Research on Water Quality Assessment Using the Water Quality Index for the Eastern Route of the South-to-North Water Diversion Project
Abstract
:1. Introduction
2. Methods
2.1. Study Area and Background
2.2. Data Collection
2.3. Water Quality Index Method
2.4. Data Processing
3. Results
3.1. Water Quality Characteristics of the SNWDPC-ER Mainline
3.2. Water Quality Evaluation via the WQI Method
3.3. Calculation of the WQImin Model
4. Discussion
4.1. Water Quality Characteristics and Influencing Factors
4.2. Key Water Quality Parameters for Selecting the WQImin Model
4.3. Effect of Weights on the WQImin
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kattel, G.R.; Shang, W.; Wang, Z.; Langford, J. China’s South-to-North Water Diversion Project Empowers Sustainable Water Resources System in the North. Sustainability 2019, 11, 3735. [Google Scholar] [CrossRef] [Green Version]
- Lyu, M.; Ke, Y.; Guo, L.; Li, X.; Zhu, L.; Gong, H.; Constantinos, C. Change in regional land subsidence in Beijing after south-to-north water diversion project observed using satellite radar interferometry. GISci. Remote Sens. 2019, 57, 140–156. [Google Scholar] [CrossRef]
- Yang, Y.; Yin, L.; Zhang, Q. Quantity versus Quality in China’s South-to-North Water Diversion Project: A System Dynamics Analysis. Water 2015, 7, 2142–2160. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y. Analysis of the Advantages and Disadvantages of Large-Scale, Long-Distance, Inter-Basin Water Transfer. Water Resour. Prot. 2004, 48, 50–59. [Google Scholar]
- Yu, M.; Wang, C.; Liu, Y.; Olsson, G.; Wang, C. Sustainability of mega water diversion projects: Experience and lessons from China. Sci. Total Environ. 2018, 619–620, 721–731. [Google Scholar] [CrossRef]
- Zhu, Y.; Zhang, H.; Chen, L.; Zhao, J. Influence of the South–North Water Diversion Project and the mitigation projects on the water quality of Han River. Sci. Total Environ. 2008, 406, 57–68. [Google Scholar] [CrossRef]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B.J.C. Development of river water quality indices—A review. Environ. Monit. Assess. 2016, 188, 1–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, Z.; Wang, X.; Chen, Y.; Cai, Y.; Deng, J. Assessing river water quality using water quality index in Lake Taihu Basin, China. Sci. Total Environ. 2018, 612, 914–922. [Google Scholar] [CrossRef]
- Horton, R.K. An Index Number System for Rating Water Quality. Water Pollut. Control Fed. 1965, 37, 300–306. [Google Scholar]
- Gupta, S.; Gupta, S.K. A critical review on water quality index tool: Genesis, evolution and future directions. Ecol. Inform. 2021, 63, 101299. [Google Scholar] [CrossRef]
- Akhtar, N.; Ishak, M.; Ahmad, M.; Umar, K.; Yusuff, M.M.; Anees, M.; Qadir, A.; Almanasir, Y.A. Modification of the Water Quality Index (WQI) Process for Simple Calculation Using the Multi-Criteria Decision-Making (MCDM) Method: A Review. Water 2021, 13, 905. [Google Scholar] [CrossRef]
