Decision Strategy Tool for the Design of Natural Treatment Systems for Wastewater (NTSW) from Isolated Livestock Farms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Locations of the Study
2.2. Model
2.3. Waste Generation and Characterization
2.4. Decision Strategy Tools for the Design of NTSW
3. Results and Discussions
3.1. Types of Farms and Waste Characterization
3.2. Natural Wastewater Treatment System
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mendieta-Pino, C.A.; Ramos-Martin, A.; Perez-Baez, S.; Brito-Espino, S. Management of slurry in Gran Canaria Island with full-scale natural treatment systems for wastewater (NTSW). One year experience in livestock farms. J. Environ. Manag. 2019, 232, 666–678. [Google Scholar] [CrossRef]
- Mendieta-Pino, C.A.; Pérez-Báez, S.; Ramos-Martín, A.; León-Zerpa, F.; Brito-Espino, S. Natural treatment system for wastewater (NTSW) in a livestock farm, with five years of pilot plant management and monitoring. Chemosphere 2021, 285, 131529. [Google Scholar] [CrossRef]
- Penha, H.G.V.; Menezes, J.F.S.; Silva, C.A.; Lopes, G.; Carvalho, C.D.A.; Ramos, S.J.; Guilherme, L.R.G. Nutrient accumulation and availability and crop yields following long-term application of pig slurry in a Brazilian Cerrado soil. Nutr. Cycl. Agroecosyst. 2015, 101, 259–269. [Google Scholar] [CrossRef]
- Villar, M.C.; Petrikova, V.; Dı, M.; Carballas, T. Recycling of organic wastes in burnt soils: Combined application of poultry manure and plant cultivation. Waste Manag. 2004, 24, 365–370. [Google Scholar] [CrossRef]
- Real Decreto 306/2020, de 11 de Febrero, por el que se Establecen Normas Básicas de Ordenación de las Granjas Porcinas Intensivas, y se Modifica la Normativa Básica de Ordenación de las Explotaciones de Ganado Porcino Extensivo. Boletín Oficial del Estado, n. 38 de 11 de Febrero de 2020. Available online: https://www.boe.es/buscar/act.php?id=BOE-A-2020-2110 (accessed on 15 May 2021).
- Riaño, B.; García-González, M.C. On-farm treatment of swine manure based on solid-liquid separation and biological nitrification-denitrification of the liquid fraction. J. Environ. Manag. 2014, 132, 87–93. [Google Scholar] [CrossRef]
- Antezana, W.; De Blas, C.; García-Rebollar, P.; Rodríguez, C.; Beccaccia, A.; Ferrer, P.; Cerisuelo, A.; Moset, V.; Estellés, F.; Cambra-López, M.; et al. Composition, potential emissions and agricultural value of pig slurry from Spanish commercial farms. Nutr. Cycl. Agroecosyst. 2016, 104, 159–173. [Google Scholar] [CrossRef]
- Sánchez, M.; González, J.L. The fertilizer value of pig slurry. I. Values depending on the type of operation. Bioresour. Technol. 2005, 96, 1117–1123. [Google Scholar] [CrossRef]
- Dionisi, C.P.; Mignone, R.A.; Rubenacker, A.I.; Pfaffen, V.; Bachmeier, O.; Campitelli, P.A.; Yudi, L.M.; Juarez, A.V. Monitoring of physicochemical parameters of soils after applying pig slurry. Analysis of its application in short and long periods in the province of Córdoba, Argentina. Microchem. J. 2020, 159, 105545. [Google Scholar] [CrossRef]
- Thygesen, O.; Triolo, J.; Sommer, S.G. Indicators of physical properties and plant nutrient content of animal slurry and separated slurry. Biol. Eng. Trans. 2012, 5, 123–135. [Google Scholar] [CrossRef]
- Cavanagh, A.; Gasser, M.; Labrecque, M. Pig slurry as fertilizer on willow plantation. Biomass Bioenergy 2011, 35, 4165–4173. [Google Scholar] [CrossRef]
- Hou, Y.; Velthof, G.; Lesschen, J.; Staritsky, I.; Oenema, O. Nutrient recovery and emissions of ammonia, nitrous oxide, and methane from animal manure in Europe: Effects of manure treatment technologies. Environ. Sci. Technol. 2017, 51, 375–383. [Google Scholar] [CrossRef]
- Oenema, O.; Oudendag, D.; Velthof, G.L. Nutrient losses from manure management in the European Union. Livest. Sci. 2007, 112, 261–272. [Google Scholar] [CrossRef]
- Petersen, S.O.; Sommer, S.G.; Béline, F.; Burton, C.; Dach, J.; Dourmad, J.Y.; Leip, A.; Misselbrook, T.; Nicholson, F.; Poulsen, H.D.; et al. Recycling of livestock manure in a whole-farm perspective. Livest. Sci. 2007, 112, 180–191. [Google Scholar] [CrossRef]
- Ramankutty, N.; Mehrabi, Z.; Waha, K.; Jarvis, L.; Kremen, C.; Herrero, M.; Rieseberg, L.H. Trends in global agricultural land use: Implications for environmental health and food security. Annu. Rev. Plant Biol. 2018, 69, 789–815. [Google Scholar] [CrossRef]
- Li, G.; Huang, G.; Li, H.; van Ittersum, M.; Leffelaar, P.; Zhang, F. Identifying potential strategies in the key sectors of China’s food chain to implement sustainable phosphorus management: A review. Nutr. Cycl. Agroecosyst. 2016, 104, 341–359. [Google Scholar] [CrossRef]
- Zimmerman, R. La Higine de las Naves es la Clave Para Reducir el Amoníaco. 3tres3. 2000. Available online: https://www.3tres3.com/articulos/la-higiene-de-las-naves-es-la-clave-para-reducir-el-amoniaco_337/ (accessed on 12 February 2021).
