Model-Based Approach for Treated Wastewater Reuse Strategies Focusing on Water and Its Nitrogen Content “A Case Study for Olive Growing Farms in Peri-Urban Areas of Sousse, Tunisia”
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Framework
2.2. Study Area Description
2.3. Description of the Applied Approach
2.3.1. Treated Wastewater Reuse Value Chain
2.3.2. Crop Simulation Model
- Crop model description: Crop models are an important tool for optimizing irrigation and fertilization strategies to maximize yields. In this context, a dynamic system, based on the “ToyCrop” model [30] and the model of Pelak et al. [29], was developed to describe the interaction of three main components: Soil moisture , total soil nitrogen content and olive biomass production . The model is interpreted on the daily timescale and applied over the course of a single growing season.
- Soil water balance: The relative soil humidity in the root zone (dimensionless between 0 and 1) is modeled as a balance between gains from rainfall () and irrigation ( and losses mainly due to soil evaporation (), crop transpiration () and the combined run off and percolation rate () as indicated in Equation (1) [30]:
- Soil nitrogen balance: The soil nitrogen balance estimates the full range of nutrient inputs to and removals (offtakes) from soils. The input source is from fertigation, which in the context of reuse irrigation, is taken as the product of the irrigation flow rate and the nitrogen concentration of the irrigation water . The main removal sources are leaching and plant uptake for crop production, as presented in Equation (9) [29].
- Crop biomass: The model assumes that the biomass production is proportional to olive transpiration , with growth restriction in the case of water and nitrogen limitations (Equation (13))
2.3.3. Sensitivity Analysis
2.3.4. The Viability Analysis
- The initial fertilization i.e., the amount of nitrogen at the time of seeding
- The nitrogen concentration in the irrigation water
- The maximal flow rate of the irrigation water
- -
- S(t) is above the threshold S* for any t. This means that there is no hydric stress
- -
- The ratio N(t)/S(t) is above the threshold at any t. This means that there is no nitrogen stress
2.4. Data Used and Processing
- Level 1: Local decision makers. The main targets of the discussion were (i) to identify the role of each stakeholder involved in major process of reuse in the study area; (ii) to collect historical records related to monitoring the quantity and quality of treated water; (iii) to distinguish between the main steps of processing, treatment, distribution and reuse; (iv) to indicate principal obstacles and barriers of reuse.
- Level 2: Farmers at the olive growing farms. Farmers surveyed were selected based on water reuse and agriculture production. The main questions are about reuse, land use, crops characteristics, agricultural practices and farmer’s perceptions and behaviors toward reuse.
- ✓
- Plot 1: No irrigation for more than 3 years
- ✓
- Plot 2: Moderate irrigation schedule and only olive trees were irrigated
- ✓
- Plot 3: Substantial irrigation. Crops system is based on olive trees intercropped with fodder
3. Results and Discussion
3.1. Value Chain of Treated Wastewater Reuse
- Phase 1: Wastewater collection and treatment. ONAS is the main actor involved in this phase. It has the responsibility to collect raw water and to do the appropriate treatment in WWTP of Msaken. This WWTP was constructed in 1996. The treated plant includes a secondary treatment based on activated sludge process. The daily treatment capacity of domestic and industrial sewage is 7844 m3. The final effluent is reused in olive tree irrigation but the major portion of effluent is discharged in the environment.
- Phase 2: Reuse. Several actors are involved in this action at local (Farmers/GDA), regional (CRDA) and central (DGGREE) level. Farmers are the users of treated wastewater. The role of GDA is to distribute water for the registered end-users with adequate pricing schemes to encourage water reuse schemes. The fixed price is 0.035 DT/m3. The Msaken irrigated perimeter is created in 2022. The total area of the perimeter is 178 hectares. The registered farmers in the GDA are about 77. Additionally, the main role of CRDA is to supervise the functioning of the irrigated perimeter and water distribution. CRDA Staff has also the responsibility to implement extension services programs for farmers. However, the main activities of DGGREE are to implement the national strategies of reuse.
