Analysis of Seasonal Water Characteristics and Water Quality Responses to the Land Use/Land Cover Pattern: A Case Study in Tianjin, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Dataset
2.2.1. Data Collection and Processing
2.2.2. Land Use/Land Cover Data
2.3. Methods
2.3.1. Statistical Analysis
2.3.2. Cluster Analysis
2.3.3. Factor Analysis
2.3.4. Entropy Weight Calculation
3. Results
3.1. Seasonal Variation of Water Quality Characteristics
3.2. Correlations among Water Quality Parameters
3.3. Spatial Distribution of LULC Patterns
3.4. Cluster Analysis of the Surface Water Quality Monitoring Stations
4. Discussion
4.1. Analysis of the Water Quality Characteristics of the Clusters
4.2. Identification of Critical Water Parameters and Potential Sources of Water Quality Variation
4.3. Impact of the LULC Pattern on Water Quality Characteristics
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
NH3N | Ammonia nitrogen |
DO | Dissolved oxygen |
EC | Electrical conductivity |
EQSSWC | Environmental Quality Standards for Surface Water of China |
LULC | Land use/land cover |
CODMn | Permanganate index |
TN | Total nitrogen |
TP | Total phosphorus |
Tur | Turbidity |
References
- Chen, F.; Chen, X.; Van de Voorde, T.; Roberts, D.; Jiang, H.; Xu, W. Open water detection in urban environments using high spatial resolution remote sensing imagery. Remote Sens. Environ. 2020, 242, 111706. [Google Scholar] [CrossRef]
- Guan, Q.; Feng, L.; Hou, X.; Schurgers, G.; Zheng, Y.; Tang, J. Eutrophication changes in fifty large lakes on the Yangtze Plain of China derived from MERIS and OLCI observations. Remote Sens. Environ. 2020, 246, 111890. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, S.; Cen, Y.; Huang, C.; Zhang, H.; Sun, X.; Tong, Q. Monitoring Spatio-Temporal Dynamics in the Eastern Plain Lakes of China Using Long-Term MODIS UNWI Index. Remote Sens. 2022, 14, 985. [Google Scholar] [CrossRef]
- Huang, J.; Wang, D.; Gong, F.; Bai, Y.; He, X. Changes in Nutrient Concentrations in Shenzhen Bay Detected Using Landsat Imagery between 1988 and 2020. Remote Sens. 2021, 13, 3469. [Google Scholar] [CrossRef]
- Cao, Z.; Duan, H.; Feng, L.; Ma, R.; Xue, K. Climate- and human-induced changes in suspended particulate matter over Lake Hongze on short and long timescales. Remote Sens. Environ. 2017, 192, 98–113. [Google Scholar] [CrossRef]
- Cai, X.; Li, Y.; Bi, S.; Lei, S.; Xu, J.; Wang, H.; Dong, X.; Li, J.; Zeng, S.; Lyu, H. Urban Water Quality Assessment Based on Remote Sensing Reflectance Optical Classification. Remote Sens. 2021, 13, 4047. [Google Scholar] [CrossRef]
- Sun, X.; Zhang, Y.; Shi, K.; Zhang, Y.; Li, N.; Wang, W.; Huang, X.; Qin, B. Monitoring water quality using proximal remote sensing technology. Sci. Total Environ. 2022, 803, 149805. [Google Scholar] [CrossRef]
- Li, N.; Ning, Z.; Chen, M.; Wu, D.; Hao, C.; Zhang, D.; Bai, R.; Liu, H.; Chen, X.; Li, W.; et al. Satellite and Machine Learning Monitoring of Optically Inactive Water Quality Variability in a Tropical River. Remote Sens. 2022, 14, 5466. [Google Scholar] [CrossRef]