- Muirhead, M.R.; Alexander, T.J.L. Managing Pig Health: A Reference for the Farm, 2nd ed.; 5M Book Ltd: Chicago, IL, USA, 2013; ISBN 9780955501159. [Google Scholar]
- Lopez-Ridaura, S.; van der Werf, H.; Paillat, J.; le Bris, B. Environmental evaluation of transfer and treatment of excess pig slurry by life cycle assessment. J. Environ. Manag. 2009, 90, 1296–1304. [Google Scholar] [CrossRef]
- Flotats, X.; Bonmatí, A.; Fernández, B.; Magrí, A. Manure treatment technologies: On-farm versus centralized strategies. NE Spain as case study. Bioresour. Technol. 2009, 100, 5519–5526. [Google Scholar] [CrossRef]
- Font, X.; Adroer, N.; Poch, M.; Vicent, T. Evaluation of an integrated system for pig slurry treatment. J. Chem. Technol. Biotechnol. 1997, 68, 75–81. [Google Scholar] [CrossRef]
- Hjorth, M.; Christensen, K.V.; Christensen, M.; Sommer, S.G. Solid—Liquid separation of animal slurry in theory and practice. A review. Agron. Sustain. Dev. 2010, 30, 153–180. [Google Scholar] [CrossRef]
- Alvarez, J. Characterization of Pig Slurry and Their Treatment Efficiency in Central Spain. In Proceedings of the 12th Ramiran International Conference, Aarhus, Denmark, 11–13 September 2006. [Google Scholar]
- León-Cófreces, C.; García-Gonzalez, M.; Acítores, M.; Pérez-Sangrador, M.P. Development of a Pig Slurry Treatment System with SBR and MBR Technology. In Proceedings of the 12th Ramiran International Conference, Aarhus, Denmark, 11–13 September 2006. [Google Scholar]
- Deng, L.; Cai, C.; Chen, Z. The treatment of pig slurry by a full-scale anaerobic-adding raw wastewater-intermittent aeration process. Biosyst. Eng. 2007, 98, 327–334. [Google Scholar] [CrossRef]
- Ferreira, L.M. Pilot Scale Experience of Anaerobic Co-Digestion of Pig Slurry with Fruit Wastes on Site Operation in a Pig Farm with a Mobile Plant. In Proceedings of the 13th Ramiran International Conference-Potential for Simple Technology Solutions in Organic Manure Management, Albena, Bulgaria, 11–14 June 2008. [Google Scholar]
- Hou, Y.; Velthof, G.L.; Case, S.D.C.; Oelofse, M.; Grignani, C.; Balsari, P.; Zavattaro, L.; Gioelli, F.; Bernal, M.P.; Fangueiro, D.; et al. Stakeholder perceptions of manure treatment technologies in Denmark, Italy, the Netherlands and Spain. J. Clean. Prod. 2018, 172, 1620–1630. [Google Scholar] [CrossRef]
- Mendieta-Pino, C.A.; Garcia-Ramirez, T.; Ramos-Martin, A.; Perez-Baez, S.O. Experience of application of natural treatment systems for wastewater (NTSW) in livestock farms in canary islands. Water 2022, 14, 2279. [Google Scholar] [CrossRef]
- Belmont, M.A.; Cantellano, E.; Thompson, S.; Williamson, M.; Sánchez, A.; Metcalfe, C.D. Treatment of domestic wastewater in a pilot-scale natural treatment system in central Mexico. Ecol. Eng. 2004, 23, 299–311. [Google Scholar] [CrossRef]
- Vera, L.; Martel, G.; Márquez, M. Two years monitoring of the natural system for wastewater reclamation in Santa Lucía, Gran Canaria Island. Ecol. Eng. 2013, 50, 21–30. [Google Scholar] [CrossRef]
- ISTAC. ISTAC Instituto Canario de Estadística. Available online: www.gobiernodecanarias.org/istac (accessed on 15 May 2021).
