Resource Constraints and Economic Growth: Empirical Analysis Based on Marine Field
Abstract
:1. Introduction
2. Literature Review
3. Model, Data, and Variables
- (1)
- Standardization processing. In order to eliminate the influence of data outline quantity, the raw data of each indicator in the evaluation index system are standardized. The data in the evaluation index system are the panel data containing m provinces, n indicators, and T years. The standardization formulas of positive and negative indicators are shown in Equation (3).
- (2)
- The indicators are normalized.
- (3)
- Calculate the information entropy of the jth indicator.
- (4)
- Calculate the coefficient of variation for each indicator.
- (5)
- The weights of each indicator were calculated, and the index Hti of the amount of resource input in the three types of industries in 11 coastal provinces and cities in China during 2006–2019 was calculated based on the weights.
4. Results and Discussion
4.1. Regression Analysis of the Fixed Effects Model of MR and MGOP
4.2. Threshold Effect Test for MR and MGOP
4.3. Threshold Regression Analysis of MR and MGOP
5. Conclusions and Policy Recommendations
Author Contributions
Funding
Conflicts of Interest
References
- Johnson, J.E.; Allain, V.; Basel, B.; Bell, J.D.; Chin, A.; Dutra, L.X.C.; Hooper, E.; Loubser, D.; Lough, J.; Moore, B.R.; et al. Impacts of Climate Change on Marine Resources in the Pacific Island Region. In Climate Change and Impacts in the Pacific; Springer: Cham, Switzerland, 2020; pp. 359–402. [Google Scholar] [CrossRef]
- Poonam, C.; Monika, K.; Sandip, S.; Amar, M.; Krishna, G.; Sundaram, C.; Santanu, D. Empowering blue economy: From underrated ecosystem to sustainable industry. J. Environ. Manag. 2021, 291, 112697. [Google Scholar]
- Naseer, S.; Song, H.; Aslam, M.S.; Abdul, D.; Tanveer, A. Assessment of green economic efficiency in China using analytical hierarchical process (AHP). Soft Comput. 2021, 26, 2489–2499. [Google Scholar] [CrossRef] [PubMed]
- Amin, A.; Wang, Z.; Shah, A.H.; Chandio, A.A. Exploring the dynamic nexus between renewable energy, poverty alleviation, and environmental pollution: Fresh evidence from E-9 countries. Environ. Sci. Pollut. Res. 2022, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Hall, S.J.; Hilborn, R.; Andrew, N.L.; Allison, E.H. Innovations in capture fisheries are an imperative for nutrition security in the developing world. Proc. Natl. Acad. Sci. USA 2013, 110, 8393–8398. [Google Scholar] [CrossRef] [PubMed]
- Arkema, K.K.; Verutes, G.M.; Wood, S.A.; Clarke-Samuels, C.; Rosado, S.; Canto, M.; Rosenthal, A.; Ruckelshaus, M.; Guannel, G.; Toft, J.; et al. Embedding ecosystem services in coastal planning leads to better outcomes for people and nature. Proc. Natl. Acad. Sci. USA 2015, 112, 7390–7395. [Google Scholar] [CrossRef]
- Jin, D.; Hoagland, P.; Dalton, T.M. Linking economic and ecological models for a marine ecosystem. Ecol. Econ. 2003, 46, 367–385. [Google Scholar] [CrossRef]
- Kiran, N.; Mu, Y.; Khadim, H.; Ali, K.; Selly, K.; Mohammad, M. A study on the assessment of fisheries resources in Pakistan and its potential to support marine economy. Indian J. Geo Mar. Sci. 2016, 45, 1181–1187. [Google Scholar]