- Wang, Y.; He, X.; Bai, Y.; Tan, Y.; Zhu, B.; Wang, D.; Ou, M.; Gong, F.; Zhu, Q.; Huang, H. Automatic detection of suspected sewage discharge from coastal outfalls based on Sentinel-2 imagery. Sci. Total Environ. 2022, 853, 158374. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, T.; Hu, B.; Zhang, Z.; Liu, Y.; Liu, X.; Liu, H.; Liu, J.; Wang, X.; Song, S. Retrieval of Water Quality Parameters Based on Near-Surface Remote Sensing and Machine Learning Algorithm. Remote Sens. 2022, 14, 5305. [Google Scholar] [CrossRef]
- Wang, X.; Yang, W. Water quality monitoring and evaluation using remote sensing techniques in China: A systematic review. Ecosyst. Health Sustain. 2019, 5, 47–56. [Google Scholar] [CrossRef] [Green Version]
- Gholizadeh, M.H.; Melesse, A.M.; Reddi, L. A Comprehensive Review on Water Quality Parameters Estimation Using Remote Sensing Techniques. Sensors 2016, 16, 1298. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, L.; Han, X.; Wang, X.; Zhang, Y.; Yang, J.; Feng, A.; Li, J.; Zhu, N. Coupling with high-resolution remote sensing data to evaluate urban non-point source pollution in Tongzhou, China. Sci. Total Environ. 2022, 831, 154632. [Google Scholar] [CrossRef] [PubMed]
- Xue, J.; Wang, Q.; Zhang, M. A review of non-point source water pollution modeling for the urban-rural transitional areas of China: Research status and prospect. Sci. Total Environ. 2022, 826, 154146. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Fu, Z.; Qiao, H.; Liu, F. Assessment of eutrophication and water quality in the estuarine area of Lake Wuli, Lake Taihu, China. Sci. Total Environ. 2019, 650, 1392–1402. [Google Scholar] [CrossRef]
- Zhu, D.; Cheng, X.; Li, W.; Niu, F.; Wen, J. Temporal and Spatial Variation Characteristics of Water Quality in the Middle and Lower Reaches of the Lijiang River, China and Their Responses to Environmental Factors. Int. J. Environ. Res. Public Health 2022, 19, 8089. [Google Scholar] [CrossRef]
- Lei, C.; Wagner, P.D.; Fohrer, N. Effects of land cover, topography, and soil on stream water quality at multiple spatial and seasonal scales in a German lowland catchment. Ecol. Indic. 2021, 120, 106940. [Google Scholar] [CrossRef]
- Karmakar, S.; Haque, S.M.S.; Hossain, M.M.; Sen, M.; Hoque, M.E. Water quality parameter as a predictor of small watershed land cover. Ecol. Indic. 2019, 106, 105462. [Google Scholar] [CrossRef]
- Shehab, Z.N.; Jamil, N.R.; Aris, A.Z.; Shafie, N.S. Spatial variation impact of landscape patterns and land use on water quality across an urbanized watershed in Bentong, Malaysia. Ecol. Indic. 2021, 122, 107254. [Google Scholar] [CrossRef]
- Ding, J.; Jiang, Y.; Liu, Q.; Hou, Z.; Liao, J.; Fu, L.; Peng, Q. Influences of the land use pattern on water quality in low-order streams of the Dongjiang River basin, China: A multi-scale analysis. Sci. Total Environ. 2016, 551–552, 205–216. [Google Scholar] [CrossRef]
- Bu, H.; Zhang, Y.; Meng, W.; Song, X. Effects of land-use patterns on in-stream nitrogen in a highly-polluted river basin in Northeast China. Sci. Total Environ. 2016, 553, 232–242. [Google Scholar] [CrossRef]
- Xue, B.; Zhang, H.; Wang, G.; Sun, W. Evaluating the risks of spatial and temporal changes in nonpoint source pollution in a Chinese river basin. Sci. Total Environ. 2022, 807, 151726. [Google Scholar] [CrossRef]
- Zhang, D.; Wang, X.; Qu, L.; Li, S.; Lin, Y.; Yao, R.; Zhou, X.; Li, J. Land use/cover predictions incorporating ecological security for the Yangtze River Delta region, China. Ecol. Indic. 2020, 119, 106841. [Google Scholar] [CrossRef]
