Barriers to Innovation in Water Treatment
Abstract
:1. Introduction
2. Drivers for Innovation in the Water Sector
3. Status of Water Innovation
4. The Role of Water Pricing
5. The Role of Regulations
6. Other Barriers to Innovation
7. The Way Forward
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maier, J.; Palazzo, J.; Geyer, R.; Steigerwald, D.G. How much potable water is saved by wastewater recycling? Quasi-experimental evidence from California. Resour. Conserv. Recycl. 2022, 176, 105948. [Google Scholar] [CrossRef]
- Wang, Y.; Serventi, L. Sustainability of dairy and soy processing: A review on wastewater recycling. J. Clean. Prod. 2019, 237, 117821. [Google Scholar] [CrossRef]
- Watkinson, A.J.; Murby, E.J.; Costanzo, S.D. Costanzo, Removal of antibiotics in conventional and advanced wastewater treatment: Implications for environmental discharge and wastewater recycling. Water Res. 2007, 41, 4164–4176. [Google Scholar] [CrossRef]
- Suwaileh, W.; Johnson, D.; Hilal, N. Brackish water desalination for agriculture: Assessing the performance of inorganic fertilizer draw solutions. Desalination 2019, 456, 53–63. [Google Scholar] [CrossRef]
- Ortiz, J.M.; Sotoca, J.A.; Expósito, E.; Gallud, F.; García-García, V.; Montiel, V.; Aldaz, A. Brackish water desalination by electrodialysis: Batch recirculation operation modeling. J. Membr. Sci. 2005, 252, 65–75. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Khalil, A.; Hilal, N. Emerging desalination technologies: Current status, challenges and future trends. Desalination 2021, 517, 115183. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Hashaikeh, R.; Hilal, N. Hybrid technologies: The future of energy efficient desalination—A review. Desalination 2020, 495, 114659. [Google Scholar] [CrossRef]
- Doorn, N. Artificial intelligence in the water domain: Opportunities for responsible use. Sci. Total Environ. 2021, 755, 142561. [Google Scholar] [CrossRef]
- Harou, J.J.; Garrone, P.; Rizzoli, A.E.; Maziotis, A.; Castelletti, A.; Fraternali, P.; Novak, J.; Wissmann-Alves, R.; Ceschi, P.A. Smart Metering, Water Pricing and Social Media to Stimulate Residential Water Efficiency: Opportunities for the SmartH2O Project. Procedia Eng. 2014, 89, 1037–1043. [Google Scholar] [CrossRef] [Green Version]
- Alshehri, M.; Bhardwaj, A.; Kumar, M.; Mishra, S.; Gyani, J. Cloud and IoT based smart architecture for desalination water treatment. Environ. Res. 2021, 195, 110812. [Google Scholar] [CrossRef]
- Benghanem, M.; Mellit, A.; Emad, M.; Aljohani, A. Monitoring of Solar Still Desalination System Using the Internet of Things Technique. Energies 2021, 14, 6892. [Google Scholar] [CrossRef]
- Salam, A. Internet of Things for Water Sustainability, in Internet of Things for Sustainable Community Development: Wireless Communications, Sensing, and Systems; Springer International Publishing: Cham, Switzerland, 2020; pp. 113–145. [Google Scholar]
- Thomas, D.A.; Ford, R.R. The Crisis of Innovation in Water and Wastewater; Edward Elgar Publishing: Cheltenham, UK, 2005. [Google Scholar]
- Leeming, J. How researchers are ensuring that their work has an impact. Nature 2018, 556, 139–142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sanami, M.; Flood, T.; Hall, R.; Kingscott, F.; Jayne, D.; Culmer, P. Translating healthcare innovation from academia to industry. Adv. Mech. Eng. 2017, 9, 1687814017694114. [Google Scholar] [CrossRef] [Green Version]