- Tripathi, M.; Singal, S.K. Allocation of weights using factor analysis for development of a novel water quality index. Ecotoxicol. Environ. Saf. 2019, 183, 109510. [Google Scholar] [CrossRef]
- Sutadian, A.D.; Muttil, N.; Yilmaz, A.G.; Perera, B. Using the Analytic Hierarchy Process to identify parameter weights for developing a water quality index. Ecol. Indic. 2017, 75, 220–233. [Google Scholar] [CrossRef]
- Zhe, W.; Xigang, X.; Feng, Y. An abnormal phenomenon in entropy weight method in the dynamic evaluation of water quality index. Ecol. Indic. 2021, 131, 108137. [Google Scholar] [CrossRef]
- Al-Saffawi, A.Y.T.; Al-Shanoona, R.A.; Alobidy, O.M.S. Application weight mathematical model (WQI) to assess water quality for irrigation: A case study of Tigris river in Nineveh governorate. IOP Conf. Ser. Earth Environ. Sci. 2021, 735, 012061. [Google Scholar] [CrossRef]
- Gao, Z.; Liu, Y.; Li, N.; Ma, K. An Enhanced Beetle Antennae Search Algorithm Based Comprehensive Water Quality Index for Urban River Water Quality Assessment. Water Resour. Manag. 2022, 36, 2685–2702. [Google Scholar] [CrossRef]
- Pesce, S.F.; A Wunderlin, D. Reply to comment on “Use of water quality indices to verify the impact of Cordoba city (Argentina) on Suquia River”. Water Res. 2002, 36, 4940–4941. [Google Scholar] [CrossRef]
- Nong, X.; Shao, D.; Zhong, H.; Liang, J. Evaluation of water quality in the South-to-North Water Diversion Project of China using the water quality index (WQI) method. Water Res. 2020, 178, 115781. [Google Scholar] [CrossRef]
- Yisen Wang, B.C. Benefit Analysis of Water Supply in Shandong Section of Phase -I of the Eastern Route of South -to -North Diversion Project and Understanding. China Water Res. 2022, 939, 4–7. [Google Scholar]
- Pan, Y.; Yuan, Y.; Sun, T.; Wang, Y.; Xie, Y.; Fan, Z. Are the Water Quality Improvement Measures of China’s South-to-North Water Diversion Project Effective? A Case Study of Xuzhou Section in the East Route. Int. J. Environ. Res. Public Health 2020, 17, 6388. [Google Scholar] [CrossRef]
- Qu, X.; Chen, Y.; Liu, H.; Xia, W.; Lu, Y.; Gang, D.-D.; Lin, L.-S. A holistic assessment of water quality condition and spatiotemporal patterns in impounded lakes along the eastern route of China’s South-to-North water diversion project. Water Res. 2020, 185, 116275. [Google Scholar] [CrossRef]
- Zhang, T.-T. Changes in the Quality of Water Flowing Through the First Phase of the Eastern Route of the South-to-North Water Transfer Project. J. Hydroecology 2022, 43, 8–15. [Google Scholar]
- Debels, P.; Figueroa, R.; Urrutia, R.; Barra, R.; Niell, X. Evaluation of Water Quality in the Chillán River (Central Chile) Using Physicochemical Parameters and a Modified Water Quality Index. Environ. Monit. Assess. 2005, 110, 301–322. [Google Scholar] [CrossRef]
