Investment in Forest Watershed—A Model of Good Practice for Sustainable Development of Ecosystems
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. Adopted Method
3.2. Cost and Revenue Estimation
3.3. Indicators
- Investment (I)
- 2.
- Payback Period (D)
- 3.
- The Net Present Value (VAN)
- 4.
- Internal Rate of Return (RIR)
- 5.
- Savings-to-Investment Ratio (IR)
4. Results and Discussion
4.1. Reasons for Investment
4.2. Estimation of Costs
4.3. Estimation of the Value of the Income
- The economic effects produced by reducing the transport of alluvium
- B.
- Estimation of the cost of potential damage avoided
4.4. Economic-Efficiency Indicators
- Investment (I)
- 2.
- Payback Period (P)
- 3.
- Net Present Value (VNA)
- 4.
- Internal Rate of Return (RIR)
- 5.
- Savings-to-Investment Ratio (IR)
4.5. Final Discussion
4.6. Methodology Validity
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Settele, J.; Scholes, R.; Betts, R.; Bunn, S.; Leadley, P.; Nepstad, D.; Overpeck, J.T.; Taboada, M.A. Terrestrial and inland water systems. In Climate Change, 2014: Impacts, Adaptation, and Vulnerability: Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Field, C.B., Barros, V.R., Dokken, D.J., Mach, K.J., Mastrandrea, M.D., Bilir, T.E., Chatterjee, M., Ebi, K.L., Estrada, Y.O., Genova, R.C., et al., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 271–359. ISBN 978-1-107-05807-1. [Google Scholar]
- FAO. Global Forest Resources Assessment 2020 Main Report; FAO: Rome, Italy, 2020. [Google Scholar] [CrossRef]
- Silva, J.D.; Fernandes, V.; Limont, M.; Dziedzic, M.; Andreoli, C.V.; Rauen, W.B. Water sustainability assessment from the perspective of sustainable development capitals: Conceptual model and index based on literature review. J. Environ. Manag. 2020, 254, 109750. [Google Scholar] [CrossRef]
- Borecki, T.; Łopiński, Ł.; Kędziora, W.; Orzechowski, M.; Wójcik, R.; Stępień, E. The Concept of Regulating Forest Management in a Region Subject to High Environmental Pressure. Forests 2018, 9, 539. [Google Scholar] [CrossRef]
- UN. Resolution 70/1. Transforming our World: The 2030 Agenda for Sustainable Development, 2015, United Nations, A/RES/70/1. Available online: https://www.un.org/en/development/desa/population/migration/generalassembly/docs/globalcompact/A_RES_70_1_E.pdf (accessed on 4 December 2022).
- Hassani, H.; Huang, X.; MacFeely, S.; Entezarian, M.R. Big Data and the United Nations Sustainable Development Goals (UN SDGs) at a Glance. Big Data Cogn. Comput. 2021, 5, 28. [Google Scholar] [CrossRef]
- Ganaie, T.A.; Jamal, S.; Ahmad, W.S. Changing land use/land cover patterns and growing human population in Wular catchment of Kashmir Valley, India. GeoJournal 2021, 86, 1589–1606. [Google Scholar] [CrossRef]
- Wang, T.; Giuliani, G.; Lehmann, A.; Jiang, Y.; Shao, X.; Li, L.; Zhao, H. Supporting SDG 15, Life on Land: Identifying the Main Drivers of Land Degradation in Honghe Prefecture, China, between 2005 and 2015. ISPRS Int. J. Geo-Inf. 2020, 9, 710. [Google Scholar] [CrossRef]
- Baumgartner, R.J. Sustainable Development Goals and the Forest Sector—A Complex Relationship. Forests 2019, 10, 152. [Google Scholar] [CrossRef]
- Tegegne, Y.T.; Van Brusselen, J.; Cramm, M.; Linhares-Juvenal, T.; Pacheco, P.; Sabogal, C.; Tuomasjukka, D. Making Forest Concessions in the Tropics Work to Achieve the 2030 Agenda: Voluntary Guidelines; FAO Forestry Paper 180; FAO: Rome, Italy, 2018; ISBN 978-9-251-30547-8. [Google Scholar]
- Luo, J.; Zhou, X.; Rubinato, M.; Li, G.; Tian, Y.; Zhou, J. Impact of Multiple Vegetation Covers on Surface Runoff and Sediment Yield in the Small Basin of Nverzhai, Hunan Province, China. Forests 2020, 11, 329. [Google Scholar] [CrossRef]
- Fuchs, S.; Hertel, D.; Schuldt, B.; Leuschner, C. Effects of Summer Drought on the Fine Root System of Five Broadleaf Tree Species along a Precipitation Gradient. Forests 2020, 11, 289. [Google Scholar] [CrossRef]
- Ollikainen, M. Forestry in bioeconomy—Smart green growth for the humankind. Scand. J. For. Res. 2014, 29, 360–366. [Google Scholar] [CrossRef]
- Sun, G.; Bishop, K.; Ferraz, S.; Jones, J. Managing Forests and Water for People under a Changing Environment. Forests 2020, 11, 331. [Google Scholar] [CrossRef]
- Toscani, P.; Sekot, W.; Holzleitner, F. Forest Roads from the Perspective of Managerial Accounting—Empirical Evidence from Austria. Forests 2020, 11, 378. [Google Scholar] [CrossRef]
- Ostrom, E. A General Framework for Analyzing Sustainability of Social-Ecological Systems. Science 2009, 325, 419–422. [Google Scholar] [CrossRef] [PubMed]
- Muñoz-Piña, C.; Guevara, A.; Torres, J.M.; Braña, J. Paying for the hydrological services of Mexico’s forests: Analysis, negotiations and results. Ecol. Econ. 2008, 65, 725–736. [Google Scholar] [CrossRef]