- Alegre, H.; Coelho, S.T.; Feliciano, J.F.; Matos, R. Boosting innovation in the water sector—The role and lessons learned from collaborative projects. Water Sci. Technol. 2015, 72, 1516–1523. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahé, G.; Abdo, G.; Amoussou, E.; Brou, T.; Dietrich, S.; El Tayeb, A.; van Lanen, H.; Meddi, M.; Mishra, A.; Orange, D.; et al. The UNESCO FRIEND-Water program: Accelerates, shares and transfers knowledge and innovation in hydrology across the world in the frame of the Intergovernmental Hydrological Program (IHP). Proc. Int. Assoc. Hydrol. Sci. 2021, 384, 5–18. [Google Scholar] [CrossRef]
- Carter, J. Fostering Innovation within Water Utilities: Case Studies; Water Research Foundation: Denver, CO, USA, 2017. [Google Scholar]
- Carter, J.T.; Foresman, J.; Means, E.; Owen, D.; Jones, T.M. A Framework for Driving Innovation in Your Water and Wastewater Utility. J. Am. Water Work. Assoc. 2017, 109, 32–39. [Google Scholar] [CrossRef]
- De Graaf, R.E.; Dahm, R.J.; Icke, J.; Goetgeluk, R.W.; Jansen SJ, T.; Van de Ven FH, M. Perspectives on innovation: A survey of the Dutch urban water sector. Urban Water J. 2011, 8, 1–12. [Google Scholar] [CrossRef]
- Kiparsky, M.; Thompson, B.H.; Binz, C.; Sedlak, D.L.; Tummers, L.; Truffer, B. Barriers to Innovation in Urban Wastewater Utilities: Attitudes of Managers in California. Environ. Manag. 2016, 57, 1204–1216. [Google Scholar] [CrossRef]
- McDonald, D.A. Innovation and new public water. J. Econ. Policy Reform 2020, 23, 67–82. [Google Scholar] [CrossRef]
- Krozer, Y.; Hophmayer-Tokich, S.; van Meerendonk, H.; Tijsma, S.; Vos, E. Innovations in the water chain–experiences in The Netherlands. J. Clean. Prod. 2010, 18, 439–446. [Google Scholar] [CrossRef]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef] [Green Version]
- Mekonnen, M.M.; Hoekstra, A. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, J.; Zhang, G.; Zhang, Y.; Guan, X.; Wei, Y.; Guo, R. Global desertification vulnerability to climate change and human activities. Land Degrad. Dev. 2020, 31, 1380–1391. [Google Scholar] [CrossRef]
- Shukla, P.R.; Skea, J.; Calvo Buendia, E.; Masson-Delmotte, V.; Pörtner, H.O.; Roberts, D.C.; Zhai, P.; Slade, R.; Connors, S.; van Diemen, R.; et al. Climate Change and Land: An IPCC Special Report on Climate Change, Desertification, Land Degradation, Sustainable Land Management, Food Security, and Greenhouse Gas Fluxes in Terrestrial Ecosystems; IPCC: Geneva, Switherland, 2019. [Google Scholar]
- Burrell, A.; Evans, J.; De Kauwe, M. Anthropogenic climate change has driven over 5 million km2 of drylands towards desertification. Nat. Commun. 2020, 11, 3853. [Google Scholar] [CrossRef] [PubMed]
- Oiro, S.; Comte, J.C.; Soulsby, C.; MacDonald, A.; Mwakamba, C. Depletion of groundwater resources under rapid urbanisation in Africa: Recent and future trends in the Nairobi Aquifer System, Kenya. Hydrogeol. J. 2020, 28, 2635–2656. [Google Scholar] [CrossRef]
- Mojid, M.A.; Parvez, M.F.; Mainuddin, M.; Hodgson, G. Water Table Trend—A Sustainability Status of Groundwater Development in North-West Bangladesh. Water 2019, 11, 1182. [Google Scholar] [CrossRef] [Green Version]
- Wendt, D.E.; Van Loon, A.F.; Scanlon, B.R.; Hannah, D.M. Managed aquifer recharge as a drought mitigation strategy in heavily-stressed aquifers. Environ. Res. Lett. 2021, 16, 014046. [Google Scholar] [CrossRef]
