Spatial Variations of Fabric and Microstructure of Blue Ice Cores at the Shear Margin of Dalk Glacier, Antarctica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Collection
2.2. Thin Sections Preparation and Fabric Analysis
2.3. Stable Water Isotope Analysis
2.4. Image Data Processing Methods
3. Results
3.1. Microstructures of Ice Thin Sections
3.2. Ice Fabrics
3.3. Microstructure of Grains
3.4. Microstructure of Bubbles
3.5. Shape-Preferred Orientations (SPOs) of Ice Grains and Bubbles
3.6. Stable Water Isotopes of Ice
4. Discussion
4.1. Evolution and Spatial Variations of Ice Fabrics
4.2. Depth and Spatial Variations of Grain Size of IC Ice Cores
4.3. Depth and Spatial Variations of Bubble Size of IC Ice Cores
4.4. The Mechanism of the Formation of Shallow Bubble Tunnels
4.5. Characteristics and Formation Mechanisms of Basal Ice Cores
4.6. Correlations between Stable Water Isotopes and Grain Size
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Willis, J.K.; Church, J.A. Regional Sea-Level Projection. Science 2012, 336, 550–551. [Google Scholar] [CrossRef] [PubMed]
- Gregory, J.M.; White, N.J.; Church, J.A.; Bierkens, M.F.P.; Box, J.E.; den Broeke, M.R.; Cogley, J.G.; Fettweis, X.; Hanna, E.; Huybrechts, P.; et al. Twentieth-Century Global-Mean Sea Level Rise: Is the Whole Greater than the Sum of the Parts? J. Clim. 2013, 26, 4476–4499. [Google Scholar] [CrossRef]
- Shepherd, A.; Fricker, H.A.; Farrell, S.L. Trends and connections across the Antarctic cryosphere. Nature 2018, 558, 223–232. [Google Scholar] [CrossRef] [PubMed]
- Goodman, D.J.; Frost, H.J.; Ashby, M.F. The plasticity of polycrystalline ice. Philos. Mag. A 1981, 43, 665–695. [Google Scholar] [CrossRef]
- Alley, R.B. Flow-law Hypotheses for Ice-Sheet Modeling. J. Glaciol. 1992, 38, 245–256. [Google Scholar] [CrossRef]
- Faria, S.H.; Weikusat, I.; Azuma, N. The microstructure of polar ice. Part II: State of the art. J. Struct. Geol. 2014, 61, 21–49. [Google Scholar] [CrossRef]
- Hunter, N.J.R.; Wilson, C.J.L.; Luzin, V. Crystallographic preferred orientation (CPO) patterns in uniaxially compressed deuterated ice: Quantitative analysis of historical data. J. Glaciol. 2022, 1–12. [Google Scholar] [CrossRef]
- Marshall, S.J. Recent advances in understanding ice sheet dynamics. Earth Planet. Sci. Lett. 2005, 240, 191–204. [Google Scholar] [CrossRef]
- Aster, R.C.; Winberry, J.P. Glacial seismology. Rep. Prog. Phys. 2017, 80, 126801. [Google Scholar] [CrossRef]
- Feldmann, J.; Reese, R.; Winkelmann, R.; Levermann, A. Shear-margin melting causes stronger transient ice discharge than ice-stream melting in idealized simulations. Cryosphere 2022, 16, 1927–1940. [Google Scholar] [CrossRef]
- Hudleston, P.J. Progressive Deformation and Development of Fabric Across Zones of Shear in Glacial Ice. In Energetics of Geological Processes: Hans Ramberg on His 60th Birthday; Saxena, S.K., Bhattacharji, S., Annersten, H., Stephansson, O., Eds.; Springer: Berlin/Heidelberg, Germany, 1977; pp. 121–150. [Google Scholar]
- Budd, W.F.; Jacka, T.H. A review of ice rheology for ice sheet modelling. Cold Reg. Sci. Technol. 1989, 16, 107–144. [Google Scholar] [CrossRef]
- Duval, P.; Montagnat, M.; Grennerat, F.; Weiss, J.; Meyssonnier, J.; Philip, A. Creep and plasticity of glacier ice: A material science perspective. J. Glaciol. 2010, 56, 1059–1068. [Google Scholar] [CrossRef]