- Odeku, K.S. An Analysis of ‘Operation Phakisa’ to Unlock the Potential of Ocean Resources in South Africa. J. Asian Afr. Stud. 2020, 56, 382–394. [Google Scholar] [CrossRef]
- Christopher, W.; Chung, H. A study on Qingdao’s marine economy: Focused on the industrial competitiveness. J. Glob. Area Stud. 2020, 4, 119–140. [Google Scholar]
- Bax, N.; Novaglio, C.; Maxwell, K.H.; Meyers, K.; McCann, J.; Jennings, S.; Frusher, S.; Fulton, E.A.; Nursey-Bray, M.; Fischer, M.; et al. Ocean resource use: Building the coastal blue economy. Rev. Fish Biol. Fish. 2021, 32, 189–207. [Google Scholar] [CrossRef]
- Sumaila, U.R.; Walsh, M.; Hoareau, K.; Cox, A.; Teh, L.; Abdallah, P.; Akpalu, W.; Anna, Z.; Benzaken, D.; Crona, B.; et al. Financing a sustainable ocean economy. Nat. Commun. 2021, 12, 3259. [Google Scholar] [CrossRef]
- van Lottum, J.; van Zanden, J.L. Labour productivity and human capital in the European maritime sector of the eighteenth century. Explor. Econ. Hist. 2014, 53, 83–100. [Google Scholar] [CrossRef]
- Kiyong, J.; Cho, K. A study on the budget of ocean fisheries science and technology development plan: Focusing on analysis of budget and social consistency using big data. Mod. Soc. Public Admin. 2021, 31, 81–112. [Google Scholar]
- Vedachalam, N.; Ravindran, M.; Atmanand, M.A. Technology developments for the strategic Indian blue economy. Mar. Georesour. Geotechnol. 2018, 37, 828–844. [Google Scholar] [CrossRef]
- Radhakrishnan, K.; Prakash, S.; Narayanakumar, R.; Krishnan, M.; Madan, M.; Kumar, N. Economic analysis of marine fishing crafts in Thoothukudi Province, Tamil Nadu. Indian J. Geo Mar. Sci. 2018, 47, 653–659. [Google Scholar]
- Liang, Y.-J.; Choi, S.-D. The Significance and Implications of Establishing Marine Economic Development Pilot Zones in the Viewpoint of China’s Marine Industry Policy. J. Korean Soc. Mar. Environ. Saf. 2014, 20, 59–70. [Google Scholar] [CrossRef]
- Wang, S.; Li, W.; Xing, L. A Review on Marine Economics and Management: How to Exploit the Ocean Well. Water 2022, 14, 2626. [Google Scholar] [CrossRef]
- Tong, T. Study on the Development of Marine Cultural Industry in Gokarna: A Coastal Rural Area of India. J. Coast. Res. 2020, 108, 298–300. [Google Scholar] [CrossRef]
- Novaglio, C.; Bax, N.; Boschetti, F.; Emad, G.R.; Frusher, S.; Fullbrook, L.; Hemer, M.; Jennings, S.; van Putten, I.; Robinson, L.M.; et al. Deep aspirations: Towards a sustainable offshore Blue Economy. Rev. Fish Biol. Fish. 2021, 32, 209–230. [Google Scholar] [CrossRef]
- Winther, J.-G.; Dai, M.; Rist, T.; Hoel, A.H.; Li, Y.; Trice, A.; Morrissey, K.; Juinio-Meñez, M.A.; Fernandes, L.; Unger, S.; et al. Integrated ocean management for a sustainable ocean economy. Nat. Ecol. Evol. 2020, 4, 1451–1458. [Google Scholar] [CrossRef]
- Wang, S.; Chen, S.; Zhang, H.; Song, M. The model of early warning for China’s marine ecology-economy symbiosis security. Mar. Policy 2021, 128, 104476. [Google Scholar] [CrossRef]
- Razzaq, A.; Qing, P.; Naseer, M.A.U.R.; Abid, M.; Anwar, M.; Javed, I. Can the informal groundwater markets improve water use efficiency and equity? Evidence from a semi-arid region of Pakistan. Sci. Total Environ. 2019, 666, 849–857. [Google Scholar] [CrossRef] [PubMed]