- Creed, I.F.; van Noordwijk, M. Forest and Water on a Changing Planet: Vulnerability, Adaptation and Governance Opportunities: A Global Assessment Report; International Union of Forest Research Organizations: Austria, Vienna, 2018. [Google Scholar]
- De Jong, W.; Pokorny, B.; Katila, P.; Galloway, G.; Pacheco, P. Community Forestry and the Sustainable Development Goals: A Two Way Street. Forests 2018, 9, 331. [Google Scholar] [CrossRef]
- Sun, G.; Vose, J. Forest management challenges for sustaining water resources in the Anthropocene. Forests 2016, 7, 68. [Google Scholar] [CrossRef]
- Neary, D.G.; Ice, G.G.; Jackson, C.R. Linkages between forest soils and water quality and quantity. For. Ecol. Manag. 2009, 258, 2269–2281. [Google Scholar] [CrossRef]
- Harou, J.J.; Pulido-Velazquez, M.; Rosenberg, D.E.; Medellín-Azuara, J.; Lund, J.R.; Howitt, R.E. Hydroeconomic Models: Concepts, Design, Applications, and Future Prospects. J. Hydrol. 2009, 375, 627–643. [Google Scholar] [CrossRef]
- McBroom, M.W.; Zhang, Y. Best Management Practices (BMPs). In Berkshire Encyclopedia of Sustainability, Ecosystem Management and Sustainability; Anderson, R., Ed.; Berkshire Publishing: Barrington, MA, USA, 2012; Volume 5, p. 464. [Google Scholar]
- Ciornei, I. Eficienţa economică a investiţiilor pentru amenajarea bazinelor hidrografice torenţiale. Bucov. For. 2000, 8, 23–29. [Google Scholar]
- Turner, R.K.; Van Den Bergh, J.C.; Söderqvist, T.; Barendregt, A.; Van Der Straaten, J.; Maltby, E.; Van Ierland, E.C. Ecological-economic analysis of wetlands: Scientific integration for management and policy. Ecol. Econ. 2000, 35, 7–23. [Google Scholar] [CrossRef]
- Constandache, C.; Untaru, E.; Munteanu, S. Cercetări privind evoluţia proceselor torenţiale şi de degradare a terenurilor în bazine hidrografice torenţiale din Vrancea, în vederea optimizării tehnologiilor de amenajare hidrologică şi antierozională. An. ICAS 2002, 45, 171–178. [Google Scholar]
- Poff, N.L.; Brown, C.M.; Grantham, T.E.; Matthews, J.H.; Palmer, M.A.; Spence, C.M.; Wilby, R.L.; Haasnoot, M.; Mendoza, G.F.; Dominique, K.C.; et al. Sustainable water management under future uncertainty with eco-engineering decision scaling. Nat. Clim. Change 2016, 6, 25–34. [Google Scholar] [CrossRef] [Green Version]
- Heinz, I.; Pulido-Velazquezj, R.; Lund, J.; Andreu, J. Hydro-economic Modeling in River Basin Management: Implications and Applications for the European Water Framework Directive. Water Resour Manag. 2007, 21, 1103–1125. [Google Scholar] [CrossRef]
- Lindroth, A.; Theo, V.; Sven, H. Water-use efficiency of willow: Variation with season, humidity and biomass allocation. J. Hydrol. 1994, 156, 1–19. [Google Scholar] [CrossRef]
- Laura Ana, M. Impactul amenajărilor hidrotehnice asupra mediului pe Valea Argeşului (până la Goleşti). Lakes Reserv. Ponds 2010, 4, 152–166. [Google Scholar]
- Bloom, A.J.; Chapin, F.S.; Mooney, H.A. Resource Limitation in Plants-An Economic Analogy. Annu. Rev. Ecol. Syst. 1985, 16, 363–392. [Google Scholar] [CrossRef]
- Ford, C.R.; Laseter, S.H.; Swank, W.T.; Vose, J.M. Can forest management be used to sustain water-based ecosystem services in the face of climate change? Ecol. Appl. 2011, 21, 2049–2067. [Google Scholar] [CrossRef]
- Reytar, K.; Buckingham, F.; Stolle, J.; Brandt, R.; Zamora Cristales, F.; Landsberg, R.; Singh, C.; Streck, C.; Saint-Laurent, C.J.; Tucker, M.; et al. Measuring progress in forest and landscape restoration. Restoring the Earth—The next decade. Unasylva 2020, 71, 62–70. [Google Scholar] [CrossRef]
- Dave, R.; Saint-Laurent, C.; Moraes, M.; Simonit, S.; Raes, L.; Karangwa, C. Bonn Challenge Barometer of Progress: Spotlight Report 2017; IUCN: Gland, Switzerland, 2017; 36p. [Google Scholar]
- Jiang, Y.; Wang, Y.; Wang, R. Coupling and Coordination Relationship between Economic and Ecologic-Environmental Developments in China’s Key State-Owned Forest Areas. Sustainability 2022, 14, 15899. [Google Scholar] [CrossRef]
- Wani, S.P.; Ramakrishna, Y.S. Sustainable Management of Rainwater through Integrated Watershed Approach for Improved Rural Livelihoods. In Watershed Management Challenges: Improving Productivity, Resources and Livelihoods; International Water Management Institute: Colombo, Sri Lanka, 2005; pp. 39–60. ISBN 92-9090-611-1. [Google Scholar]
- TNC. Financing Nature for Water Security: A How-To Guide to Develop Watershed Investment Programs; Version 1; The Nature Conservancy: Arlington, VA, USA, 2022; Available online: https://www.nature.org/content/dam/tnc/nature/en/documents/Watershed-Investment-Programs_How-to-Guide.pdf (accessed on 4 December 2022).