- Phase 3: Control authorities. The main role of these institutions is to control the quality of treated wastewater considering the Tunisian standard and guidelines. NT 106.03 of 1989 is the national standard for reuse for agriculture purposes. NT106.02 of 1989 and the updated version of the Ministerial decree of 2018 were produced for the control of effluent loaded in the environment.
3.2. Monitoring of Treated Wastewater Reuse
3.2.1. Volume of Effluent Reused
3.2.2. Quality of Effluent Reused
3.2.3. Soil Properties
3.3. SWOT Analysis
3.4. Crop Model Simulation
3.4.1. Model Calibration
3.4.2. Soil Humidity Simulation
3.4.3. Soil Nitrogen Content Simulation
3.4.4. Sensitivity Analysis Results
3.4.5. Viability Analysis
- ✓
- Phase 1: No irrigation until the trajectory touches (or is very close) the boundary of the domain S = S*
- ✓
- Phase 2: Minimum irrigation strategy to keep the trajectory on the blue boundary S = S*, which is determined such that with S = S*.
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Miller, J.D.; Hutchin, M. The impacts of urbanisation and climate change on urban flooding and urban water quality: A review of the evidence concerning the United Kingdom. J. Hydrol. Reg. Stud. 2017, 12, 345–362. [Google Scholar] [CrossRef]
- Cullis, J.D.S.; Horn, A.; Rossouw, N.; Fisher-Jeffes, L.; Kunneke, M.M.; Hoffman, W. Urbanisation, climate change and its impact on water quality and economic risks in a water scarce and rapidly urbanising catchment: Case study of the Berg River Catchment. H2Open J. 2019, 2, 146–167. [Google Scholar] [CrossRef]
- UN-Water, Summary Progress Update 2021: SDG 6—Water and Sanitation for All | UN-Water. Available online: https://www.unwater.org/publications/summary-progress-update-2021-sdg-6-water-and-sanitation-all (accessed on 26 December 2022).
- UN-Water, SDG 6 Synthesis Report 2018 on Water and Sanitation | UN-Water. Available online: https://www.unwater.org/publications/sdg-6-synthesis-report-2018-water-and-sanitation (accessed on 26 December 2022).
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; Resolution adopted by the General Assembly on 25 September 2015, A/RES/70/1; United Nations: New York, NY, USA, 2015. [Google Scholar]
- Helmecke, M.; Fries, E.; Schulte, C. Regulating Water Reuse for Agricultural Irrigation: Risks Related to Organic Micro-Contaminants. Environ. Sci. Eur. 2020, 32, 4. [Google Scholar] [CrossRef]
- Ait-Mouheb, N.; Bahri, A.; Thayer, B.; Benyahia, B.; Bourrié, G.; Cherki, B.; Condom, N.; Declercq, R.; Gunes, A.; Héran, M.; et al. The Reuse of Reclaimed Water for Irrigation around the Mediterranean Rim: A Step towards a More Virtuous Cycle? Reg. Environ. Chang. 2018, 18, 693–705. [Google Scholar] [CrossRef]
- The United Nations World Water Development Report 2018: Nature-Based Solutions for Water; UNESCO: Paris, France, 2018; pp. 1–139.
- Van Rensburg, P. Overcoming Global Water Reuse Barriers: The Windhoek Experience. Int. J. Water Resour. Dev. 2016, 32, 622–636. [Google Scholar] [CrossRef]
- BPEH, Bureau de la Planification et des Equilibres Hydrauliques. Rapport National du Secteur de l’Eau de 2020; Ministère de l’Agriculture, des Ressources Hydrauliques et de la Pêche: Tunis, Tunisia, 2020.