- IDE Canarias Visor 4.5.1. Available online: https://visor.grafcan.es/visorweb/ (accessed on 16 May 2021).
- Suresh, A.; Choi, H.; Oh, D.; Moon, O.K. Prediction of the nutrients value and biochemical characteristics of swine slurry by measurement of EC—Electrical conductivity. Bioresour. Technol. 2009, 100, 4683–4689. [Google Scholar] [CrossRef]
- Moral, R.; Perez-Murcia, M.; Perez-Espinosa, A.; Moreno-Caselles, J.; Paredes, C.; Rufete, B. Salinity, organic content, micronutrients and heavy metals in pig slurries from South-eastern Spain. Waste Manag. 2008, 28, 367–371. [Google Scholar] [CrossRef]
- Moral, R.; Moreno-Caselles, J.; Perez-Murcia, M.; Perez-Espinosa, A.; Rufete, B.; Paredes, C. Characterisation of the organic matter pool in manures. Bioresour. Technol. 2005, 96, 153–159. [Google Scholar] [CrossRef]
- Hall, J.E. Nutrient recycling: The European experience—Review. Asian-Australas. J. Anim. Sci. 1999, 12, 667–674. [Google Scholar] [CrossRef]
- Suresh, A.; Choi, H.L. Estimation of nutrients and organic matter in Korean swine slurry using multiple regression analysis of physical and chemical properties. Bioresour. Technol. 2011, 102, 8848–8859. [Google Scholar] [CrossRef]
Farm | X | Y | Z | Available Area (m2) | No. Sows | Total no Animals |
---|---|---|---|---|---|---|
1 | 458.08 | 3091.56 | 249.26 | 18,935 | 217 | 1034 |
2 | 455.82 | 3084.34 | 119.28 | 58,642 | 134 | 897 |
3 | 446.11 | 3102.56 | 705.20 | 4516 | 87 | 800 |
4 | 456.59 | 3086.37 | 248.09 | 1180 | 81 | 333 |
5 | 446.85 | 3110.52 | 330.13 | 6885 | 50 | 134 |
6 | 440.65 | 3096.39 | 1216.72 | 10,089 | 43 | 344 |
7 | 457.82 | 3085.47 | 97.72 | 82,065 | 35 | 589 |
8 | 434.67 | 3081.32 | 202.11 | 5931 | 30 | 253 |
9 | 445.53 | 3097.59 | 1026.85 | 35,541 | 15 | 58 |
Solid-Liquid Separator (%) | Biodigester (%/Day) | Pond + Constructed Wetlands (%/Day) | |
---|---|---|---|
COD % removal | 45 | 2.3 | 1.34 |
EC % reduction | 7.5 | 0.2 | 1.51 |
Farm | Q (m3/Day) | COD (mg/L) | OM (mg/L) | EC (dS/m) |
---|---|---|---|---|
1 | 7.52 | 24,078.48 | 6699.93 | 22.59 |
2 | 5.15 | 16,186.60 | 4545.45 | 23.55 |
3 | 4.62 | 14,705.19 | 4141.02 | 22.86 |
4 | 1.76 | 9056.79 | 2599.01 | 17.72 |
5 | 1.00 | 8346.36 | 2405.06 | 16.79 |
6 | 1.67 | 8953.96 | 2570.94 | 17.59 |
7 | 2.60 | 10,262.17 | 2928.08 | 19.15 |
8 | 0.81 | 8228.20 | 2372.80 | 16.63 |
9 | 0.39 | 8049.96 | 2324.14 | 16.38 |
Effluent | Solid-Liquid Separation | Biodigester | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Farm | Q (m3/Day) | COD (mg/L) | EC (dS/m) | % Removal COD (%) | % Reduction EC (%) | COD (mg/L) | EC (dS/m) | % Removal COD (%/Day) | % Reduction EC (%/Day) | HRTdig (Day) | Vchamber (m3) | V (m3) | Chambers (Units) | COD (mg/L) | EC (dS/m) |
1 | 7.520 | 24,078.48 | 22.59 | 45 | 7.45 | 13,243.16 | 20.91 | 2.3 | 0.2 | 39 | 22 | 293.2 | 13 | 1364.05 | 19.28 |
2 | 5.154 | 16,186.60 | 23.55 | 45 | 7.45 | 8902.63 | 21.80 | 2.3 | 0.2 | 36 | 22 | 185.5 | 8 | 1531.25 | 20.23 |