- Zhang, J.; Li, S.; Jiang, C. Effects of land use on water quality in a River Basin (Daning) of the Three Gorges Reservoir Area, China: Watershed versus riparian zone. Ecol. Indic. 2020, 113, 106226. [Google Scholar] [CrossRef]
- Liu, X.; Liu, Y.; Wang, Y.; Liu, Z. Evaluating potential impacts of land use changes on water supply–demand under multiple development scenarios in dryland region. J. Hydrol. 2022, 610, 127811. [Google Scholar] [CrossRef]
- Wu, J.; Zeng, S.; Yang, L.; Ren, Y.; Xia, J. Spatiotemporal Characteristics of the Water Quality and Its Multiscale Relationship with Land Use in the Yangtze River Basin. Remote Sens. 2021, 13, 3309. [Google Scholar] [CrossRef]
- Nelson Mwaijengo, G.; Msigwa, A.; Njau, K.N.; Brendonck, L.; Vanschoenwinkel, B. Where does land use matter most? Contrasting land use effects on river quality at different spatial scales. Sci. Total Environ. 2020, 715, 134825. [Google Scholar] [CrossRef]
- Mello, K.d.; Valente, R.A.; Randhir, T.O.; Vettorazzi, C.A. Impacts of tropical forest cover on water quality in agricultural watersheds in southeastern Brazil. Ecol. Indic. 2018, 93, 1293–1301. [Google Scholar] [CrossRef]
- Peng, S.; Yan, Z.B.; Js, B.; Peng, L.; Yw, D.; Xz, E.; Zla, C.; Zb, B.; Xin, Z.B.; Yq, A. Response of nitrogen pollution in surface water to land use and social-economic factors in the Weihe River watershed, northwest China. Sustain. Cities Soc. 2019, 50, 101658. [Google Scholar]
- Zhang, S.; Hou, X.; Wu, C.; Zhang, C. Impacts of climate and planting structure changes on watershed runoff and nitrogen and phosphorus loss. Sci. Total Environ. 2020, 706, 134489. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Peng, S.; Jin, B.; Zhou, J.; Li, Y. Multi-scale relationship between land use/land cover types and water quality in different pollution source areas in Fuxian Lake Basin. PeerJ 2019, 7, e7283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wu, L.; Guo, X.; Chen, Y.; Shah, F.A. Grey Relational Entropy Calculation and Fractional Prediction of Water and Economy in the Beijing-Tianjin-Hebei Region. J. Math. 2021, 2021, 4418260. [Google Scholar] [CrossRef]
- Han, X.; Chen, W.; Ping, B.; Hu, Y. Implementation of an Improved Water Change Tracking (IWCT) Algorithm: Monitoring the Water Changes in Tianjin over 1984–2019 Using Landsat Time-Series Data. Remote Sens. 2021, 13, 493. [Google Scholar] [CrossRef]
- Xu, K.; Chi, Y.; Wang, J.; Ge, R.; Wang, X. Analysis of the spatial characteristics and driving forces determining ecosystem quality of the Beijing-Tianjin-Hebei region. Environ. Sci. Pollut. Res. Int. 2021, 28, 12555–12565. [Google Scholar] [CrossRef]
- Cai, Y.; Wang, H.; Yue, W.; Xie, Y.; Liang, Q. An integrated approach for reducing spatially coupled water-shortage risks of Beijing-Tianjin-Hebei urban agglomeration in China. J. Hydrol. 2021, 603, 127123. [Google Scholar] [CrossRef]
- Ma, W.; Wang, Y.; Ding, Z.; Yang, D.; Meng, L. Spatiotemporal variations of water resources metabolism efficiency in the Beijing-Tianjin-Hebei region, China. Water Supply 2020, 20, 1178–1188. [Google Scholar] [CrossRef]