- Bremer, L.L.; DeMaagd, N.; Wada, C.A.; Burnett, K.M. Priority watershed management areas for groundwater recharge and drinking water protection: A case study from Hawai’i Island. J. Environ. Manag. 2021, 286, 111622. [Google Scholar] [CrossRef]
- FAO. The State of the World’s Forests 2022. Chapter 1. In Can Forests and Trees Provide Means for Recovery and Inclusive, Resilient and Sustainable Economies? FAO: Rome, Italy, 2020; Available online: https://www.fao.org/3/cb9360en/online/src/html/forests-trees-resilience-sustainability.html (accessed on 4 December 2022).
- FAO. The State of the World’s Forests 2022. Chapter 2. In Forests and Trees Provide Vital Goods and Ecosystem Services but Are Undervalued in Economic Systems; FAO: Rome, Italy, 2020; Available online: https://www.fao.org/3/cb9360en/online/src/html/deforestation-land-degradation.html (accessed on 4 December 2022).
- Martinho, V.J.P.D.; Ferreira, A.J.D. Forest Resources Management and Sustainability: The Specific Case of European Union Countries. Sustainability 2021, 13, 58. [Google Scholar] [CrossRef]
- Rice, R. Conservation Concessions—Concept Description. 2002. Available online: https://www.cbd.int/financial/interdevinno/g-interdevconcession.pdf (accessed on 4 December 2022).
- Hazarika, R.; Jandl, R. The Nexus between the Austrian Forestry Sector and the Sustainable Development Goals: A Review of the Interlinkages. Forests 2019, 10, 205. [Google Scholar] [CrossRef]
- Chamberlain, J.; Small, C.; Baumflek, M. Sustainable Forest Management for Nontimber Products. Sustainability 2019, 11, 2670. [Google Scholar] [CrossRef] [Green Version]
- Linser, S.; Wolfslehner, B.; Bridge, S.R.J.; Gritten, D.; Johnson, S.; Payn, T.; Prins, K.; Raši, R.; Robertson, G. 25 Years of Criteria and Indicators for Sustainable Forest Management: How Intergovernmental C & I Processes Have Made a Difference. Forests 2018, 9, 578. [Google Scholar] [CrossRef]
- Liang, J.; Li, Y. Resilience and sustainable development goals based social-ecological indicators and assessment of coastal urban areas—A case study of Dapeng New District, Shenzhen, China. Watershed Ecol. Environ. 2020, 2, 6–15. [Google Scholar] [CrossRef]
- Kauffman Craig, M. Grassroots Global Governance: Local Watershed Management Experiments and the Evolution of Sustainable Development; Oxford University Press: New York, NY, USA, 2016. [Google Scholar]
- Vargas, V.; Carrasco, N.; Vargas, C. Local Participation in Forest Watershed Management: Design and Analysis of Experiences in Water Supply Micro-Basins with Forest Plantations in South Central Chile. Forests 2019, 10, 580. [Google Scholar] [CrossRef]
- Springgay, E.; Casallas Ramirez, S.; Janzen, S.; Vannozzi Brito, V. The Forest–Water Nexus: An International Perspective. Forests 2019, 10, 915. [Google Scholar] [CrossRef]
- Dumitras, D.E.; Muresan, I.C.; Jitea, I.M.; Mihai, V.C.; Balazs, S.E.; Iancu, T. Assessing Tourists’ Preferences for Recreational Trips in National and Natural Parks as a Premise for Long-Term Sustainable Management Plans. Sustainability 2017, 9, 1596. [Google Scholar] [CrossRef]
- Grimble, R. Stakeholder Methodologies in Natural Resource Management; Natural Resources Institute of The University of Greenwich: London, UK, 1998. [Google Scholar]
- Chiciudean, G.O.; Harun, R.; Arion, F.H.; Chiciudean, D.I.; Oroian, C.F.; Muresan, I.C. A Critical Approach on Sustainable Renewable Energy Sources in Rural Area: Evidence from North-West Region of Romania. Energies 2018, 11, 2225. [Google Scholar] [CrossRef]
- Kerr, J.; Milne, G.; Chhotray, V.; Baumann, P.; James, A.J. Managing Watershed Externalities in India: Theory and Practice. Environ. Dev. Sustain. 2007, 9, 263–281. [Google Scholar] [CrossRef]
- Březina, D.; Kadavý, J.; Kneifl, M.; Michal, J. Comparison of Economic Efficiency of Management Systems with Prevailing Representation of Sessile Oak (Quercus petraea (Matt.) Liebl.) in the Territory of Křivoklátsko Forest Park (Czech Republic). Forests 2020, 11, 447. [Google Scholar] [CrossRef]