- African Water Facility. Elaboration de la Vision et de la Stratégie du Secteur de l’Eau à L’horizon 2050 Pour la Tunisie «Eau 2050»; Rapport D’evaluation; African Development Bank Group: Abidjan, Ivory Coast, 2016. [Google Scholar]
- STUDI International/GKW. Elaboration de la Vision et de la Stratégie du Secteur de L’eau à L’horizon 2050 Pour la Tunisie, EAU 2050; Etape 3: Réalisation des Etudes Prospectives Multithématiques et Etablissement de Modèles Prévisionnels Offre-Demande (Bilans), Volume I: Réalisation des Etudes Prospectives Multithématiques, Version provisoire; Ministère de l’Agriculture, des Ressources Hydrauliques et de la Pêche Maritime Bureau de la Planification et des Equilibres Hydrauliques, République Tunisienne, KFW, GIZ: Tunis, Tunisia, 2020.
- BRL Ingenierie, Baastel, ONF International. Elaboration du Plan Directeur National de Réutilisation des Eaux Usées Traitées en Tunisie-WATER REUSE 2050, Phase 2–Prospective de la Filière à L’horizon 2050; Ministère de l’Agriculture, des Ressources Hydrauliques et de la Pêche, DG/GREE, AFD: Tunis, Tunisia, 2022.
- Bahri, A. Water Reuse in Tunisia: Stakes and prospects. In Atelier du PCSI (Programme Commun Systèmes Irrigués) sur une Maîtrise des Impacts Environnementaux de l’Irrigation (pp. 11-p). Cirad-IRD-Cemagref 2001. Available online: http://hal.cirad.fr/cirad-00180335/document (accessed on 5 December 2022).
- ONAS (Office National de l’Assainissement). Annual Report 2019; ONAS: Tunis, Tunisia, 2019.
- Voulvoulis, N. Water Reuse from a Circular Economy Perspective and Potential Risks from an Unregulated Approach. Curr. Opin Environ. Sci. Health 2018, 2, 32–45. [Google Scholar] [CrossRef]
- Rajasulochana, P.; Preethy, V. Comparison on Efficiency of Various Techniques in Treatment of Waste and Sewage Water–A Comprehensive Review. Resour.-Effic. Technol. 2016, 2, 175–184. [Google Scholar] [CrossRef]
- Kesari, K.K.; Soni, R.; Jamal, Q.M.S.; Tripathi, P.; Lal, J.A.; Jha, N.K.; Siddiqui, M.H.; Kumar, P.; Tripathi, V.; Ruokolainen, J. Wastewater Treatment and Reuse: A Review of Its Applications and Health Implications. Water Air Soil Pollut 2021, 232, 208. [Google Scholar] [CrossRef]
- Kalboussi, N.; Biard, Y.; Pradeleix, L.; Rapaport, A.; Sinfort, C.; Ait-mouheb, N. Life Cycle Assessment as Decision Support Tool for Water Reuse in Agriculture Irrigation. Sci. Total Environ. 2022, 836, 155486. [Google Scholar] [CrossRef]
- Maquet, C. Wastewater reuse: A solution with a future. Field Actions Science Reports. J. Field Actions 2020, 22, 64–69. [Google Scholar]
- WHO. Safe Use of Wastewater, Excreta and Greywater Guidelines for the Safe Use Of. World Health 2006, 2, 204. [Google Scholar]
- Qadir, M.; Galibourg, D.; Drechsel, P.; Qadir, M.; Galibourg, D. The WHO Guidelines for Safe Wastewater Use in Agriculture: A Review of Implementation Challenges and Possible Solutions in the Global South. Water 2022, 14, 864. [Google Scholar] [CrossRef]
- Steduto, P.; Hsiao, T.C.; Raes, D.; Fereres, E. AquaCrop—The FAO Crop Model to Simulate Yield Response to Water: I. Concepts Underlying Princ. Agron. J. 2009, 101, 426–437. [Google Scholar] [CrossRef]
- Brisson, N.; Gary, C.; Justes, E.; Roche, R.; Mary, B.; Ripoche, D.; Zimmer, D.; Sierra, J.; Bertuzzi, P.; Burger, P.; et al. An overview of the crop model STICS. Eur. J. Agron. 2003, 18, 309–332. [Google Scholar] [CrossRef]