- Tian, Y.; Li, C.; Yi, Y.; Wang, X.; Shu, A. Dynamic Model of a Sustainable Water Resources Utilization System with Coupled Water Quality and Quantity in Tianjin City. Sustainability 2020, 12, 4254. [Google Scholar] [CrossRef]
- Cheng, X.; Chen, L.; Sun, R.; Jing, Y. Identification of regional water resource stress based on water quantity and quality: A case study in a rapid urbanization region of China. J. Clean. Prod. 2019, 209, 216–223. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, M.; Yang, C.; He, Y.; Ju, M. Regional water pollution management pathways and effects under strengthened policy constraints: The case of Tianjin, China. Environ. Sci. Pollut. Res. Int. 2022, 29, 77026–77046. [Google Scholar] [CrossRef] [PubMed]
- Olea, R.A.; Pawlowsky-Glahn, V. Kolmogorov–Smirnov test for spatially correlated data. Stoch. Environ. Res. Risk Assess. 2008, 23, 749–757. [Google Scholar] [CrossRef]
- Lee, K.H.; Kang, T.W.; Ryu, H.S.; Hwang, S.H.; Kim, K. Analysis of spatiotemporal variation in river water quality using clustering techniques: A case study in the Yeongsan River, Republic of Korea. Environ. Sci. Pollut. Res. Int. 2020, 27, 29327–29340. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Li, H.; Ye, Z.; Wen, J.; Hu, Y.; Liu, Y. Application of modified water quality index (WQI) in the assessment of coastal water quality in main aquaculture areas of Dalian, China. Mar. Pollut. Bull. 2020, 157, 111285. [Google Scholar] [CrossRef] [PubMed]
- Chong, L.; Li, B.; Sun, Z.; Hu, C.; Meng, X.; Gao, J. Temporal and spatial variation in water quality in the Yangtze Estuary from 2012 to 2018. Environ. Sci. Pollut. Res. Int. 2022, 29, 76235–76250. [Google Scholar] [CrossRef] [PubMed]
- Pantelić, M.; Dolinaj, D.; Savić, S.; Milošević, D.; Obradović, S.; Leščešen, I.; Ogrin, M.; Ogrin, D.; Glojek, K.; Trobec, T. Physical-Chemical Water Quality Study of the Sava River in Serbia Using the Statistical and Factor Analysis. Water Resour. 2022, 49, 1048–1058. [Google Scholar] [CrossRef]
- Surendra Kumar, J.R.; Pakka, V.H. Surface Water Quality Assessment of the Arkavathi Reservoir Catchment and Command Area, India, through Multivariate Analysis: A Study in Seasonal and Sub-Watershed Variations. Water 2022, 14, 2359. [Google Scholar] [CrossRef]
- Xiao, K.; Tamborski, J.; Wang, X.; Feng, X.; Wang, S.; Wang, Q.; Lin, D.; Li, H. A coupling methodology of the analytic hierarchy process and entropy weight theory for assessing coastal water quality. Environ. Sci. Pollut. Res. Int. 2022, 29, 31217–31234. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Li, B.; Liu, Z.; Zhang, B. Application of improved fuzzy comprehensive evaluation method in karst groundwater quality evaluation: A case study of Cengong county. Earth Sci. Inform. 2021, 14, 1101–1109. [Google Scholar] [CrossRef]
- Xu, J.; Bai, Y.; You, H.; Wang, X.; Ma, Z.; Zhang, H. Water quality assessment and the influence of landscape metrics at multiple scales in Poyang Lake basin. Ecol. Indic. 2022, 141, 109096. [Google Scholar] [CrossRef]
- Lieberherr, G.; Wunderle, S. Lake Surface Water Temperature Derived from 35 Years of AVHRR Sensor Data for European Lakes. Remote Sens. 2018, 10, 990. [Google Scholar] [CrossRef] [Green Version]
- Obiri, S.; Addico, G.; Mohammed, S.; Anku, W.W.; Darko, H.; Collins, O. Water quality assessment of the Tano Basin in Ghana: A multivariate statistical approach. Appl. Water Sci. 2021, 11, 49. [Google Scholar] [CrossRef]