- Oprea, V.; Manea, A.; Frigură, G.; Mirică, I. Studiul de Sinteză Privind Amenajarea Bazinelor Hidrografice Torențiale din România. Inventarul Lucrărilor Executate între Anii 1950–1992, Comportarea și Efectul lor, Propuneri Pentru Continuarea Acțiunii; I.C.A.S.: București, Romania, 1996. [Google Scholar]
- Darghouth, S.; Ward, C.; Gambarelli, G.; Styger, E.; Roux, J. Watershed Management Approaches, Policies, and Operations: Lessons for Scaling Up; Paper No. 11; Water Sector Board Discussion Paper Series 2008; The World Bank: Washington, DC, USA, 2008; Available online: https://documents1.worldbank.org/curated/en/142971468779070723/pdf/442220NWP0dp111Box0327398B01PUBLIC1.pdf (accessed on 4 December 2022).
- Bhaduri, A.; Bogardi, J.; Siddiqi, A.; Voigt, H.; Vörösmarty, C.; Bunn, S.E.; Shrivastava, P.; Lawford, R.; Foster, S.; Kremer, H.; et al. Achieving Sustainable Development Goals from a Water Perspective. Front. Environ. Sci. 2016, 4, 64. [Google Scholar] [CrossRef]
- Basuki, T.M.; Nugroho, H.Y.S.H.; Indrajaya, Y.; Pramono, I.B.; Nugroho, N.P.; Supangat, A.B.; Indrawati, D.R.; Savitri, E.; Wahyuningrum, N.; Purwanto; et al. Improvement of Integrated Watershed Management in Indonesia for Mitigation and Adaptation to Climate Change: A Review. Sustainability 2022, 14, 9997. [Google Scholar] [CrossRef]
- Goldman-Benner, R.L.; Benitez, S.; Boucher, T.; Calvache, A.; Daily, G.; Kareiva, P.; Kroeger, T.; Ramos, A. Water funds and payments for ecosystem services: Practice learns from theory and theory can learn from practice. Oryx 2012, 46, 55–63. [Google Scholar] [CrossRef]
- Pulido-Velazquez, M.; Andreu, J.; Sahuquillo, A.; Pulido-Velazquez, D. Hydro-economic river basin modelling: The application of a holistic surface–groundwater model to assess opportunity costs of water use in Spain. Ecol. Econ. 2008, 66, 51–65. [Google Scholar] [CrossRef]
- Ward, F.A.; Pulido-Velazquez, M. Efficiency, equity, and sustainability in a water quantity–quality optimization model in the Rio Grande basin. Ecol. Econ. 2008, 66, 23–37. [Google Scholar] [CrossRef]
- Bach, H.; Clausen, T.J.; Trang, D.T.; Emerton, L.; Facon, T.; Hofer, T.; Lazarus, K.; Muziol, C.; Noble, A.; Schill, P.; et al. From Local Watershed Management to Integrated River Basin Management at National and Transboundary Levels; Mekong River Commission: Vientiane, Laos, 2011. [Google Scholar]
- Vogl, A.L.; Goldstein, J.H.; Daily, G.C.; Vira, B.; Bremer, L.; McDonald, R.I.; Shemie, D.; Tellman, B.; Cassin, J. Mainstreaming investments in watershed services to enhance water security: Barriers and opportunities. Environ. Sci. Policy 2017, 75, 19–27. [Google Scholar] [CrossRef]
- Crăciun, I.; Badiu, M.; Trofin, F. Evaluarea si siguranta in exploatare a constructiilor hidrotehnice. Rev. Constr. 2010, 60, 56–58. [Google Scholar]
- Autoritatea Pentru Coordonarea Instrumentelor Structurale din Cadrul Ministerul Economiei și Finanţelor. Ghidul Naţional Pentru Analiza Cost-Beneficiu a Proiectelor Finanţate din Instrumentele Structurale; Autoritatea Pentru Coordonarea Instrumentelor Structurale din Cadrul Ministerul Economiei și Finanţelor: Bucureşti, Romania, 2008. [Google Scholar]
- Ciornei, I. Actualizarea și structura costurilor la lucrările de bază pentru corectarea torenților. Studiu de caz in bazinul torențial Doroteia, județul Suceava. Bucov. For. 2019, 19, 107–122. [Google Scholar] [CrossRef]
- UN. Sustainable Land and Water Management, including Integrated Watershed Management Strategies, to Ensure Food Security. Workshop Report by the Secretariat. Conference Glasgow Climate Change Conference—October/November 2021, 2021, FCCC/SB/2021/3, Session SBI 52–55, SBSTA 52–55, SBI 56, SBSTA 56. Available online: https://unfccc.int/sites/default/files/resource/sb2021_03a01_E.pdf (accessed on 4 December 2022).