- Hou, W.; Sun, S.; Wang, M.; Li, X.; Zhang, N.; Xin, X.; Sun, L.; Li, W.; Jia, R. Assessing water quality of five typical reservoirs in lower reaches of Yellow River, China: Using a water quality index method. Ecol. Indic. 2016, 61, 309–316. [Google Scholar] [CrossRef]
- Bu, H.; Wan, J.; Zhang, Y.; Meng, W. Spatial characteristics of surface water quality in the Haicheng River (Liao River basin) in Northeast China. Environ. Earth Sci. 2013, 70, 2865–2872. [Google Scholar] [CrossRef]
- Zhang, T.-T. Analysis of Water Quality Situation of Water Trunk Line in the East Route of South-to-North Water Diversion Project during Operation Period. Harnessing Huaihe River 2020, 11, 32–34. [Google Scholar]
- Yanjun, L.; Peng, H.; Weihua, X.; Bo, L. The Research of Water Environment Cumulative Impacts of Delivery Canal on East Route of South-to-North Water Transfer Project. Procedia Eng. 2012, 28, 287–291. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Pan, B.; Zhu, X.; Zhao, X.; Sun, H.; He, H.; Jiang, W. Patterns of microbial communities and their relationships with water quality in a large-scale water transfer system. J. Environ. Manag. 2022, 319, 115678. [Google Scholar] [CrossRef]
- Kannel, P.R.; Lee, S.; Lee, Y.-S.; Kanel, S.R.; Khan, S.P. Application of Water Quality Indices and Dissolved Oxygen as Indicators for River Water Classification and Urban Impact Assessment. Environ. Monit. Assess. 2007, 132, 93–110. [Google Scholar] [CrossRef]
- Wu, Z.; Lai, X.; Li, K. Water quality assessment of rivers in Lake Chaohu Basin (China) using water quality index. Ecol. Indic. 2020, 121, 107021. [Google Scholar] [CrossRef]
- Ding, F.; Zhang, W.; Chen, L.; Sun, Z.; Li, W.; Li, C.-Y.; Jiang, M. Water quality assessment using optimized CWQII in Taihu Lake. Environ. Res. 2022, 214, 113713. [Google Scholar] [CrossRef]
Parameters | Weight (Pi) | Evaluation Standard | |||||
---|---|---|---|---|---|---|---|
I | II | III | IV | V | |||
Ii,1 = 20 | Ii,2 = 40 | Ii,3 = 60 | Ii,4 = 80 | Ii,5 = 100 | |||
pH (dimensionless) | 1 | 6~9 | |||||
DO/(mg/L) | ≥ | 4 | 7.50 | 6.00 | 5.00 | 3.00 | 2.00 |
CODMn/(mg/L) | ≤ | 3 | 2.00 | 4.00 | 6.00 | 10.00 | 15.00 |
BOD5/(mg/L) | ≤ | 3 | 3.00 | 3.00 | 4.00 | 6.00 | 10.00 |
NH3-N/(mg/L) | ≤ | 3 | 0.15 | 0.50 | 1.00 | 1.50 | 2.00 |
TN/(mg/L) | ≤ | 2 | 0.20 | 0.50 | 1.00 | 1.50 | 2.00 |
TP/(mg/L) | ≤ | 1 | 0.02 | 0.10 | 0.20 | 0.30 | 0.40 |
F−/(mg/L) | ≤ | 2 | 1.00 | 1.00 | 1.00 | 1.50 | 1.50 |
Water Quality | Excellent | Good | Medium | Poor | Very Poor |
---|---|---|---|---|---|
WQI value | (80, 100] | (60, 80] | (40, 60] | (20, 40] | [0, 20] |
Water Quality Parameters | Water Quality Measurement Values (2014–2018) | Statistical Result | ||||
---|---|---|---|---|---|---|
R1 | R2 | R3 | R4 | |||
Avg. ± S.D. | Avg. ± S.D. | Avg. ± S.D. | Avg. ± S.D. | F | p | |
pH | 7.97 ± 0.21 | 8.00 ± 0.25 | 8.10 ± 0.17 | 8.06 ± 0.29 | 3.43 | 0.43 |
DO/(mg/L) | 8.69 ± 2.05 | 9.02 ± 1.97 | 8.63 ± 1.99 | 9.17 ± 1.99 | 6.36 | 0.005 *** |