- Zhu, C.Y.; Liu, X.Q.; Chen, H.L.; Tian, X. Automatic cruise system for water quality monitoring. Int. J. Agric. Biol. Eng. 2018, 11, 244–250. [Google Scholar] [CrossRef]
- Waldbusser, G.G.; Voigt, E.P.; Bergschneider, H.; Green, M.A.; Newell, R.I.E. Biocalcification in the Eastern Oyster (Crassostrea virginica) in Relation to Long-term Trends in Chesapeake Bay pH. Estuaries Coasts 2011, 34, 221–231. [Google Scholar] [CrossRef]
- Guettaf, M.; Maoui, A.; Ihdene, Z. Assessment of water quality: A case study of the Seybouse River (North East of Algeria). Appl. Water Sci. 2014, 7, 295–307. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Q.; Wang, J.; Tian, L.; Feng, L.; Li, J.; Xing, Q. Remotely sensed water turbidity dynamics and its potential driving factors in Wuhan, an urbanizing city of China. J. Hydrol. 2021, 593, 125893. [Google Scholar] [CrossRef]
- Leal-Junior, A.G.; Frizera, A.; Marques, C. High Sensitive Ammonia Detection in Water with Fabry-Perot Interferometers. IEEE Photonics Technol. Lett. 2020, 32, 863–866. [Google Scholar] [CrossRef]
- Schilling, K.E.; Kim, S.-W.; Jones, C.S. Use of water quality surrogates to estimate total phosphorus concentrations in Iowa rivers. J. Hydrol. Reg. Stud. 2017, 12, 111–121. [Google Scholar] [CrossRef]
- Wang, J.; Shi, T.; Yu, D.; Teng, D.; Ge, X.; Zhang, Z.; Yang, X.; Wang, H.; Wu, G. Ensemble machine-learning-based framework for estimating total nitrogen concentration in water using drone-borne hyperspectral imagery of emergent plants: A case study in an arid oasis, NW China. Environ. Pollut. 2020, 266, 115412. [Google Scholar] [CrossRef]
- Liang, Z.; Soranno, P.A.; Wagner, T. The role of phosphorus and nitrogen on chlorophyll a: Evidence from hundreds of lakes. Water Res. 2020, 185, 116236. [Google Scholar] [CrossRef]
- Obubu, J.P.; Mengistou, S.; Odong, R.; Fetahi, T.; Alamirew, T. Determination of the Connectedness of Land Use, Land Cover Change to Water Quality Status of a Shallow Lake: A Case of Lake Kyoga Basin, Uganda. Sustainability 2022, 14, 372. [Google Scholar] [CrossRef]
- Calijuri, M.L.; Castro, J.D.; Costa, L.S.; Assemany, P.P.; Alves, J.E.M. Impact of land use/land cover changes on water quality and hydrological behavior of an agricultural subwatershed. Environ. Earth Sci. 2015, 74, 5373–5382. [Google Scholar] [CrossRef]
- Lei, K.G.; Wu, Y.F.; Li, F.; Yang, J.Y.; Xiang, M.T.; Li, Y.; Li, Y. Relating Land Use/Cover and Landscape Pattern to the Water Quality under the Simulation of SWAT in a Reservoir Basin, Southeast China. Sustainability 2021, 13, 11067. [Google Scholar] [CrossRef]
- Gorgoglione, A.; Gregorio, J.; Rios, A.; Alonso, J.; Chreties, C.; Fossati, M. Influence of Land Use/Land Cover on Surface-Water Quality of Santa Lucia River, Uruguay. Sustainability 2020, 12, 4692. [Google Scholar] [CrossRef]
- Kim, T.; Kim, Y.; Shin, J.; Go, B.; Cha, Y. Assessing Land-Cover Effects on Stream Water Quality in Metropolitan Areas Using the Water Quality Index. Water 2020, 12, 3294. [Google Scholar] [CrossRef]
