Hydropower Projects. In Proceedings of the HYDRO 2022—Roles of Hydro in the Global Recovery, International Conference and Exhibition, Strasbourg, France, 25–27 April 2022; Bartle, A., Ed.; Aqua-Media: London, UK, 2022. Session 18: Innovation in data acquisition. [Google Scholar]
- Villa, P.; Bresciani, M.; Bolpagni, R.; Braga, F.; Bellingeri, D.; Giardino, C. Impact of Upstream Landslide on Perialpine Lake Ecosystem: An Assessment Using Multi-Temporal Satellite Data. Sci. Total Environ. 2020, 720, 137627. [Google Scholar] [CrossRef] [PubMed]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://ec.europa.eu/environment/water/water-framework/index_en.html (accessed on 20 December 2022).
- Directive (EU) 2020/2184 of the European Parliament and of the Council of 16 December 2020 on the Quality of Water Intended for Human Consumption. Available online: https://ec.europa.eu/environment/water/water-drink/legislation_en.html (accessed on 20 December 2022).
- Adhikari, S. Evaluating Sediment Handling Strategies for Banja Reservoir Using the RESCON2 Model Santosh Adhikari. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2017. Available online: http://hdl.handle.net/11250/2465380 (accessed on 20 December 2022).
- Meço, M.; Mullaj, A.; Mesiti, A.; Mahmutaj, E. Identifying Natura 2000 Habitats in the Watershed of the Middle Section of the Devoll River (Southeast Albania). Stud. Bot. Hungarica 2018, 49, 73–81. [Google Scholar] [CrossRef]
- Almestad, C. Modelling of Water Allocation and Availability in Devoll River Basin, Albania. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2015; p. 107. Available online: http://hdl.handle.net/11250/2433589 (accessed on 20 December 2022).
- Gordon, H.R.; McCluney, W.R. Estimation of the Depth of Sunlight Penetration in the Sea for Remote Sensing. Appl. Opt. 1975, 14, 413. [Google Scholar] [CrossRef]
- Rouse, J.W.; Haas, R.H.; Schell, J.A.; Deering, D.A. Monitoring Vegetation Systems in the Great Plains with ERTS. In Third Earth Resources Technology Satellite–1 Syposium. Volume I: Technical Presentations, NASA SP-351; Freden, S.C., Mercanti, E.P., Becker, M., Eds.; NASA: Washington, DC, USA, 1974; pp. 309–317. [Google Scholar]
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E.; Gao, X.; Ferreira, L. Overview of the Radiometric and Biophysical Performance of the MODIS Vegetation Indices. Remote Sens. Environ. 2002, 83, 195–213. [Google Scholar] [CrossRef]
- Watson, D.J. Comparative Physiological Studies on the Growth of Field Crops: I. Variation in Net Assimilation Rate and Leaf Area between Species and Varieties, and within and between Years. Ann. Bot. 1947, 11, 41–76. [Google Scholar] [CrossRef]
- Gonsamo, A.; D’odorico, P.; Pellikka, P. Measuring Fractional Forest Canopy Element Cover and Openness—Definitions and Methodologies Revisited. Oikos 2013, 122, 1283–1291. [Google Scholar] [CrossRef]
- Muñoz Sabater, J. ERA5-Land Hourly Data from 1950 to Present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/10.24381/cds.e2161bac?tab=overview (accessed on 21 April 2022).