- Sandhu, H.; Jones, A.; Holden, P. True Cost Accounting of Food Using Farm Level Metrics: A New Framework. Sustainability 2021, 13, 5710. [Google Scholar] [CrossRef]
- Michalke, A.; Stein, L.; Fichtner, R.; Gaugler, T.; Stoll-Kleemann, S. True cost accounting in agri-food networks: A German case study on informational campaigning and responsible implementation. Sustain. Sci. 2022, 17, 2269–2285. [Google Scholar] [CrossRef]
- Cornelia, P.G. True Cost Economics: Ecological Footprint. Procedia Econ. Financ. 2012, 8, 550–555. [Google Scholar] [CrossRef]
- Ertekin, Z. The True Cost: The Bitter Truth behind Fast Fashion. Mark. Glob. Dev. Rev. 2017, 2, 7. [Google Scholar] [CrossRef]
- United Nations Environment Programme, International Good Practice Priciples for Sustainable Infrastructure. 2021, Nairobi. Available online: https://wedocs.unep.org/bitstream/handle/20.500.11822/34853/GPSI.pdf (accessed on 4 December 2022).
- Vassilev, Z. On the economic effectiveness of reconstructions of low productivity coppice forests. In Proceedings of the Jubilee Symposium Marking 125 Years of the Bulgarian Academy of Sciences and 65 Years of the Forest Research Institute Sofia Bulgaria, Sofia, Bulgaria, 22–23 September 1994; pp. 126–130. [Google Scholar]
- Drăgoi, M.; Ciornei, I. Dynamics of hydrological parameters in a small torrential basin covered with full-stocked forests. J. Hortic. For. Biotechnol. 2014, 18, 220–223. [Google Scholar]
- European Central Bank. Statistics. ECB/Eurosystem Policy and Exchange Rates. Euro Foreign Exchange Reference Rates. Available online: https://www.ecb.europa.eu/ (accessed on 4 December 2022).
- DG REGIO—Directorate-General for Regional and Urban Policy. Guide to Cost-Benefit Analysis of Investment Projects. Economic Appraisal Tool for Cohesion Policy 2014–2020. 2015. Available online: https://ec.europa.eu/regional_policy/sources/docgener/studies/pdf/cba_guide.pdf (accessed on 21 November 2018).
- Guvernul României. Hotarare nr. 2139 din 30/11/2004 Pentru Aprobarea Catalogului Privind Clasificarea si Duratele Normale de Functionare a Mijloacelor Fixe, Monitorul Oficial nr. 46 din 13/01/2005; Guvernul României: Bucharest, Romania, 2005. [Google Scholar]
- STAS 5576-88; Amenajarea Bazinelor Hidrografice ale Torenţilor. Lucrări Hidrotehnice. Încadrarea în Clase de Importanţă. I.C.A.S.: București, Romania, 1988.
- STAS 4273-83; Constructii Hidrotehnice [1]. Clase de Importanţă. I.C.A.S.: București, Romania, 1983.
- I.C.A.S. Norme Tehnice Pentru Urmărirea Comportării în Timp a Lucrărilor de Construcții Folosite în Amenajarea Torențilorp; I.C.A.S.—Ministerul Silviculturii: București, Romania, 1984. [Google Scholar]
- Comitetul Local al Comunei Ibăneşti. Planul de Analiză şi Acoperire a Riscurilor; Adoptat şi Aprobat în Sedinţa Consiliului din Data de 26 June 2017 cu Hotărârea nr. 48/2017; Comitetul Local al Comunei Ibăneşti: Ibăneşti, Romania, 2007. [Google Scholar]
- Martínez, V.; Castillo, O.L. The political ecology of hydropower: Social justice and conflict in Colombian hydroelectricity development. Energy Res. Soc. Sci. 2016, 22, 69–78. [Google Scholar] [CrossRef]
- S.C. Experţilor Tehnici Mureş, S.R.L. Studiu de Piaţă Privind Valorile Minime Consemnate pe Piaţa Imobiliară în Anul 2017 Judeţul Mureş; Uniunea Nationala a Notarilor Publici din Romania: Bucharest, Romania, 2018. [Google Scholar]
- Romanian National Institute of Statistics. Available online: https://insse.ro/ (accessed on 9 May 2020).
- National Bank of Romania. Available online: https://www.bnr.ro/ (accessed on 9 May 2020).