- Montagnat, M.; Buiron, D.; Arnaud, L.; Broquet, A.; Schlitz, P.; Jacob, R.; Kipfstuhl, S. Measurements and numerical simulation of fabric evolution along the Talos Dome ice core, Antarctica. Earth Planet. Sci. Lett. 2012, 357–358, 168–178. [Google Scholar] [CrossRef]
- Lipenkov, V.Y.; Barkov, N.I.; Duval, P.; Pimienta, P. Crystalline Texture of the 2083 m Ice Core at Vostok Station, Antarctica. J. Glaciol. 1989, 35, 392–398. [Google Scholar] [CrossRef]
- Azuma, N.; Wang, Y.; Yoshida, Y.; Narita, H.; Hondoh, T.; Shoji, H.; Watanabe, O. Crystallographic analysis of the Dome Fuji ice core. In Physics of Ice Core Records; Hokkaido University Press: Sapporo, Japan, 2000; pp. 45–61. [Google Scholar]
- Durand, G.; Svensson, A.; Persson, A.; Gagliardini, O.; Gillet-Chaulet, F.; Sjolte, J.; Montagnat, M.; Dahl-Jensen, D. Evolution of the texture along the EPICA Dome C ice core. Low Temp. Sci. 2009, 68, 91–105. [Google Scholar]
- Weikusat, I.; Kipfstuhl, S.; Azuma, N.; Faria, S.H.; Miyamoto, A. Deformation Microstructures in an Antarctic Ice Core (EDML) and in Experimentally Deformed Artificial Ice. Low Temp. Sci. 2009, 68, 115–123. [Google Scholar]
- Faria, S.H.; Weikusat, I.; Azuma, N. The microstructure of polar ice. Part I: Highlights from ice core research. J. Struct. Geol. 2014, 61, 2–20. [Google Scholar] [CrossRef]
- Bamber, J.L.; Vaughan, D.G.; Joughin, I. Widespread Complex Flow in the Interior of the Antarctic Ice Sheet. Science 2000, 287, 1248–1250. [Google Scholar] [CrossRef] [PubMed]
- Bennett, M.R. Ice streams as the arteries of an ice sheet: Their mechanics, stability and significance. Earth-Sci. Rev. 2003, 61, 309–339. [Google Scholar] [CrossRef]
- Rignot, E.; Mouginot, J.; Scheuchl, B. Ice Flow of the Antarctic Ice Sheet. Science 2011, 333, 1427–1430. [Google Scholar] [CrossRef]
- Echelmeyer, K.A.; Harrison, W.D.; Larsen, C.; Mitchell, J.E. The role of the margins in the dynamics of an active ice stream. J. Glaciol. 1994, 40, 527–538. [Google Scholar] [CrossRef]
- Hruby, K.; Gerbi, C.; Koons, P.; Campbell, S.; Martín, C.; Hawley, R. The impact of temperature and crystal orientation fabric on the dynamics of mountain glaciers and ice streams. J. Glaciol. 2020, 66, 755–765. [Google Scholar] [CrossRef]
- Kamb, W.B. Experimental Recrystallization of Ice Under Stress. In Flow and Fracture of Rocks; Geophysical Monograph Series; California Institute of Technology: Pasadena, CA, USA, 1972; pp. 211–241. [Google Scholar]
- Bouchez, J.-L.; Duval, P. The Fabric of Polycrystalline Ice Deformed in Simple Shear: Experiments in Torsion, Natural Deformation and Geometrical Interpretation. Textures Microstruct. 1982, 5, 171–190. [Google Scholar] [CrossRef]
- Jun, L.; Jacka, T.H.; Budd, W.F. Strong single-maximum crystal fabrics developed in ice undergoing shear with unconstrained normal deformation. Ann. Glaciol. 2000, 30, 88–92. [Google Scholar] [CrossRef]
- Journaux, B.; Chauve, T.; Montagnat, M.; Tommasi, A.; Barou, F.; Mainprice, D.; Gest, L. Recrystallization processes, microstructure and crystallographic preferred orientation evolution in polycrystalline ice during high-temperature simple shear. Cryosphere 2019, 13, 1495–1511. [Google Scholar] [CrossRef]
- Qi, C.; Prior, D.J.; Craw, L.; Fan, S.; Llorens, M.G.; Griera, A.; Negrini, M.; Bons, P.D.; Goldsby, D.L. Crystallographic preferred orientations of ice deformed in direct-shear experiments at low temperatures. Cryosphere 2019, 13, 351–371. [Google Scholar] [CrossRef]