- Cheviron, B.; Vervoort, R.W.; Albasha, R.; Dairon, R.; le Priol, C.; Mailhol, J.C. Framework to Use Crop Models for Multi-Objective Constrained Optimization of Irrigation Strategies. Environ. Model. Softw. 2016, 86, 145–157. [Google Scholar] [CrossRef]
- Lenz-Wiedemann, V.I.S.; Klar, C.W.; Schneider, K. Development and Test of a Crop Growth Model for Application within a Global Change Decision Support System. Ecol. Modell. 2010, 221, 314–329. [Google Scholar] [CrossRef]
- Klar, C.W.; Fiener, P.; Neuhaus, P.; Lenz-Wiedemann, V.I.S.; Schneider, K. Modelling of Soil Nitrogen Dynamics within the Decision Support System DANUBIA. Ecol. Modell. 2008, 217, 181–196. [Google Scholar] [CrossRef]
- Haddon, A.; Rapaport, A.; Roux, S.; Harmand, J. Multi-objective Dynamic Optimization of Crops Irrigated with Reused Treated Wastewater. In Proceedings of the SIMS EUROSIM 2021 Conference on Modelling and Simulation, Finnish Society of Automation, Helsinki, Finland, 21–23 September 2021. [Google Scholar]
- Pelak, N.; Revelli, R.; Porporato, A. A Dynamical Systems Framework for Crop Models: Toward Optimal Fertilization and Irrigation Strategies under Climatic Variability. Ecol. Modell. 2017, 365, 80–92. [Google Scholar] [CrossRef]
- Kalboussi, N.; Roux, S.; Cheviron, B.; Harmand, J.; Rapaport, A.; Sinfort, C. Apport de La Modélisation Pour l’aide à La Décision En Vue de La Réutilisation Agricole Des Eaux Usées Traitées. J. Int. Sci. Tech. L’eau L’environ. 2018, 3, 102–107. [Google Scholar]
- Kalboussi, N.; Roux, S.; Boumaza, K.; Sinfort, C.; Rapaport, A. About Modeling and Control Strategies for Scheduling Crop Irrigation. IFAC-PapersOnLine 2019, 52, 43–48. [Google Scholar] [CrossRef]
- Boumaza, K.; Kalboussi, N.; Rapaport, A.; Roux, S.; Sinfort, C. Optimal control of a crop irrigation model under water scarcity. Optim. Control Appl. Methods 2021, 42, 1612–1631. [Google Scholar] [CrossRef]
- CRDA (Commissariat Régional au Développement Agricole); Department of Water Resource. Annual Report; CRDA: Sousse, Tunisia, 2021.
- GEREP Environnement. Programme de Veille Environnementale de la Phase “Exploitation » du Périmètre Irrigué par les Eaux Usées Traitées de Msaken; Ministère de l’Agriculture, des Ressources Hydrauliques et de la pêche, Commissariat Régional de Développement Agricole (CRDA) de Sousse: Tunis, Tunisia, 2016.
- UNIDO (United Nations Industrial Development Organization). Agro-Value Chain Analysis and Development: The UNIDO Approach; UNIDO: Vienna, Austria, 2009. [Google Scholar]
- Chowell, G.; Hyman, J.M.; Bettencourt, L.M.A.; Castillo-Chavez, C. Mathematical and Statistical Estimation Approaches in Epidemiology; Springer: Dordrecht, The Netherlands, 2009. [Google Scholar] [CrossRef]
- Aubin, J.; Bayen, A.; Saint-Pierre, P. Viability Theory: New Directions; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2011. [Google Scholar] [CrossRef]
- INNORPI. Protection de l’Environnement, Utilisation des Eaux Usées Traitées a des Fins Agricoles Spécifications Physico-Chimiques et Biologiques, NT 106:03; INNORPI: Tunis, Tunisia, 1989. [Google Scholar]
- Pescod, M.B. Wastewater Treatment and Use in Agriculture; FAO Irrigation and Drainage Paper 47; Food and Agriculture Organization of the United Nations: Rome, Italy, 1992. [Google Scholar]
- Official Journal of the European Union, Regulation (EU) 2020/741 of the European Parliament and of the Council on Minimum Requirements for Water Reuse. L 177/32 5.6.2020. Available online: https://eur-lex.europa.eu/legal-content/FR/TXT/PDF/?uri=CELEX:32020R0741 (accessed on 2 February 2023).