- Elahi, E.; Khalid, Z.; Tauni, M.Z.; Zhang, H.; Lirong, X. Extreme weather events risk to crop-production and the adaptation of innovative management strategies to mitigate the risk: A retrospective survey of rural Punjab, Pakistan. Technovation 2022, 117, 102255. [Google Scholar] [CrossRef]
- Katila, J.; Ala-Rämi, K.; Repka, S.; Rendon, E.; Törrönen, J. Defining and quantifying the sea-based economy to support regional blue growth strategies–Case Gulf of Bothnia. Mar. Policy 2019, 100, 215–225. [Google Scholar] [CrossRef]
- Nordhaus, W.D.; Stavins, R.N.; Weitzman, M.L. Lethal Model 2: The Limits to Growth Revisited. Brook. Pap. Econ. Act. 1992, 1992, 1–59. [Google Scholar] [CrossRef]
- Bruvoll, A.; Glomsrød, S.; Vennemo, H. Environmental drag: Evidence from Norway. Ecol. Econ. 1999, 30, 235–249. [Google Scholar] [CrossRef]
- Uri, N.D. Energy scarcity and economic growth reconsidered. Int. J. Energy Res. 1995, 19, 615–629. [Google Scholar] [CrossRef]
- Agbloyor, E.K.; Abor, J.Y.; Adjasi, C.K.D.; Yawson, A. Private capital flows and economic growth in Africa: The role of domestic financial markets. J. Int. Financ. Mark. Inst. Money 2014, 30, 137–152. [Google Scholar] [CrossRef]
- Butkiewicz, J.L.; Yanikkaya, H. Capital Account Openness, International Trade, and Economic Growth: A Cross-Country Empirical Investigation. Emerg. Mark. Financ. Trade 2008, 44, 15–38. [Google Scholar] [CrossRef]
- Lensink, R.; Morrissey, O. Foreign Direct Investment: Flows, Volatility, and the Impact on Growth*. Rev. Int. Econ. 2006, 14, 478–493. [Google Scholar] [CrossRef]
- Dankyi, A.B.; Abban, O.J.; Yusheng, K.; Coulibaly, T.P. Human capital, foreign direct investment, and economic growth: Evidence from ECOWAS in a decomposed income level panel. Environ. Chall. 2022, 9, 100602. [Google Scholar] [CrossRef]
- Alemeu, F. The effect of political institution and human capital on economic growth of sub Saharan African countries. World Econ. Res. 2022, 11, 11–18. [Google Scholar]
- Can, S. Gendered laws and labour force participation. Appl. Econ. Lett. 2022. [Google Scholar] [CrossRef]
- Balog, I.I. How Effective Are School Years?: Examining the Link between Human Capital and Economic Growth in European Countries, 2014-2019. Public Fin. Q. 2021, 66, 467–481. [Google Scholar] [CrossRef]
- Pandiloska, J. The importance of high–Tech companies for EU economy–Overview and the EU grand strategies perspective. Res. Soc. Chang. 2021, 12, 32–52. [Google Scholar]
- Bringezu, S. On the mechanism and effects of innovation: Search for safety and independence of resource constraints expands the safe operating range. Ecol. Econ. 2015, 116, 387–400. [Google Scholar] [CrossRef]
- Managi, S.; Opaluch, J.J.; Jin, D.; Grigalunas, T.A. Technological change and petroleum exploration in the Gulf of Mexico. Energy Policy 2005, 33, 619–632. [Google Scholar] [CrossRef]
- Bringezu, S.; Schütz, H.; Steger, S.; Baudisch, J. International comparison of resource use and its relation to economic growth: The development of total material requirement, direct material inputs and hidden flows and the structure of TMR. Ecol. Econ. 2004, 51, 97–124. [Google Scholar] [CrossRef]
- Peiró-Palomino, T. Investment and economic growth: Some evidence for Spanish provinces. Soc. Cap. 2015, 10, 102–126. [Google Scholar]