- Lawson, W.J.; Sharp, M.J.; Hambrey, M.J. The structural geology of a surge-type glacier. J. Struct. Geol. 1994, 16, 1447–1462. [Google Scholar] [CrossRef]
- Harrison, W.D.; Echelmeyer, K.A.; Larsen, C.F. Measurement of temperature in a margin of Ice Stream B, Antarctica: Implications for margin migration and lateral drag. J. Glaciol. 1998, 44, 615–624. [Google Scholar] [CrossRef]
- Barnes, P.R.F.; Wolff, E.W. Distribution of soluble impurities in cold glacial ice. J. Glaciol. 2004, 50, 311–324. [Google Scholar] [CrossRef]
- Pettit, E.C.; Whorton, E.N.; Waddington, E.D.; Sletten, R.S. Influence of debris-rich basal ice on flow of a polar glacier. J. Glaciol. 2014, 60, 989–1006. [Google Scholar] [CrossRef]
- Jackson, M.; Kamb, B. The marginal shear stress of Ice Stream B, West Antarctica. J. Glaciol. 1997, 43, 415–426. [Google Scholar] [CrossRef]
- Samyn, D.; Svensson, A.; Fitzsimons, S. Dynamic implications of discontinuous recrystallization in cold basal ice: Taylor Glacier, Antarctica. J. Geophys. Res. 2008, 113, F03S90. [Google Scholar] [CrossRef] [Green Version]
- Gerbi, C.; Mills, S.; Clavette, R.; Campbell, S.; Bernsen, S.; Clemens-Sewall, D.; Lee, I.; Hawley, R.; Kreutz, K.; Hruby, K. Microstructures in a shear margin: Jarvis Glacier, Alaska. J. Glaciol. 2021, 67, 1163–1176. [Google Scholar] [CrossRef]
- Monz, M.E.; Hudleston, P.J.; Prior, D.J.; Michels, Z.; Fan, S.; Negrini, M.; Langhorne, P.J.; Qi, C. Full crystallographic orientation (c and a axes) of warm, coarse-grained ice in a shear-dominated setting: A case study, Storglaciären, Sweden. Cryosphere 2021, 15, 303–324. [Google Scholar] [CrossRef]
- Hellmann, S.; Kerch, J.; Weikusat, I.; Bauder, A.; Grab, M.; Jouvet, G.; Schwikowski, M.; Maurer, H. Crystallographic analysis of temperate ice on Rhonegletscher, Swiss Alps. Cryosphere 2021, 15, 677–694. [Google Scholar] [CrossRef]
- Thomas, R.E.; Negrini, M.; Prior, D.J.; Mulvaney, R.; Still, H.; Bowman, M.H.; Craw, L.; Fan, S.; Hubbard, B.; Hulbe, C.; et al. Microstructure and Crystallographic Preferred Orientations of an Azimuthally Oriented Ice Core from a Lateral Shear Margin: Priestley Glacier, Antarctica. Front. Earth Sci. 2021, 9. [Google Scholar] [CrossRef]
- Bentley, C.R. Seismic-wave velocities in anisotropic ice: A comparison of measured and calculated values in and around the deep drill hole at Byrd Station, Antarctica. J. Geophys. Res. 1972, 77, 4406–4420. [Google Scholar] [CrossRef]
- Kohnen, H.; Gow, A.J. Ultrasonic Velocity Investigations of Crystal Anisotropy in Deep Ice Cores from Antarctica. J. Geophys. Res. -Ocean. Atmos. 1979, 84, 4865–4874. [Google Scholar] [CrossRef]
- Harland, S.R.; Kendall, J.M.; Stuart, G.W.; Lloyd, G.E.; Baird, A.F.; Smith, A.M.; Pritchard, H.D.; Brisbourne, A.M. Deformation in Rutford Ice Stream, West Antarctica: Measuring shear-wave anisotropy from icequakes. Ann. Glaciol. 2013, 54, 105–114. [Google Scholar] [CrossRef]
- Smith, E.C.; Baird, A.F.; Kendall, J.M.; Martín, C.; White, R.S.; Brisbourne, A.M.; Smith, A.M. Ice fabric in an Antarctic ice stream interpreted from seismic anisotropy. Geophys. Res. Lett. 2017, 44, 3710–3718. [Google Scholar] [CrossRef]
- Jordan, T.M.; Schroeder, D.M.; Elsworth, C.W.; Siegfried, M.R. Estimation of ice fabric within Whillans Ice Stream using polarimetric phase-sensitive radar sounding. Ann. Glaciol. 2020, 61, 74–83. [Google Scholar] [CrossRef]