- EPA, United States Environmental Protection Agency. Method 410.3: Chemical Oxygen Demand (Titrimetric, High Level for Saline Waters) by Titration; Editorial Revision; United States Environmental Protection Agency: Washington, DC, USA, 1978.
- Delzer, G.C.; McKenzie, S.W. Five-Day Biochemical Oxygen Demand; Book 9, 3rd ed.; U.S. Geological Survey Techniques of Water-Resources Investigations: Virginia, VA, USA, 2003; Chapter A7.0. [CrossRef]
- Rhee, K.C. Determination of Total Nitrogen. Curr. Protoc. Food Anal. Chem. 2001, B1.2.1–B1.2.9. [Google Scholar] [CrossRef]
- Greggio, N.; Giambastiani, B.M.S.; Balugani, E.; Amaini, C.; Antonellini, M. High-Resolution Electrical Resistivity Tomography (ERT) to Characterize the Spatial Extension of Freshwater Lenses in a Salinized Coastal Aquifer. Water 2018, 10, 1067. [Google Scholar] [CrossRef]
- Hasan, M.; Shang, Y.; Jin, W. Delineation of Weathered/Fracture Zones for Aquifer Potential Using an Integrated Geophysical Approach: A Case Study from South China. J. Appl Geophy. 2018, 157, 47–60. [Google Scholar] [CrossRef]
- Hung, Y.C.; Chou, H.S.; Lin, C.P. Appraisal of the Spatial Resolution of 2D Electrical Resistivity Tomography for Geotechnical Investigation. Appl. Sci. 2020, 10, 4394. [Google Scholar] [CrossRef]
- Melgar, J.C.; Mohamed, Y.; Serrano, N.; García-Galavís, P.A.; Navarro, C.; Parra, M.A.; Benlloch, M.; Fernández-Escobar, R. Long Term Responses of Olive Trees to Salinity. Agric. Water Manag. 2009, 96, 1105–1113. [Google Scholar] [CrossRef]
- Fichtner, E.J.; Lovatt, C.J. Alternate Bearing in Olive. Acta Hortic. 2018, 1199, 103–108. [Google Scholar] [CrossRef]
- Ben Ahmed, C.; ben Rouina, B.; Boukhris, M. Effects of Water Deficit on Olive Trees Cv. Chemlali under Field Conditions in Arid Region in Tunisia. Sci. Hortic. 2007, 113, 267–277. [Google Scholar] [CrossRef]
- Rodríguez-Eugenio, N.; McLaughlin, M.; Pennock, D. Soil Pollution: A Hidden Reality; FAO: Rome, Italy, 2018. [Google Scholar]
- Tilman, D.; Cassman, K.G.; Matson, P.A.; Naylor, R.; Polasky, S. Agricultural Sustainability and Intensive Production Practices. Nature 2002, 418, 671–677. [Google Scholar] [CrossRef]
- Saliu, T.D.; Oladoja, N.A. Nutrient Recovery from Wastewater and Reuse in Agriculture: A Review. Environ. Chem. Lett. 2021, 19, 2299–2316. [Google Scholar] [CrossRef]
- Hidri, Y.; Hibar, K.; Bchir, A.; Werheni, R.; Jedidi, N.; Hassen, A. Changes in the Microbial Properties of Olive Cultivated Soils under Short, Medium and Long-Term Irrigation with Treated Wastewater. Asian J. Soil Sci. 2021, 5, 1–20. [Google Scholar] [CrossRef]
- Carpenter, S.R.; Caraco, N.F.; Correll, D.L.; Howarth, R.W.; Sharpley, A.N.; Smith, V.H. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. Ecol. Appl. 1998, 8, 559–568. [Google Scholar] [CrossRef]
- Haddon, A.; Kechichian, L.; Harmand, J.; Dejean, C. Linking Soil Moisture Sensors and Crop Models for Irrigation Management, 2022. Available online: https://hal.inrae.fr/hal-03909071 (accessed on 21 December 2022).