- Morrissey, K.; O’Donoghue, C. The Irish marine economy and regional development. Mar. Policy 2012, 36, 358–364. [Google Scholar] [CrossRef]
- Hansen, B.E. Sample Splitting and Threshold Estimation. Econometrica 2000, 68, 575–603. [Google Scholar] [CrossRef]
Industry Classification | Resource Statistics |
---|---|
Primary industry (MR1) | Marine fishing production, mariculture production |
Secondary industry (MR2) | Marine crude oil, marine natural gas, sea salt, marine chemical, and marine mining production |
Tertiary industry (MR3) | Marine transportation volume |
Variable | Sample Size | Mean | Standard Deviation | Minimum | Maximum | Predicted Coefficient Symbol |
---|---|---|---|---|---|---|
LnMGOP | 154 | 8.086621 | 0.960218 | 5.706113 | 9.869186 | / |
LnMR1 | 154 | 15.89831 | 0.1240218 | 15.55705 | 16.10493 | + |
LnMR2 | 154 | 13.09142 | 1.443139 | 8.768588 | 15.40981 | + |
LnMR3 | 154 | 9.466966 | 0.975403 | 6.364751 | 11.33257 | + |
LnMC | 154 | 9.366622 | 0.9943723 | 6.049498 | 10.98608 | + |
LnML | 154 | 5.963339 | 1.144615 | 4.400603 | 8.788837 | ? |
LnMT | 154 | 13.19514 | 1.598125 | 8.304 | 15.23491 | ? |
Variable | Model 1 | Model 2 | Model 3 | Model 4 | Model 5 | Model 6 |
---|---|---|---|---|---|---|
LnMR1 | 7.555 *** (0.00) | 6.525 *** (0.00) | ||||
LnMR1^2 | 0.043 *** (0.00) | |||||
LnMR2 | 0.054 ** (0.03) | −0.437 * (0.08) | ||||
LnMR2^2 | 0.021 ** (0.05) | |||||
LnMR3 | 0.155 *** (0.00) | 0.226 *** (0.00) | ||||
LnMR3^2 | 0.015 *** (0.00) | |||||
LnMC | 0.009 (0.61) | 0.486 *** (0.00) | 0.441 *** (0.00) | 0.015 (0.21) | 0.484 *** (0.00) | 0.387 *** (0.00) |
LnML | 0.014 ** (0.02) | 0.086 *** (0.00) | 0.073 *** (0.00) | 0.006 (0.19) | 0.088 *** (0.00) | 0.039 ** (0.01) |
LnMT | −0.005 (0.47) | 0.099 *** (0.00) | 0.084 *** (0.00) | −0.015 *** (0.00) | 0.099 *** (0.00) | 0.031 (0.10) |
Cons | −112.128 *** (0.00) | 1.013 *** (0.01) | 0.952 *** (0.00) | −106.405 *** (0.00) | 3.872 ** (0.01) | 0.306 (0.31) |
Obs | 154 | 154 | 154 | 154 | 154 | 154 |
0.985 | 0.871 | 0.874 | 0.993 | 0.875 | 0.908 | |
F | 7.58 | 53.82 | 52.19 | 27.12 | 54.93 | 74.57 |
p | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Explained Variable | Threshold Type | LnMC | LnML | LnMT |
---|---|---|---|---|
LnMR1 | Single threshold value | 50.69 ** | 84.19 *** | 146.38 *** |
p-value | 0.0220 | 0.0000 | 0.0000 | |
Double threshold value | 27.64 | 36.56 | 29.44 * | |
p-value | 0.1040 | 0.1200 | 0.0620 | |
LnMR2 | Single threshold value | 7.04 | 19.70 ** | 44.16 *** |
p-value | 0.6080 | 0.0300 | 0.0000 | |
Double threshold value | 9.85 | 8.90 | 40.38 *** | |
p-value | 0.1740 | 0.4400 | 0.0000 | |
LnMR3 | Single threshold value | 4.56 | 19.63 * | 47.13 *** |
p-value | 0.8700 | 0.0620 | 0.0040 | |
Double threshold value | 7.94 | 19.17 * | 24.65 ** | |
p-value | 0.2900 | 0.0980 | 0.0340 | |
Number of bootstrap samples | 500 | 500 | 500 |
Variable | lnMC | lnML | lnMT |
---|---|---|---|
LnMR1-0 | LnMC ≤ 10.1771 | LnML ≤ 4.8528 | LnMT < 10.0048 |
Low-value distribution area of marine capital | Low-value distribution area of the marine labor force | Low-value distribution area of marine technology | |
LnMR1-1 | LnMC > 10.1771 | LnML > 4.8528 | 10.0048 ≤ LnMT < 11.4468 |
High-value distribution area of marine capital | High-value distribution area of the marine labor force | Median distribution area of marine technology | |