- Jakubínský, J.; Pelíšek, I.; Cudlín, P. Linking Hydromorphological Degradation with Environmental Status of Riparian Ecosystems: A Case Study in the Stropnice River Basin, Czech Republic. Forests 2020, 11, 460. [Google Scholar] [CrossRef]
- Wang, J.; Hiroshi, I.; Ning, S.; Khujanazarov, T.; Yin, G.; Guo, L. Attribution Analyses of Impacts of Environmental Changes on Streamflow and Sediment Load in a Mountainous Basin, Vietnam. Forests 2016, 7, 30. [Google Scholar] [CrossRef]
- Boon, P.J.; Holmes, N.T.H.; Raven, P.J. Developing standard approaches for recording and assessing river hydromorphology: The role of the European Committee for Standardization (CEN). Aquat. Conserv. Mar. Freshw. Ecosyst. 2010, 20, 55–61. [Google Scholar] [CrossRef]
- Okumu, B.; Muchapondwa, E. Determinants of Successful Collective Management of Forest Resources: Evidence from Kenyan Community Forest Associations; Economic Research Southern Africa (Working Paper 698). Available online: http://ideas.repec.org/p/rza/wpaper/698.html (accessed on 8 May 2020).
- Socoliuc, M.; Cosmulese, C.-G.; Ciubotariu, M.-S.; Mihaila, S.; Arion, I.-D.; Grosu, V. Sustainability Reporting as a Mixture of CSR and Sustainable Development. A Model for Micro-Enterprises within the Romanian Forestry Sector. Sustainability 2020, 12, 603. [Google Scholar] [CrossRef]
- Jakubínský, J.; Báčová, R.; Svobodová, E.; Kubíček, P.; Herber, V. Small watershed management as a tool of flood risk prevention. Proc. Int. Assoc. Hydrol. Sci. 2014, 364, 243–248. [Google Scholar] [CrossRef]
- Hallegatte, S. A Cost Effective Solution to Reduce Disaster Losses in Developing Countries: Hydro-Meteorological Services, Early Warning, and Evacuation, World Bank Policy Research Working Paper No. 6058/2012. Available online: http://documents.worldbank.org/curated/en/190261468181486694/pdf/WPS6058.pdf (accessed on 10 May 2020).
- Harun, R.; Muresan, I.C.; Arion, F.H.; Dumitras, D.E.; Lile, R. Analysis of Factors that Influence the Willingness to Pay for Irrigation Water in the Kurdistan Regional Government, Iraq. Sustainability 2015, 7, 9574–9586. [Google Scholar] [CrossRef]
- Administraţia Bazinală de Apă Mureş, Planul de Management al Riscului la Inundaţii, 2016. Available online: https://www.mmediu.ro/app/webroot/uploads/files/2016-02-15_PMRI_Mures.pdf (accessed on 4 December 2022).
- Kuriqi, A.; Jurasz, J. Small hydropower plants proliferation and fluvial ecosystem conservation nexus. In Complementarity of Variable Renewable Energy Sources; Academic Press: Cambridge, MA, USA, 2022; pp. 503–527. [Google Scholar] [CrossRef]
- Ninan, K.; Lakshmikanthamma, S. Social Cost-benefit Analysis of a Watershed Development Project in Karnataka, India. AMBIO 2001, 30, 157–161. [Google Scholar] [CrossRef] [PubMed]
- Sahu, S. Cost Benefit Analysis of Participatory Natural Resource Management: A Study of Watershed Development Initiative in Indian Village. 2008. MPRA Paper No. 17134. Available online: https://mpra.ub.uni-muenchen.de/17134/ (accessed on 4 December 2022).