3 | 4.624 | 14,705.19 | 22.86 | 45 | 7.45 | 8087.85 | 21.16 | 2.3 | 0.2 | 33 | 22 | 152.5 | 7 | 1949.17 | 19.76 |
4 | 1.759 | 9056.79 | 17.72 | 45 | 7.45 | 4981.23 | 16.40 | 2.3 | 0.2 | 30 | 22 | 52.7 | 2 | 1544.18 | 15.42 |
5 | 1.000 | 8346.36 | 16.79 | 45 | 7.45 | 4590.50 | 15.54 | 2.3 | 0.2 | 26 | 22 | 26.0 | 1 | 1845.38 | 14.73 |
6 | 1.670 | 8953.96 | 17.59 | 45 | 7.45 | 4924.68 | 16.28 | 2.3 | 0.2 | 26 | 22 | 43.4 | 2 | 1979.72 | 15.43 |
7 | 2.604 | 10,262.17 | 19.15 | 45 | 7.45 | 5644.19 | 17.72 | 2.3 | 0.2 | 29 | 22 | 75.5 | 3 | 1879.52 | 16.69 |
8 | 0.812 | 8228.20 | 16.63 | 45 | 7.45 | 4525.51 | 15.39 | 2.3 | 0.2 | 28 | 10 | 22.7 | 2 | 1611.08 | 14.53 |
9 | 0.389 | 8049.96 | 16.38 | 45 | 7.45 | 4427.48 | 15.16 | 2.3 | 0.2 | 23 | 5 | 8.9 | 2 | 2085.34 | 14.46 |
Pond + Constructed Wetlands | NTSW | |||||||||
---|---|---|---|---|---|---|---|---|---|---|
Farm | HRT (Day) | % Removal COD (%/Day) | COD (mg/L) | % Reduction EC (%/Day) | EC (dS/m) | V (m3) | Surface (m2) | V (m3) | Surface (m2) | HRT (Day) |
1 | - | - | - | - | - | - | - | 293.2 | 97.7 | 39 |
2 | - | - | - | - | - | - | - | 185.5 | 61.8 | 36 |
3 | 15 | 1.34 | 1557.39 | 1.51 | 15.29 | 69.37 | 46.24 | 221.9 | 97.1 | 48 |
4 | - | - | - | - | - | - | - | 52.7 | 17.6 | 30 |
5 | 15 | 1.34 | 1474.46 | 1.51 | 11.40 | 15 | 10 | 41.0 | 18.7 | 41 |
6 | 15 | 1.34 | 1581.80 | 1.51 | 11.94 | 25.04 | 16.7 | 68.4 | 31.2 | 41 |
7 | - | - | - | - | - | - | - | 75.5 | 25.2 | 29 |
8 | - | - | - | - | - | - | - | 22.7 | 7.6 | 28 |
9 | 15 | 1.34 | 1566.19 | 1.51 | 11.19 | 5.84 | 3.89 | 14.7 | 6.8 | 23 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garcia-Ramirez, T.; Mendieta-Pino, C.A.; León-Zerpa, F.; Ramos-Martin, A.; Brito-Espino, S.; Martel-Rodríguez, G.M. Decision Strategy Tool for the Design of Natural Treatment Systems for Wastewater (NTSW) from Isolated Livestock Farms. Water 2023, 15, 628. https://doi.org/10.3390/w15040628
Garcia-Ramirez T, Mendieta-Pino CA, León-Zerpa F, Ramos-Martin A, Brito-Espino S, Martel-Rodríguez GM. Decision Strategy Tool for the Design of Natural Treatment Systems for Wastewater (NTSW) from Isolated Livestock Farms. Water. 2023; 15(4):628. https://doi.org/10.3390/w15040628
Chicago/Turabian StyleGarcia-Ramirez, Tania, Carlos A. Mendieta-Pino, Federico León-Zerpa, Alejandro Ramos-Martin, Saulo Brito-Espino, and Gilberto M. Martel-Rodríguez. 2023. "Decision Strategy Tool for the Design of Natural Treatment Systems for Wastewater (NTSW) from Isolated Livestock Farms" Water 15, no. 4: 628. https://doi.org/10.3390/w15040628
APA StyleGarcia-Ramirez, T., Mendieta-Pino, C. A., León-Zerpa, F., Ramos-Martin, A., Brito-Espino, S., & Martel-Rodríguez, G. M. (2023). Decision Strategy Tool for the Design of Natural Treatment Systems for Wastewater (NTSW) from Isolated Livestock Farms. Water, 15(4), 628. https://doi.org/10.3390/w15040628