- Suwaileh, W.; Johnson, D.; Hilal, N. Membrane desalination and water re-use for agriculture: State of the art and future outlook. Desalination 2020, 491, 114559. [Google Scholar] [CrossRef]
- Qasim, M.; Badrelzaman, M.; Darwish, N.N.; Darwish, N.A.; Hilal, N. Reverse osmosis desalination: A state-of-the-art review. Desalination 2019, 459, 59–104. [Google Scholar] [CrossRef] [Green Version]
- Ofori, S.; Puškáčová, A.; Růžičková, I.; Wanner, J. Treated wastewater reuse for irrigation: Pros and cons. Sci. Total Environ. 2021, 760, 144026. [Google Scholar] [CrossRef]
- Lefebvre, O. Beyond NEWater: An insight into Singapore’s water reuse prospects. Curr. Opin. Environ. Sci. Health 2018, 2, 26–31. [Google Scholar] [CrossRef]
- Mu’azu, N.D.; Abubakar, I.; Blaisi, N. Public acceptability of treated wastewater reuse in Saudi Arabia: Implications for water management policy. Sci. Total Environ. 2020, 721, 137659. [Google Scholar] [CrossRef] [PubMed]
- Saliba, R.; Callieris, R.; D’Agostino, D.; Roma, R.; Scardigno, A. Stakeholders’ attitude towards the reuse of treated wastewater for irrigation in Mediterranean agriculture. Agric. Water Manag. 2018, 204, 60–68. [Google Scholar] [CrossRef]
- Speight, V.L. Innovation in the water industry: Barriers and opportunities for US and UK utilities. Wiley Interdiscip. Rev. Water 2015, 2, 301–313. [Google Scholar] [CrossRef]
- Roberts, E.B. Managing Invention and Innovation. Res. Technol. Manag. 2007, 50, 35–54. [Google Scholar] [CrossRef]
- Kiparsky, M.; Sedlak, D.L.; Thompson, B.H., Jr.; Truffer, B. The Innovation Deficit in Urban Water: The Need for an Integrated Perspective on Institutions, Organizations, and Technology. Environ. Eng. Sci. 2013, 30, 395–408. [Google Scholar] [CrossRef] [Green Version]
- Torugsa, N.; O’Donohue, W. Progress in innovation and knowledge management research: From incremental to transformative innovation. J. Bus. Res. 2016, 69, 1610–1614. [Google Scholar] [CrossRef] [Green Version]
- Elimelech, M.; Phillip, W. The future of seawater desalination: Energy, technology, and the environment. Science 2011, 333, 712–717. [Google Scholar] [CrossRef]
- Barripp, C.; Bowmer, K.H.; York, E.; Sorenson, P. Water innovation a new era for Australia©. Marketing 2004, 411, 790. [Google Scholar]
- Teisman, G.; van Buuren, A.; Gerrits, L. Managing Complex Governance Systems; Routledge: London, UK, 2009. [Google Scholar]
- Eshuis, J.; van Buuren, A. Innovations in water governance: The importance of time. Int. Rev. Adm. Sci. 2014, 80, 401–420. [Google Scholar] [CrossRef]
- Quezada, G.; Walton, A.; Sharma, A. Risks and tensions in water industry innovation: Understanding adoption of decentralised water systems from a socio-technical transitions perspective. J. Clean. Prod. 2016, 113, 263–273. [Google Scholar] [CrossRef]
- Roovers, G.J.; van Buuren, M. Stakeholder participation in long term planning of water infrastructure. Infrastruct. Complex. 2016, 3, 1. [Google Scholar] [CrossRef] [Green Version]
- Kotz, C.; Hiessl, H. Analysis of system innovation in urban water infrastructure systems: An agent-based modelling approach. Water Sci. Technol. 2005, 5, 135–144. [Google Scholar] [CrossRef]
- Dominguez, D.; Worch, H.; Markard, J.; Truffer, B.; Gujer, W. Closing the capability gap: Strategic planning for the infrastructure sector. Calif. Manag. Rev. 2009, 51, 30–50. [Google Scholar] [CrossRef]
- Improving Innovation in the Water Industry: 21st Century Challenges and Opportunities; Council for Science and Technology: London, UK, 2009.