- Lindström, G.; Pers, C.; Rosberg, J.; Strömqvist, J.; Arheimer, B. Development and Testing of the HYPE (Hydrological Predictions for the Environment) Water Quality Model for Different Spatial Scales. Hydrol. Res. 2010, 41, 295–319. [Google Scholar] [CrossRef]
- Heege, T.; Kiselev, V.; Wettle, M.; Hung, N.N. Operational Multi-Sensor Monitoring of Turbidity for the Entire Mekong Delta. Int. J. Remote Sens. 2014, 35, 2910–2926. [Google Scholar] [CrossRef]
- Ranghetti, L.; Boschetti, M.; Nutini, F.; Busetto, L. “Sen2r”: An R Toolbox for Automatically Downloading and Preprocessing Sentinel-2 Satellite Data. Comput. Geosci. 2020, 139, 104473. [Google Scholar] [CrossRef]
- Arheimer, B.; Pimentel, R.; Isberg, K.; Crochemore, L.; Andersson, J.C.M.; Hasan, A.; Pineda, L. Global Catchment Modelling Using World-Wide HYPE (WWH), Open Data, and Stepwise Parameter Estimation. Hydrol. Earth Syst. Sci. 2020, 24, 535–559. [Google Scholar] [CrossRef]
- Bartosova, A.; Arheimer, B.; de Lavenne, A.; Capell, R.; Strömqvist, J. Large-Scale Hydrological and Sediment Modeling in Nested Domains under Current and Changing Climate. J. Hydrol. Eng. 2021, 26, 05021009. [Google Scholar] [CrossRef]
- Eftimi, R. Karst and Karst Water Recourses of Albania and Their Management. Carbonates and Evaporites 2020, 35, 69. [Google Scholar] [CrossRef]
- Berg, P.; Almén, F.; Bozhinova, D. HydroGFD3.0 (Hydrological Global Forcing Data): A 25 Km Global Precipitation and Temperature Data Set Updated in near-Real Time. Earth Syst. Sci. Data 2021, 13, 1531–1545. [Google Scholar] [CrossRef]
- Mu, Q.; Zhao, M.; Running, S.W. Improvements to a MODIS Global Terrestrial Evapotranspiration Algorithm. Remote Sens. Environ. 2011, 115, 1781–1800. [Google Scholar] [CrossRef]
- Son, S.; Wang , M. VIIRS-Derived Water Turbidity in the Great Lakes. Remote Sens. 2019, 11, 1448. [Google Scholar] [CrossRef]
- Stefanidis, K.; Varlas, G.; Papaioannou, G.; Papadopoulos, A.; Dimitriou, E. Assessing Temporal Variability of Lake Turbidity and Trophic State of European Lakes Using Open Data Repositories. Sci. Total Environ. 2023, 857, 159618. [Google Scholar] [CrossRef]
- Virdis, S.G.P.; Xue, W.; Winijkul, E.; Nitivattananon, V.; Punpukdee, P. Remote Sensing of Tropical Riverine Water Quality Using Sentinel-2 MSI and Field Observations. Ecol. Indic. 2022, 144, 109472. [Google Scholar] [CrossRef]
- Tao, W.; Wang, Q.; Guo, L.; Lin, H.; Chen, X.; Sun, Y.; Ning, S. An Enhanced Rainfall–Runoff Model with Coupled Canopy Interception. Hydrol. Process. 2020, 34, 1837–1853. [Google Scholar] [CrossRef]
- Lizaga, I.; Latorre, B.; Gaspar, L.; Ramos, M.C.; Navas, A. Remote Sensing for Monitoring the Impacts of Agroforestry Practices and Precipitation Changes in Particle Size Export Trends. Front. Earth Sci. 2022, 10, 05021009. [Google Scholar] [CrossRef]
- Mouris, K.; Schwindt, S.; Haun, S.; Morales Oreamuno, M.F.; Wieprecht, S. Introducing Seasonal Snow Memory into the RUSLE. J. Soils Sediments 2022, 22, 1609–1628. [Google Scholar] [CrossRef]
- Ramos, M.C.; Lizaga, I.; Gaspar, L.; Quijano, L.; Navas, A. Effects of Rainfall Intensity and Slope on Sediment, Nitrogen and Phosphorous Losses in Soils with Different Use and Soil Hydrological Properties. Agric. Water Manag. 2019, 226, 105789. [Google Scholar] [CrossRef]
- Scorpio, V.; Cavalli, M.; Steger, S.; Crema, S.; Marra, F.; Zaramella, M.; Borga, M.; Marchi, L.; Comiti, F. Storm Characteristics Dictate Sediment Dynamics and Geomorphic Changes in Mountain Channels: A Case Study in the Italian Alps. Geomorphology 2022, 403, 108173. [Google Scholar] [CrossRef]
- Kuriata-Potasznik, A.; Szymczyk, S.; Skwierawski, A. Influence of Cascading River–Lake Systems on the Dynamics of Nutrient Circulation in Catchment Areas. Water 2020, 12, 1144. [Google Scholar] [CrossRef]
- Nõges, T. Relationships between Morphometry, Geographic Location and Water Quality Parameters of European Lakes. Hydrobiologia 2009, 633, 33–43. [Google Scholar] [CrossRef]
- Anne-Sophie, S.; Nicolas, G.; Michel, E.; Christian, P. A Preliminary Hydrosedimentary View of a Highly Turbid, Tropical, Manmade Lake: Cointzio Reservoir (Michoacán, Mexico). Lakes Reserv. Sci. Policy Manag. Sustain. Use 2009, 14, 31–39. [Google Scholar] [CrossRef]
- Dhakal, P.R. Greenhouse Gas Emissions from Fresh Water Reservoirs. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2018. Available online: http://hdl.handle.net/11250/2558600 (accessed on 20 December 2022).