- de Mello, K.; Valente, R.A.; Ribeiro, M.P.; Randhir, T. Effects of forest cover pattern on water quality of low-order streams in an agricultural landscape in the Pirapora river basin, Brazil. Environ. Monit. Assess. 2022, 194, 189. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, X.; Jiang, J.; Zhang, Y.; Liu, X.; Cai, Z. Spectral–Spatial and Superpixelwise PCA for Unsupervised Feature Extraction of Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5502210. [Google Scholar] [CrossRef]
- Chang, Y.-J.; Zhu, D. Urban water security of China’s municipalities: Comparison, features and challenges. J. Hydrol. 2020, 587, 125023. [Google Scholar] [CrossRef]
- Xiang, M.; Zhang, S.; Ruan, Q.; Tang, C.; Zhao, Y. Definition and calculation of hierarchical ecological water requirement in areas with substantial human activity—A case study of the Beijing–Tianjin-Hebei region. Ecol. Indic. 2022, 138, 108740. [Google Scholar] [CrossRef]
- Yu, S.; Xu, Z.; Wu, W.; Zuo, D. Effect of land use types on stream water quality under seasonal variation and topographic characteristics in the Wei River basin, China. Ecol. Indic. 2016, 60, 202–212. [Google Scholar] [CrossRef]
- Fajardo, C.; Mora, M.; Fernandez, I.; Mosquera-Corral, A.; Campos, J.L.; Mendez, R. Cross effect of temperature, pH and free ammonia on autotrophic denitrification process with sulphide as electron donor. Chemosphere 2014, 97, 10–15. [Google Scholar] [CrossRef] [PubMed]
- Kazi, T.G.; Arain, M.B.; Jamali, M.K.; Jalbani, N.; Afridi, H.I.; Sarfraz, R.A.; Baig, J.A.; Shah, A.Q. Assessment of water quality of polluted lake using multivariate statistical techniques: A case study. Ecotoxicol. Environ. Saf. 2009, 72, 301–309. [Google Scholar] [CrossRef] [PubMed]
- Deng, C.; Zhang, L.; Cen, Y. Retrieval of Chemical Oxygen Demand through Modified Capsule Network Based on Hyperspectral Data. Appl. Sci. 2019, 9, 4620. [Google Scholar] [CrossRef] [Green Version]
- Jia, H.F.; Yao, H.R.; Yu, S.L. Advances in LID BMPs research and practice for urban runoff control in China. Front. Environ. Sci. Eng. 2013, 7, 709–720. [Google Scholar] [CrossRef]
- Jeon, J.H.; Yoon, C.G.; Ham, J.H.; Jung, K.W. Model development for nutrient loading estimates from paddy rice fields in Korea. J. Environ. Sci. Health Part B-Pestic. Food Contam. Agric. Wastes 2004, 39, 845–860. [Google Scholar] [CrossRef]
- White, M.D.; Greer, K.A. The effects of watershed urbanization on the stream hydrology and riparian vegetation of Los Peñasquitos Creek, California. Landsc. Urban Plan. 2006, 74, 125–138. [Google Scholar] [CrossRef]
- Zhou, T.; Wu, J.; Peng, S. Assessing the effects of landscape pattern on river water quality at multiple scales: A case study of the Dongjiang River watershed, China. Ecol. Indic. 2012, 23, 166–175. [Google Scholar] [CrossRef]
Temperature | pH | DO | EC | Tur | CODMn | NH3N | TP | TN | ||
---|---|---|---|---|---|---|---|---|---|---|
Spring | Max | 25.61 | 9.57 | 27.06 | 23,609.87 | 162.53 | 15.18 | 5.96 | 0.32 | 7.26 |
Min | 4.57 | 7.79 | 3.72 | 312.39 | 1.30 | 2.02 | 0.03 | 0.01 | 0.63 | |
Mean | 15.43 | 8.45 | 10.87 | 3159.34 | 23.45 | 5.01 | 0.12 | 0.06 | 2.77 | |
SD | 4.86 | 0.26 | 2.77 | 4428.14 | 25.25 | 2.47 | 0.29 | 0.04 | 1.82 | |
Summer | Max | 93.13 | 9.45 | 20.62 | 38,637.23 | 686.40 | 9.33 | 3.13 | 0.52 | 9.43 |
Min | 16.94 | 6.99 | 0.06 | 3.20 | 0.40 | 0.06 | 0.03 | 0.01 | 0.48 | |
Mean | 26.51 | 8.08 | 6.37 | 2538.18 | 43.29 | 4.86 | 0.37 | 0.11 | 2.43 | |