CODMn/(mg/) | 3.88 ± 1.09 | 4.11 ± 1.34 | 4.47 ± 0.97 | 5.05 ± 0.86 | 28.05 | <0.001 *** |
BOD5/(mg/L) | 1.54 ± 1.02 | 1.98 ± 0.78 | 2.49 ± 0.53 | 2.41 ± 1.17 | 8.34 | <0.001 *** |
NH3-N/(mg/L) | 0.22 ± 0.31 | 0.42 ± 0.59 | 0.41 ± 0.30 | 0.42 ± 0.33 | 3.38 | 0.044 ** |
TN/(mg/L) | 1.83 ± 0.68 | 1.90 ± 0.90 | 3.24 ± 2.09 | 2.42 ± 1.50 | 10.12 | <0.001 *** |
TP/(mg/L) | 0.09 ± 0.04 | 0.12 ± 0.11 | 0.11 ± 0.08 | 0.08 ± 0.07 | 3.33 | 0.046 ** |
F−/(mg/L) | 0.62 ± 0.15 | 0.75 ± 0.14 | 0.78 ± 0.16 | 0.67 ± 0.24 | 3.55 | 0.038 ** |
Models | Linear Equation | R2 | p |
---|---|---|---|
1 | 0.723 + 0.599 lg(DO + 1) | 0.603 | <0.001 *** |
2 | 0.639 + 0.433 lg(DO + 1) + 0.212 lg(NH3-N + 1) | 0.869 | <0.001 *** |
3 | 0.307 + 0.379 lg(DO + 1) + 0.195 lg(NH3-N + 1) + 0.239 lg(BOD5 + 1) | 0.925 | <0.001 *** |
4 | 0.336 + 0.395 lg(DO + 1) + 0.188 lg((NH3-N + 1) + 0.207 lg(BOD5 + 1) + 0.015 lg(TN + 1) | 0.949 | <0.001 *** |
5 | 0.391 + 0.252 lg(DO + 1) + 0.171 lg((NH3-N + 1) + 0.179 lg(BOD5 + 1) + 0.022 lg(TN + 1) + 0.164 lg(CODMn + 1) | 0.993 | <0.001 *** |
Parameters Selected | WQImin-a (Unweighted) | WQImin-b (Weighted) | ||||||
---|---|---|---|---|---|---|---|---|
Model | R2 | p | PE (%) | Model | R2 | p | PE (%) | |
DO, NH3-N, BOD5 | a1 | 0.886 | <0.001 *** | 11.5 | b1 | 0.907 | <0.001 *** | 10.9 |
DO, NH3-N, BOD5, TN | a2 | 0.817 | <0.001 *** | 10.9 | b2 | 0.913 | <0.001 *** | 3.9 |
DO, NH3-N, BOD5, CODMn | a3 | 0.928 | <0.001 *** | 5.1 | b3 | 0.934 | <0.001 *** | 5.1 |
DO, NH3-N, BOD5, TN, CODMn | a4 | 0.922 | <0.001 *** | 10.9 | b4 | 0.988 | <0.001 *** | 6.0 |
WQI | SNWDPC-ER |
---|---|
Sanjiangying Station | 0.625 ** |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, X.; Li, J.; Liu, X.; Gao, J.; Dong, F.; Huang, A.; Lei, Y.; Wang, W.; Tong, Z.; Long, J. Research on Water Quality Assessment Using the Water Quality Index for the Eastern Route of the South-to-North Water Diversion Project. Water 2023, 15, 842. https://doi.org/10.3390/w15050842
Yang X, Li J, Liu X, Gao J, Dong F, Huang A, Lei Y, Wang W, Tong Z, Long J. Research on Water Quality Assessment Using the Water Quality Index for the Eastern Route of the South-to-North Water Diversion Project. Water. 2023; 15(5):842. https://doi.org/10.3390/w15050842
Chicago/Turabian StyleYang, Xiaochen, Jinjin Li, Xiaobo Liu, Jijun Gao, Fei Dong, Aiping Huang, Yang Lei, Wei Wang, Zhiyuan Tong, and Jiajia Long. 2023. "Research on Water Quality Assessment Using the Water Quality Index for the Eastern Route of the South-to-North Water Diversion Project" Water 15, no. 5: 842. https://doi.org/10.3390/w15050842
APA StyleYang, X., Li, J., Liu, X., Gao, J., Dong, F., Huang, A., Lei, Y., Wang, W., Tong, Z., & Long, J. (2023). Research on Water Quality Assessment Using the Water Quality Index for the Eastern Route of the South-to-North Water Diversion Project. Water, 15(5), 842. https://doi.org/10.3390/w15050842