- Guerrero, M.; Stokseth, S. New Techniques for Estimating Sediment Load for the Catchment of Banja HPP Sigurd Sørås. Master’s Thesis, Norwegian University of Science and Technology, Trondheim, Norway, 2017. Available online: http://hdl.handle.net/11250/2452456 (accessed on 20 December 2022).
- Boudjerda, M.; Touaibia, B.; Mihoubi, M.K.; Basson, G.R.; Vonkeman, J.K. Application of Sediment Management Strategies to Improve Reservoir Operation: A Case Study Foum El-Gherza Dam in Algeria. Int. J. Environ. Sci. Technol. 2022, 19, 10957–10972. [Google Scholar] [CrossRef]
- Esmaeili, T.; Sumi, T.; Kantoush, S.; Kubota, Y.; Haun, S.; Rüther, N. Numerical Study of Discharge Adjustment Effects on Reservoir Morphodynamics and Flushing Efficiency: An Outlook for the Unazuki Reservoir, Japan. Water 2021, 13, 1624. [Google Scholar] [CrossRef]
Parameter | Acronym | Unit | Source of Data | Environmental Compartment | Spatial Resolution | Temporal Frequency |
---|---|---|---|---|---|---|
Chlorophyll-a concentration | Chl-a | µg/L | Sentinel-2 and Landsat 8/9 | Water inside the reservoir | 10 m/30 m | 5/10 days for S2 16 days for L8-L9 |
Turbidity | Turb | NTU | ||||
Secchi Disk Depth | SDD | m | ||||
Normalized Difference Vegetation Index | NDVI | - | Sentinel-2 | Land/Vegetation | 10 m | 5/10 days |
Enhanced Vegetation Index | EVI | - | ||||
Leaf Area Index | LAI | m2/m2 | ||||
Fractional Cover | FC | % | ||||
Snow cover | Snow | % | ||||
Total Precipitation | TP | mm | ERA5-Land | Atmosphere | 0.1° (11 Km) | hourly |
Air Temperature | Tair | °C | ||||
Snow Fall | SF | mm | ||||
River Discharge | RD | m3/s | HYPE hydrological model | Surface water inside the watershed | 27 sub-basins | daily |
Sediment Load | SL | kg/day | ||||
Runoff Sediment Concentration in local runoff | Ro | mm | ||||
SSCl | mg/L |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matta, E.; Bresciani, M.; Tellina, G.; Schenk, K.; Bauer, P.; Von Trentini, F.; Ruther, N.; Bartosova, A. Data Integration for Investigating Drivers of Water Quality Variability in the Banja Reservoir Watershed. Water 2023, 15, 607. https://doi.org/10.3390/w15030607
Matta E, Bresciani M, Tellina G, Schenk K, Bauer P, Von Trentini F, Ruther N, Bartosova A. Data Integration for Investigating Drivers of Water Quality Variability in the Banja Reservoir Watershed. Water. 2023; 15(3):607. https://doi.org/10.3390/w15030607
Chicago/Turabian StyleMatta, Erica, Mariano Bresciani, Giulio Tellina, Karin Schenk, Philipp Bauer, Fabian Von Trentini, Nils Ruther, and Alena Bartosova. 2023. "Data Integration for Investigating Drivers of Water Quality Variability in the Banja Reservoir Watershed" Water 15, no. 3: 607. https://doi.org/10.3390/w15030607
APA StyleMatta, E., Bresciani, M., Tellina, G., Schenk, K., Bauer, P., Von Trentini, F., Ruther, N., & Bartosova, A. (2023). Data Integration for Investigating Drivers of Water Quality Variability in the Banja Reservoir Watershed. Water, 15(3), 607. https://doi.org/10.3390/w15030607