- Salvano, E.; Rousseau, A.N.; Debailleul, G.; Villeneuve, J.-P. An Environmental Benefit-Cost Analysis Case Study of Nutrient Management in an Agricultural Watershed. Can. Water Resour. J. 2006, 31, 105–122. [Google Scholar] [CrossRef]
- Yitbarek, T.W.; Belliethathan, S.; Fetene, M. A Cost-Benefit Analysis of Watershed Rehabilitation: A Case Study in Farta Woreda, South Gondar, Ethiopia. Ecol. Restor. 2010, 28, 46–55. [Google Scholar] [CrossRef]
- Burnett, K.; Wada, C.; Balderston, A. Benefit-cost analysis of watershed conservation on Hawai’i Island. Ecol. Econ. 2017, 131, 262–274. [Google Scholar] [CrossRef]
- Montalto, F.; Behr, C.; Alfredo, K.; Wolf, M.; Arye, M.; Walsh, M. Rapid assessment of the cost-effectiveness of low impact development for CSO control. Landsc. Urban Plan. 2007, 82, 117–131. [Google Scholar] [CrossRef]
- Sun, Y.; Tong, S.; Yang, Y.J. Modeling the cost-effectiveness of stormwater best management practices in an urban watershed in Las Vegas Valley. Appl. Geogr. 2016, 76, 49–61. [Google Scholar] [CrossRef]
- Lee, K.; Kim, H.; Pak, G.; Jang, S.; Kim, L.; Yoo, C.; Yun, Z.; Yoon, J. Cost-effectiveness analysis of stormwater best management practices (BMPs) in urban watersheds. Desalination Water Treat. 2010, 19, 92–96. [Google Scholar] [CrossRef]
- Kuruppu, U.; Rahman, A.; Rahman, M.A. Permeable pavement as a stormwater best management practice: A review and discussion. Environ. Earth Sci. 2019, 78, 327. [Google Scholar] [CrossRef]
- Tomczyk, P.; Wiatkowski, M.; Kuriqi, A. Small Hydropower Plants’ Impacts on the Ecological Status Indicators of Urban Rivers. Appl. Sci. 2022, 12, 12882. [Google Scholar] [CrossRef]
- Kuriqi, A.; Pinheiro, A.N.; Sordo-Ward, A.; Garrote, L. Water-energy-ecosystem nexus: Balancing competing interests at a run-of-river hydropower plant coupling a hydrologic–ecohydraulic approach. Energy Convers. Manag. 2020, 223, 113267. [Google Scholar] [CrossRef]
- Mouttaki, I.; Khomalli, Y.; Maanan, M.; Bagdanavičiūtė, I.; Rhinane, H.; Kuriqi, A.; Pham, Q.B.; Maanan, M. A New Approach to Mapping Cultural Ecosystem Services. Environments 2021, 8, 56. [Google Scholar] [CrossRef]
- Gustavson, K.R.; Lonergan, S.C.; Ruitenbeek, H. Selection and modeling of sustainable development indicators: A case study of the Fraser River Basin, British Columbia. Ecol. Econ. 1999, 28, 117–132. [Google Scholar] [CrossRef]
Month | Annual Average | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
January | February | March | April | May | June | July | August | September | October | November | December | ||
Normal value in 50 years | 26.7 | 24.1 | 28.6 | 48.7 | 72.2 | 88.2 | 78.3 | 62.9 | 49.8 | 41.8 | 34.3 | 32.9 | 588.59 |
Monthly sum 2015 | 22.9 | 28.3 | 26.8 | 35.8 | 67.6 | 127.4 | 32.1 | 78.8 | 72.7 | 37.8 | 36.5 | 11.3 | 578.0 |
Observation | Dry | Little rain | Normal | Dry | Normal | Very rainy | Very dry | Rainy | Very rainy | Normal | Normal | Excessively dry | Normal |
Monthly average 2016 | 36.6 | 28.2 | 38.0 | 71.8 | 71.2 | 76.2 | 77.4 | 71.4 | 17.8 | 75.6 | 52.6 | 19.9 | 636.7 |
Observation | Very rainy | Little rain | Very rainy | Very rainy | Normal | Slightly dry | Normal | Little rain | Excessive rain | Excessive rain | Excessive rain | Very dry | Little rain |
Monthly average 2017 | 12.5 | 24.9 | 23.0 | 42.2 | 127.6 | 82.4 | 80.4 | 29.6 | 43.0 | 61.7 | 48.6 | 38.9 | 614.8 |
Observation | Excessively dry | Normal | Slightly dry | Slightly dry | Excessive rain | Normal | Normal | Excessively dry | Slightly dry | Very rainy | Very rainy | Little rain | Normal |
No. | Chapters and Sub-Chapters of Costs | Total Values (RON, VAT Included) |
---|---|---|
CHAPTER I Expenses for Obtaining and Arranging Land | ||
1.1 | Obtaining Land | 0 |
1.2 | Landscaping | 0 |
1.3 | Environmental Protection Facilities | 0 |
Total Chapter I | 0 | |
CHAPTER II Expenditure on Design and Technical Assistance | ||
2.1 | Field Studies | 2380 |
2.2 | Obtaining Advises, Agreements, and Authorizations | 20,651 |
2.3 | Design and Engineering | 81,277 |
2.4 | Organization of Public Procurement Procedures | 4380 |
2.5 | Technical Assistance | 28,560 |
Total Chapter II | 137,248 | |
CHAPTER III Expenditure on Basic Investment | ||
3.1 | Building and Installation Objective Pr. NEGRU | 1,068,24 |
3.2 | Building and Installation Objective Pr. FÂNCEL | 589,863 |
3.3 | Building and Installation Objective Pr. FĂTĂCIUNIŢA | 257,134 |
Total Chapter III | 1,915,23 | |
CHAPTER IV Other Expenses | ||
4.1 | Organization of Site | 86,186 |