LnMR1-2 | LnMT > 11.4468 | ||
High-value distribution area of marine technology | |||
LnMR2-0 | LnML ≤ 4.6022 | LnMT < 12.1860 | |
Low-value distribution area of the marine labor force | Low-value distribution area of marine technology | ||
LnMR2-1 | LnML > 4.6022 | 12.1860 ≤ LnMT < 14.0069 | |
High-value distribution area of the marine labor force | Median distribution area of marine technology | ||
LnMR2-2 | LnMT > 14.0069 | ||
High-value distribution area of marine technology | |||
LnMR3-0 | LnML < 4.0622 | LnMT < 12.1860 | |
Low-value distribution area of the marine labor force | Low-value distribution area of marine technology | ||
LnMR3-1 | 4.0622 ≤ LnML < 5.1636 | 12.1860 ≤ LnMT < 14.0069 | |
Median-value distribution area of the marine labor force | Median distribution area of marine technology | ||
LnMR3-2 | LnML > 5.1636 | LnMT > 14.0069 | |
High-value distribution area of the marine labor force | High-value distribution area of marine technology |
Marine Resources of the Primary Industry | Marine Resources of the Secondary Industry | Marine Resources of the Tertiary Industry | |||||||
---|---|---|---|---|---|---|---|---|---|
Variable | lnMC | lnML | lnMT | Variable | lnML | lnMT | Variable | lnML | lnMT |
LnMR1-0 | 7.657 *** (0.00) | 7.511 *** (0.00) | 7.624 *** (0.00) | LnMR2-0 | 0.086 *** (0.00) | 0.058 *** (0.00) | LnMR3-0 | 0.271 *** (0.00) | 0.108 ** (0.02) |
LnMR1-1 | 7.664 *** (0.00) | 7.500 *** (0.00) | 7.612 *** (0.00) | LnMR2-1 | 0.050 ** (0.04) | 0.031 (0.12) | LnMR3-1 | 0.203 *** (0.00) | 0.076 * (0.10) |
LnMR1-2 | 7.605 *** (0.00) | LnMR2-2 | 0.050 ** (0.01) | LnMR3-2 | 0.230 *** (0.00) | 0.103 ** (0.03) | |||
LnMC | −0.021 (0.19) | 0.023 (0.10) | 0.020 * (0.09) | LnMC | 0.484 *** (0.00) | 0.425 *** (0.00) | LnMC | 0.390 *** (0.00) | 0.410 *** (0.00) |
LnML | 0.003 (0.61) | 0.031 *** (0.00) | 0.011 *** (0.00) | LnML | 0.114 *** (0.00) | 0.090 *** (0.00) | LnML | 0.072 *** (0.00) | 0.075 *** (0.00) |
LnMT | −0.009 (0.14) | −0.001 (0.83) | 0.030 *** (0.00) | LnMT | 0.105 *** (0.00) | 0.145 *** (0.00) | LnMT | 0.083 *** (0.00) | 0.119 *** (0.00) |
C | −113.374 *** (0.00) | −111.564 *** (0.00) | −113.491 *** (0.00) | C | 0.799 ** (0.03) | 1.048 *** (0.00) | C | 0.753 ** (0.01) | 1.313 *** (0.00) |
0.989 | 0.991 | 0.994 | 0.887 | 0.924 | 0.903 | 0.920 | |||
F | 10.40 *** | 12.00 *** | 12.59 *** | F | 62.84 *** | 92.01 *** | F | 54.04 *** | 85.96 *** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Tian, W.; Geng, B.; Zhang, Z. Resource Constraints and Economic Growth: Empirical Analysis Based on Marine Field. Water 2023, 15, 727. https://doi.org/10.3390/w15040727
Wang S, Tian W, Geng B, Zhang Z. Resource Constraints and Economic Growth: Empirical Analysis Based on Marine Field. Water. 2023; 15(4):727. https://doi.org/10.3390/w15040727
Chicago/Turabian StyleWang, Shuhong, Wenqian Tian, Baomin Geng, and Zhe Zhang. 2023. "Resource Constraints and Economic Growth: Empirical Analysis Based on Marine Field" Water 15, no. 4: 727. https://doi.org/10.3390/w15040727
APA StyleWang, S., Tian, W., Geng, B., & Zhang, Z. (2023). Resource Constraints and Economic Growth: Empirical Analysis Based on Marine Field. Water, 15(4), 727. https://doi.org/10.3390/w15040727