- Ajami, N.K.; Thompson, B., Jr.; Victor, D.G. The Path to Water Innovation; The Brookings Institution: Washington, DC, USA, 2014. [Google Scholar]
- Pauli, B.J. The Flint water crisis. Wiley Interdiscip. Rev. Water 2020, 7, e1420. [Google Scholar] [CrossRef]
- Adedeji, K.B.; Hamam, Y.; Abe, B.T.; Abu-Mahfouz, A.M. Leakage Detection and Estimation Algorithm for Loss Reduction in Water Piping Networks. Water 2017, 9, 773. [Google Scholar] [CrossRef] [Green Version]
- Donnelly, K.; Christian-Smith, J.; Cooley, H. Pricing Practices in the Electricity Sector to Promote Conservation and Efficiency Lessons for the Water Sector; Pacific Institute: Oakland, CA, USA, 2013. [Google Scholar]
- Singh, S. H2Opportunities: Innovations in Water Sector. Irrigation and Drainage. Irrig. Drain. 2020, 69, 186–188. [Google Scholar] [CrossRef]
- Kumar, A.; Phillips, K.R.; Cai, J.; Schröder, U.; Lienhard, J.H. Integrated valorization of desalination brine through NaOH recovery: Opportunities and challenges. Angew. Chem. Int. Ed. 2019, 131, 6570–6579. [Google Scholar] [CrossRef]
- Kumar, A.; Naidu, G.; Fukuda, H.; Du, F.; Vigneswaran, S.; Drioli, E.; Lienhard, J.H. Metals recovery from seawater desalination brines: Technologies, opportunities, and challenges. ACS Sustain. Chem. Eng. 2021, 9, 7704–7712. [Google Scholar] [CrossRef]
- Katal, R.; Shen, T.Y.; Jafari, I.; Masudy-Panah, S.; Farahani, M.H.D.A. An overview on the treatment and management of the desalination brine solution. Desalination Chall. Oppor. 2020. [Google Scholar]
- Taylor, M.R.; Rubin, E.; Hounshell, D. Effect of Government Actions on Technological Innovation for SO2 Control. Environ. Sci. Technol. 2003, 37, 4527–4534. [Google Scholar] [CrossRef] [Green Version]
- Spiller, M.; McIntosh, B.S.; Seaton, R.A.F.; Jeffrey, P.J. Integrating Process and Factor Understanding of Environmental Innovation by Water Utilities. Water Resour. Manag. 2015, 29, 1979–1993. [Google Scholar] [CrossRef] [Green Version]
- Bentama, J.; Schmitz, P.; Destrac, P.; Espenan, J.M. Technological innovation for the production of drinking water by membrane processes. Desalination 2004, 168, 283–286. [Google Scholar] [CrossRef]
- Moore, M.L.; von der Porten, S.; Plummer, R.; Brandes, O.; Baird, J. Water policy reform and innovation: A systematic review. Environ. Sci. Policy 2014, 38, 263–271. [Google Scholar] [CrossRef]
- Copeland, C. Water Infrastructure Financing: The Water Infrastructure Finance and Innovation Act (WIFIA) Program; Congressional Research Service: Washington, DC, USA, 2016. [Google Scholar]
- Vedachalam, S.; Geddes, R. The Water Infrastructure Finance and Innovation Act of 2014: Structure and Effects. J. Am. Water Work. Assoc. 2017, 109, E99–E109. [Google Scholar] [CrossRef]
- Kaminski, J. Diffusion of innovation theory. Can. J. Nurs. Inform. 2011, 6, 1–6. [Google Scholar]
- Rogers, E.M. Diffusion of Innovations, 5th ed.; Free Press: Florence, MA, USA, 2003. [Google Scholar]
- Markard, J.; Truffer, B. Technological innovation systems and the multi-level perspective: Towards an integrated framework. Res. Policy 2008, 37, 596–615. [Google Scholar] [CrossRef]