SD | 3.92 | 0.44 | 3.35 | 5100.55 | 74.63 | 1.51 | 0.51 | 0.07 | 1.61 | |
Autumn | Max | 24.58 | 10.66 | 21.77 | 10,088.90 | 716.56 | 12.44 | 4.09 | 0.52 | 12.12 |
Min | 6.34 | 7.13 | 1.03 | 2.94 | 2.43 | 0.87 | 0.03 | 0.01 | 0.59 | |
Mean | 16.97 | 8.00 | 8.04 | 1871.64 | 40.46 | 4.90 | 0.46 | 0.10 | 3.92 | |
SD | 5.11 | 0.34 | 3.22 | 1923.62 | 77.79 | 2.20 | 0.54 | 0.07 | 2.00 | |
Winter | Max | 10.74 | 9.22 | 29.42 | 13,144.17 | 314.21 | 14.57 | 1.96 | 0.27 | 13.78 |
Min | 1.26 | 7.68 | 4.52 | 408.53 | 1.35 | 0.34 | 0.03 | 0.01 | 0.37 | |
Mean | 5.51 | 8.41 | 14.06 | 2532.39 | 15.50 | 5.10 | 0.25 | 0.06 | 4.50 | |
SD | 1.97 | 0.31 | 4.01 | 2366.09 | 22.22 | 2.08 | 0.22 | 0.03 | 2.81 |
Factors | 1 | 2 | 3 | 4 | 5 |
---|---|---|---|---|---|
Temperature | −0.077 | −0.048 | 0.991 | −0.056 | −0.012 |
pH | −0.192 | 0.947 | 0.043 | 0.001 | −0.073 |
DO | −0.134 | 0.893 | −0.062 | −0.024 | 0.067 |
EC | −0.073 | −0.091 | −0.180 | −0.281 | −0.062 |
Tur | −0.106 | −0.117 | −0.180 | 0.959 | −0.072 |
CODMn | 0.293 | 0.017 | −0.003 | −0.007 | 0.710 |
NH3N | 0.968 | −0.175 | −0.031 | −0.006 | 0.165 |
TN | 0.877 | −0.162 | 0.049 | −0.003 | 0.416 |
TP | 0.621 | −0.107 | −0.130 | −0.030 | 0.059 |
% of variance | 25.05 | 19.85 | 11.92 | 11.16 | 8.09 |
Cumulative | 25.05 | 44.89 | 56.82 | 67.97 | 76.06 |
Land Use/Cover | Water | Cultivated Land | Built-Up Land | Built-Up/Cultivated Land | ||||
---|---|---|---|---|---|---|---|---|
H | W | H | W | H | W | H | W | |
Temperature | 0.9688 | 0.0036 | 0.9665 | 0.0039 | 0.9701 | 0.0035 | 0.9636 | 0.0043 |
pH | 0.9826 | 0.002 | 0.986 | 0.0016 | 0.9918 | 0.001 | 0.9792 | 0.0024 |
DO | 0.9726 | 0.0032 | 0.9833 | 0.002 | 0.9795 | 0.0024 | 0.9794 | 0.0024 |
EC | 0.9191 | 0.0095 | 0.8451 | 0.0183 | 0.9125 | 0.0102 | 0.9551 | 0.0052 |
Tur | 0.9166 | 0.0097 | 0.8908 | 0.0129 | 0.9232 | 0.0089 | 0.8921 | 0.0126 |
CODMn | 0.9861 | 0.0016 | 0.9902 | 0.0012 | 0.9861 | 0.0016 | 0.9897 | 0.0012 |
NH3N | 0.8814 | 0.0138 | 0.8742 | 0.0148 | 0.9101 | 0.0104 | 0.8689 | 0.0153 |
TP | 0.9586 | 0.0048 | 0.9744 | 0.003 | 0.9614 | 0.0045 | 0.9581 | 0.0049 |
TN | 0.9758 | 0.0028 | 0.9714 | 0.0034 | 0.9782 | 0.0025 | 0.9753 | 0.0029 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Zhang, L.; Zhang, D.; Cen, Y.; Wang, S.; Zhang, Y.; Gao, L. Analysis of Seasonal Water Characteristics and Water Quality Responses to the Land Use/Land Cover Pattern: A Case Study in Tianjin, China. Water 2023, 15, 867. https://doi.org/10.3390/w15050867
Zhang L, Zhang L, Zhang D, Cen Y, Wang S, Zhang Y, Gao L. Analysis of Seasonal Water Characteristics and Water Quality Responses to the Land Use/Land Cover Pattern: A Case Study in Tianjin, China. Water. 2023; 15(5):867. https://doi.org/10.3390/w15050867
Chicago/Turabian StyleZhang, Linshan, Lifu Zhang, Donghui Zhang, Yi Cen, Sa Wang, Yan Zhang, and Liaoran Gao. 2023. "Analysis of Seasonal Water Characteristics and Water Quality Responses to the Land Use/Land Cover Pattern: A Case Study in Tianjin, China" Water 15, no. 5: 867. https://doi.org/10.3390/w15050867
APA StyleZhang, L., Zhang, L., Zhang, D., Cen, Y., Wang, S., Zhang, Y., & Gao, L. (2023). Analysis of Seasonal Water Characteristics and Water Quality Responses to the Land Use/Land Cover Pattern: A Case Study in Tianjin, China. Water, 15(5), 867. https://doi.org/10.3390/w15050867