- Fertilisation-FRANCE OLIVE-AFIDOL. Available online: https://afidol.org/oleiculteur/fertilisation/ (accessed on 27 December 2022).
- Fernández-Escobar, R.; García-Novelo, J.M.; Molina-Soria, C.; Parra, M.A. An approach to nitrogen balance in olive orchards. Sci. Hortic. 2012, 135, 219–226. [Google Scholar] [CrossRef]
Parameter | Unit | Min | Max | Mean | Std. Deviation | Tunisia Standards NT 106-03 |
---|---|---|---|---|---|---|
Conductivity | µS/cm | 2839 | 3104 | 2919 | 90.84 | 7000 |
TSS | mg/l | 16 | 27 | 22 | 3.36 | 30 |
DBO5 | mg/l | 9 | 30 | 20.08 | 6.52 | 30 |
COD | mg/l | 50 | 89 | 69.45 | 14.02 | 90 |
Plot 1 (No Irrigation) | Plot 2 (Moderate Irrigation) | Plot 3 (High Irrigation) | ||||
---|---|---|---|---|---|---|
Depth | N (mg/kg) | P2O5 (mg/kg) | N (mg/kg) | P2O5 (mg/kg) | N (mg/kg) | P2O5 (mg/kg) |
0–20 | 440 | 3.2 | 710 | 3.2 | 1120 | 22.4 |
20–40 | 320 | 1.8 | 350 | 0.8 | 810 | 10.5 |
40–60 | 360 | 2.9 | 220 | 6.5 | 680 | 10.2 |
Strengths | Weaknesses |
---|---|
|
|
Opportunities | Threats |
|
|
Parameter | Name | Value | Units | Source |
---|---|---|---|---|
S* | Point of incipient stomatal closure | 0.62 | - | Soil analysis |
Sw | Wilting point | 0.02 | - | Assumption |
Sh | Hygroscopic point | 0.02 | - | Soil analysis |
Z | Root Depth | 0.8 | m | ERT method |
Soil porosity | 0.21 | - | Soil analysis |
Parameter | Name | Value | Units |
---|---|---|---|
Maximum N concentration taken up | 0.047 | kg N/m3 | |
Normalized daily water productivity | 5539.8 | kg B/m2/day | |
Saturated hydraulic conductivity | 15.25 | m/d | |
Leakage parameter | 9.03 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kefi, M.; Kalboussi, N.; Rapaport, A.; Harmand, J.; Gabtni, H. Model-Based Approach for Treated Wastewater Reuse Strategies Focusing on Water and Its Nitrogen Content “A Case Study for Olive Growing Farms in Peri-Urban Areas of Sousse, Tunisia”. Water 2023, 15, 755. https://doi.org/10.3390/w15040755
Kefi M, Kalboussi N, Rapaport A, Harmand J, Gabtni H. Model-Based Approach for Treated Wastewater Reuse Strategies Focusing on Water and Its Nitrogen Content “A Case Study for Olive Growing Farms in Peri-Urban Areas of Sousse, Tunisia”. Water. 2023; 15(4):755. https://doi.org/10.3390/w15040755
Chicago/Turabian StyleKefi, Mohamed, Nesrine Kalboussi, Alain Rapaport, Jérôme Harmand, and Hakim Gabtni. 2023. "Model-Based Approach for Treated Wastewater Reuse Strategies Focusing on Water and Its Nitrogen Content “A Case Study for Olive Growing Farms in Peri-Urban Areas of Sousse, Tunisia”" Water 15, no. 4: 755. https://doi.org/10.3390/w15040755
APA StyleKefi, M., Kalboussi, N., Rapaport, A., Harmand, J., & Gabtni, H. (2023). Model-Based Approach for Treated Wastewater Reuse Strategies Focusing on Water and Its Nitrogen Content “A Case Study for Olive Growing Farms in Peri-Urban Areas of Sousse, Tunisia”. Water, 15(4), 755. https://doi.org/10.3390/w15040755