- Cinar, E.; Trott, P.; Simms, C. A systematic review of barriers to public sector innovation process. Public Manag. Rev. 2019, 21, 264–290. [Google Scholar] [CrossRef] [Green Version]
- Garrone, P.; Grilli, L.; Groppi, A.; Marzano, R. Barriers and drivers in the adoption of advanced wastewater treatment technologies: A comparative analysis of Italian utilities. J. Clean. Prod. 2018, 171, S69–S78. [Google Scholar] [CrossRef] [Green Version]
- Lee, K.; Jepson, W. Drivers and barriers to urban water reuse: A systematic review. Water Secur. 2020, 11, 100073. [Google Scholar] [CrossRef]
- Abdelrazeq, H.; Khraisheh, M.; Ashraf, H.M.; Ebrahimi, P.; Kunju, A. Innovation in Membrane Technologies for Produced Water Treatment: Challenges and Limitations. Sustainability 2021, 13, 6759. [Google Scholar] [CrossRef]
- Gaonkar, P.; Kande, M. Challenges and opportunities of automation system for water and waste water applications. In Proceedings of the 2014 IEEE International Conference on Industrial Technology (ICIT), Busan, Republic of Korea, 26 February–1 March 2014. [Google Scholar]
- Hyvärinen, A.M.J.; Keskinen, M.; Levänen, J. Innovation process and uncertainties in resource-constrained environments: A case from the water service sector in East Africa. Environ. Sci. Policy 2020, 114, 242–252. [Google Scholar] [CrossRef]
- Mvulirwenande, S.; Wehn, U. Dynamics of water innovation in African cities: Insights from Kenya, Ghana and Mozambique. Environ. Sci. Policy 2020, 114, 96–108. [Google Scholar] [CrossRef]
- Habiyaremye, A. Water innovation in South Africa: Mapping innovation successes and diffusion constraints. Environ. Sci. Policy 2020, 114, 217–229. [Google Scholar] [CrossRef]
- Gabrielsson, J.; Politis, D.; Persson, K.M.; Kronholm, J. Promoting water-related innovation through networked acceleration: Insights from the Water Innovation Accelerator. J. Clean. Prod. 2018, 171, S130–S139. [Google Scholar] [CrossRef] [Green Version]
- Yang, H.; Zhang, X.; Zehnder, A. Water scarcity, pricing mechanism and institutional reform in northern China irrigated agriculture. Agric. Water Manag. 2003, 61, 143–161. [Google Scholar] [CrossRef]
- Cheng, H.; Hu, Y. Economic Transformation, Technological Innovation, and Policy and Institutional Reforms Hold Keys to Relieving China’s Water Shortages. Environ. Sci. Technol. 2011, 45, 360–361. [Google Scholar] [CrossRef]
- Sarni, W.; Austin, A. How Can the Water Sector Become Renewable and Circular? World Economic Forum: Davos, Switzerland, 2022. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, F.; Johnson, D.; Hashaikeh, R.; Hilal, N. Barriers to Innovation in Water Treatment. Water 2023, 15, 773. https://doi.org/10.3390/w15040773
Ahmed F, Johnson D, Hashaikeh R, Hilal N. Barriers to Innovation in Water Treatment. Water. 2023; 15(4):773. https://doi.org/10.3390/w15040773
Chicago/Turabian StyleAhmed, Farah, Daniel Johnson, Raed Hashaikeh, and Nidal Hilal. 2023. "Barriers to Innovation in Water Treatment" Water 15, no. 4: 773. https://doi.org/10.3390/w15040773
APA StyleAhmed, F., Johnson, D., Hashaikeh, R., & Hilal, N. (2023). Barriers to Innovation in Water Treatment. Water, 15(4), 773. https://doi.org/10.3390/w15040773