4.1.1. Construction Work and Related Installations | 68,949 | |
4.1.2. Costs Related to the Organization of the Yard | 17,237 | |
4.2 | Fees, Taxes, Legal Fees, Financing Costs | 21,864 |
4.2.1. Commissions, Fees, and Legal Fees | 21,864 | |
4.2.2. Credit Cost | 0 | |
Total Chapter IV | 210,675 | |
TOTAL GENERAL | 2,263,166 |
Name | U.M. | RC | RD |
---|---|---|---|
Volume of alluvium | m3 | 21,000 | 1300 |
Unitary cost | RON/m3 | 74.5 | 74.5 |
Estimated value | RON | 1,564,500 | 96,850 |
Estimated total | RON | 1,661,350 |
No | Name of Drainage Watershed | Name of Protected Objective | Impact Class | Vulnerability Rating |
---|---|---|---|---|
1 | Milestone river 57 | Forest road | IV | III |
Forest fund | IV | II | ||
Villages Dulcea, Brădețelul | III | I | ||
2 | Milestone Pr. Zapodia Scurtă 85 | Forest road | IV | III |
Forest fund | II | II | ||
Villages Dulcea, Brădețelul | III | II | ||
3 | Milestone river 47 | Forest road | IV | III |
Forest fund | IV | II | ||
Villages Dulcea, Brădețelul | III | I | ||
Agricultural fund | III | I | ||
4 | Milestone river 43 | Forest fund | III | II |
Forest road | IV | II | ||
Villages Dulcea, Brădețelul | II | III | ||
Agricultural fund | III | I | ||
5 | Milestone river 40 | Forest road | II | II |
Forest fund | III | III | ||
D.J.153 | II | II | ||
6 | Pr. Buneasa | Villages Dulcea, Brădețelul | III | II |
7 | Milestone Pr. Porcul de Jos 22 | Forest fund | III | II |
Forest road | IV | II | ||
Villages Dulcea, Brădețelul | II | III | ||
Agricultural fund | III | I | ||
8 | Milestone Pr. Tarcea de Sus 80 | villages Dulcea, Brădețelul | III | II |
Forest fund | II | I | ||
Forest road | III | II | ||
9 | Milestone Pr. 45 | Forest road | II | II |
Forest fund | III | III | ||
D.J.153 | II | II | ||
10 | Pr. Tabacu | Forest road | II | II |
Forest fund | II | III | ||
D.J.153 | II | II |
Name | Value of the Affected Area | VR | Damage Estimation | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Objectives | MU | Q | UV (RON) | TV (RON) | Annual Floods | Drafting Floods | TE | ||||||
PA | NV | TV (RON) | PA | NV | TV (RON) | ||||||||
Inside village | Buildings | m2 | 1320 | 700 | 924,000 | III | 20% | 1 | 184,800 | 50% | 0.1 | 46,200 | 231,000 |
gardens, orchards | m2 | 7183 | 6 | 43,098 | III | 20% | 1 | 8,619,6 | 50% | 0.1 | 2,154.9 | 10,774.5 | |
Forestry roads | Road trips | km | 1.7 | 450,000 | 765,000 | II | 15% | 1 | 114,750 | 40% | 0.1 | 30,600 | 145,350 |
Tile footbridge | piece | 2 | 80,000 | 160,000 | II | 15% | 1 | 24,000 | 40% | 0.1 | 6400 | 30,400 | |
Tubular footbridge | piece | 5 | 23,000 | 115,000 | II | 15% | 1 | 17,250 | 40% | 0.1 | 4600 | 21,850 | |
Agricultural land | Agricultural culture | ha | 4.23 | 20,000 | 84,600 | I | 10% | 1 | 8460 | 25% | 0.1 | 2115 | 10,575 |
Total (RON) | 449,949.5 |
Indicator | Measurement Unit | Value | Observation |
---|---|---|---|
Investment | RON | 2,263,166.00 | RON 1,323,226.29—at the value of year 2018, after the investment value was discounted |
Payback Period | year | 5 years, 0 months, and 15 days | Six times shorter than normal service life Confirms the efficiency of the investment |
Net Present Value | RON | 5,612,730.67 | is positive Confirms the efficiency of the investment |
Internal Rate of Return | % | 22 | is much higher than the inflation rate and bank-interest rates on deposits Confirms the efficiency of the investment |
Savings-to-Investment Ratio | No. | 3.6 | Each invested RON returns 3.6 RON net profit Confirms the efficiency of the investment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arion, I.D.; Arion, F.H.; Tăut, I.; Mureșan, I.C.; Ilea, M.; Dîrja, M. Investment in Forest Watershed—A Model of Good Practice for Sustainable Development of Ecosystems. Water 2023, 15, 754. https://doi.org/10.3390/w15040754
Arion ID, Arion FH, Tăut I, Mureșan IC, Ilea M, Dîrja M. Investment in Forest Watershed—A Model of Good Practice for Sustainable Development of Ecosystems. Water. 2023; 15(4):754. https://doi.org/10.3390/w15040754
Chicago/Turabian StyleArion, Iulia Diana, Felix H. Arion, Ioan Tăut, Iulia Cristina Mureșan, Marioara Ilea, and Marcel Dîrja. 2023. "Investment in Forest Watershed—A Model of Good Practice for Sustainable Development of Ecosystems" Water 15, no. 4: 754. https://doi.org/10.3390/w15040754
APA StyleArion, I. D., Arion, F. H., Tăut, I., Mureșan, I. C., Ilea, M., & Dîrja, M. (2023). Investment in Forest Watershed—A Model of Good Practice for Sustainable Development of Ecosystems. Water, 15(4), 754. https://doi.org/10.3390/w15040754