- Lutz, F.; Eccles, J.; Prior, D.J.; Craw, L.; Fan, S.; Hulbe, C.; Forbes, M.; Still, H.; Pyne, A.; Mandeno, D. Constraining Ice Shelf Anisotropy Using Shear Wave Splitting Measurements from Active-Source Borehole Seismics. J. Geophys. Res. Earth Surf. 2020, 125, e2020JF005707. [Google Scholar] [CrossRef]
- Hellmann, S.; Grab, M.; Kerch, J.; Löwe, H.; Bauder, A.; Weikusat, I.; Maurer, H. Acoustic velocity measurements for detecting the crystal orientation fabrics of a temperate ice core. Cryosphere 2021, 15, 3507–3521. [Google Scholar] [CrossRef]
- Rathmann, N.M.; Lilien, D.A.; Grinsted, A.; Gerber, T.A.; Young, T.J.; Dahl-Jensen, D. On the Limitations of Using Polarimetric Radar Sounding to Infer the Crystal Orientation Fabric of Ice Masses. Geophys. Res. Lett. 2022, 49, e2021GL096244. [Google Scholar] [CrossRef]
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; de Vries, M.V.W.; Mergili, M.; et al. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Smedley, A.R.D.; Evatt, G.W.; Mallinson, A.; Harvey, E. Solar radiative transfer in Antarctic blue ice: Spectral considerations, subsurface enhancement, inclusions, and meteorites. Cryosphere 2020, 14, 789–809. [Google Scholar] [CrossRef]
- Muhuri, A.; Manickam, S.; Bhattacharya, A.; Snehmani. Snow Cover Mapping Using Polarization Fraction Variation With Temporal RADARSAT-2 C-Band Full-Polarimetric SAR Data Over the Indian Himalayas. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2192–2209. [Google Scholar] [CrossRef]
- Tsai, Y.-L.S.; Dietz, A.J.; Oppelt, N.; Kuenzer, C. Remote Sensing of Snow Cover Using Spaceborne SAR: A Review. Remote. Sens. 2019, 11, 1456. [Google Scholar] [CrossRef]
- Qiao, H.; Zhang, P.; Li, Z.; Liu, C. A New Geostationary Satellite-Based Snow Cover Recognition Method for FY-4A AGRI. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 11372–11385. [Google Scholar] [CrossRef]
- Wilson, C.J.L.; Russell-Head, D.S.; Kunze, K.; Viola, G. The analysis of quartz c-axis fabrics using a modified optical microscope. J. Microsc. 2007, 227, 30–41. [Google Scholar] [CrossRef]
- Legland, D.; Arganda-Carreras, I.; Andrey, P. MorphoLibJ: Integrated library and plugins for mathematical morphology with ImageJ. Bioinformatics 2016, 32, 3532–3534. [Google Scholar] [CrossRef]
- Schindelin, J.E.; Arganda-Carreras, I.; Frise, E.; Kaynig, V.; Longair, M.; Pietzsch, T.; Preibisch, S.; Rueden, C.T.; Saalfeld, S.; Schmid, B.; et al. Fiji: An open-source platform for biological-image analysis. Nat. Methods 2012, 9, 676–682. [Google Scholar] [CrossRef] [Green Version]
- Arganda-Carreras, I.; Kaynig, V.; Rueden, C.; Eliceiri, K.W.; Schindelin, J.; Cardona, A.; Sebastian Seung, H. Trainable Weka Segmentation: A machine learning tool for microscopy pixel classification. Bioinformatics 2017, 33, 2424–2426. [Google Scholar] [CrossRef]
- Montagnat, M.; Azuma, N.; Dahl-Jensen, D.; Eichler, J.; Fujita, S.; Gillet-Chaulet, F.; Kipfstuhl, S.; Samyn, D.; Svensson, A.; Weikusat, I. Fabric along the NEEM ice core, Greenland, and its comparison with GRIP and NGRIP ice cores. Cryosphere 2014, 8, 1129–1138. [Google Scholar] [CrossRef]
- Dansgaard, W. Stable isotopes in precipitation. Tellus 1964, 16, 436–468. [Google Scholar] [CrossRef]
- Wenk, H.R.; Christie, J.M. Comments on the interpretation of deformation textures in rocks. J. Struct. Geol. 1991, 13, 1091–1110. [Google Scholar] [CrossRef]
- Young, T.J.; Schroeder, D.M.; Jordan, T.M.; Christoffersen, P.; Tulaczyk, S.M.; Culberg, R.; Bienert, N.L. Inferring Ice Fabric From Birefringence Loss in Airborne Radargrams: Application to the Eastern Shear Margin of Thwaites Glacier, West Antarctica. J. Geophys. Res. Earth Surf. 2021, 126, e2020JF006023. [Google Scholar] [CrossRef]
- Cuffey, K.; Paterson, W. The Physics of Glaciers, 4th ed.; Butterworth-Heinemann: Oxford, UK, 2010; pp. 11–28. [Google Scholar]
- Buizert, C.; Baggenstos, D.; Jiang, W.; Purtschert, R.; Petrenko, V.V.; Lu, Z.T.; Muller, P.; Kuhl, T.; Lee, J.; Severinghaus, J.P.; et al. Radiometric Kr 81 dating identifies 120,000-year-old ice at Taylor Glacier, Antarctica. Proc. Natl. Acad. Sci. USA 2014, 111, 6876–6881. [Google Scholar] [CrossRef]
- Bauska, T.K.; Baggenstos, D.; Brook, E.J.; Mix, A.C.; Marcott, S.A.; Petrenko, V.V.; Schaefer, H.; Severinghaus, J.P.; Lee, J.E. Carbon isotopes characterize rapid changes in atmospheric carbon dioxide during the last deglaciation. Proc. Natl. Acad. Sci. USA 2016, 113, 3465–3470. [Google Scholar] [CrossRef]
- Baggenstos, D.; Bauska, T.K.; Severinghaus, J.P.; Lee, J.E.; Schaefer, H.; Buizert, C.; Brook, E.J.; Shackleton, S.; Petrenko, V.V. Atmospheric gas records from Taylor Glacier, Antarctica, reveal ancient ice with ages spanning the entire last glacial cycle. Clim. Past 2017, 13, 943–958. [Google Scholar] [CrossRef]
- Menking, J.A.; Brook, E.J.; Shackleton, S.A.; Severinghaus, J.P.; Dyonisius, M.N.; Petrenko, V.; McConnell, J.R.; Rhodes, R.H.; Bauska, T.K.; Baggenstos, D.; et al. Spatial pattern of accumulation at Taylor Dome during Marine Isotope Stage 4: Stratigraphic constraints from Taylor Glacier. Clim. Past 2019, 15, 1537–1556. [Google Scholar] [CrossRef] [Green Version]
Name | Longitude (E) | Latitude (S) | Altitude (m) | Drilling Direction |
---|---|---|---|---|
IC1 | 76°20′17.78″ | 69°24′54.68″ | 143 | Vertical |
IC2 | 76°20′25.05″ | 69°24′40.09″ | 139 | Vertical |
IC3 | 76°20′25.03″ | 69°24′39.85″ | 139 | Vertical |
IC4 | 76°20′24.79″ | 69°24′39.74″ | 143 | Vertical |
IC5 | 76°20′31.89″ | 69°24′33.59″ | 159 | Vertical |
IC6 | 76°20′32.46″ | 69°24′34.69″ | 161 | Vertical |
IC7 | 76°20′32.59″ | 69°24′35.83″ | 161 | Vertical |
IW1-IW3 | 76°20′28.23″ | 69°24′26.35″ | 27 | Horizontal |
IW4-IW6 | 76°20′29.43″ | 69°24′25.50″ | 20 | Horizontal |
IW7 | 76°20′24.69″ | 69°24′24.48″ | 19 | Horizontal |
OIW1-OIW3 | 76°20′46.72″ | 69°24′29.55″ | 155 | Horizontal |
OIW4-OIW6 | 76°20′46.87″ | 69°24′29.05″ | 151 | Horizontal |
OIW7-OIW9 | 76°20′45.39″ | 69°24′28.23″ | 152 | Horizontal |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, S.; Zhang, N.; Wang, D.; Shi, G.; Ma, T.; Ma, H.; An, C.; Li, Y. Spatial Variations of Fabric and Microstructure of Blue Ice Cores at the Shear Margin of Dalk Glacier, Antarctica. Water 2023, 15, 728. https://doi.org/10.3390/w15040728
Lu S, Zhang N, Wang D, Shi G, Ma T, Ma H, An C, Li Y. Spatial Variations of Fabric and Microstructure of Blue Ice Cores at the Shear Margin of Dalk Glacier, Antarctica. Water. 2023; 15(4):728. https://doi.org/10.3390/w15040728
Chicago/Turabian StyleLu, Siyu, Nan Zhang, Danhe Wang, Guitao Shi, Tianming Ma, Hongmei Ma, Chunlei An, and Yuansheng Li. 2023. "Spatial Variations of Fabric and Microstructure of Blue Ice Cores at the Shear Margin of Dalk Glacier, Antarctica" Water 15, no. 4: 728. https://doi.org/10.3390/w15040728
APA StyleLu, S., Zhang, N., Wang, D., Shi, G., Ma, T., Ma, H., An, C., & Li, Y. (2023). Spatial Variations of Fabric and Microstructure of Blue Ice Cores at the Shear Margin of Dalk Glacier, Antarctica. Water, 15(4), 728. https://doi.org/10.3390/w15040728