Impact of Red Sludge Dumps, Originating from Industrial Activity, on the Soil and Underground Water
Abstract
:1. Introduction
- −
- Sludge dump C0: located in the hearth of a former ballast yard, in the western industrial area of Oradea, about 1200 m away from the residential area. It has an area of 381,189 square meters and stores about 2,000,000 t of sludge.
- −
- Sludge dump H2: located in the outskirts of the municipality of Oradea, about 5000 m from the residential area; it includes three compartments (C1, C2, C3) and was set up in an old existing ballast tank. It has an area of 402,551 square meters and stores about 6,000,000 t of slurry.
2. Materials and Methods
2.1. The Composition of the Red Sludge Dump
- −
- removing and recovering the alkaline solution through five stages of successive washing followed by the separation of the phases through decanting operations, I—thickening, I—filtration;
- −
- reducing the vanadium content in the stored waste to the minimum possible during the processing of bauxite with vanadium content by valorizing it in the “vanadium pentaoxide production facility”;
- −
- capturing the clarified water from the dumps through drains and recirculating it by pumping in the company’s premises, reusing it to both pulp the sludge and in the equipment cooling system; thus, the red sludge dumps were an integral part of the alumina manufacturing technological flow, and the amount of alkaline solution stationed in the dump was reduced to the residual moisture of the sludge;
- −
- sprinkling water on the surface of the dumps, especially during dry periods, to reduce air and environmental pollution from particles carried by the wind.
2.2. Location of the Red Sludge Dump
2.3. Research Methods Regarding the Impact of the Landfill on the Soil and Groundwater
- −
- Sampling point 1—P1—from a depth of 0–20 cm, marked P1-1 (0–5 cm), P2-1 (5–10 cm), P3-1 (10–15 cm), P4-1 (15–20 cm);
- −
- Sampling point 2—P2—from a depth of 20–40 cm, marked P1-2 (20–25 cm), P2-2 (25–30 cm), P3-2 (30–35 cm), P4-2 (35–40 cm);
- −
- Sampling point 3—P3—from a depth of 40–60 cm, marked P1-3 (40–45 cm), P2-3 (45–50 cm), P3-3 (50–55 cm), P4-3 (55–60 cm).
- −
- Sample D1—from the depth of 100 cm, marked D1-1, D2-1, D3-1, D4-1; D5-1; D6-1; D7-1;
- −
- Sample D2—from the depth of 200 cm, marked D1-2, D2-2, D3-2, D4-2; D5-2; D6-2; D7-2.
- −
- Drilling F1—25 m deep, is located in the north-eastern part, upstream, outside the boundary of the premises;
- −
- Drilling F2—depth 25 m, upstream is located outside the dump in the eastern part of it;
- −
- Drilling F3—depth 25 m, downstream is located outside the dump in the southeast part.
3. Results
3.1. The Influence of the Red Sludge Dump on the Quality of the Soil
3.2. The Influence of the Red Sludge Dump on the Quality of Underground Water
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mihai, F.C. Construction and Demolition Waste in Romania: The Route from Illegal Dumping to Building Materials. Sustainability 2019, 11, 3179. [Google Scholar] [CrossRef] [Green Version]
- Shvetsova, O.A.; Lee, J.H. Minimizing the Environmental Impact of Industrial Production: Evidence from South Korean Waste Treatment Investment Projects. Appl. Sci. 2020, 10, 3489. [Google Scholar] [CrossRef]
- Schmidt, J.H.; Holm, P.; Merrild, A.; Christensen, P. Life Cycle Assessment of the Waste Hierarchy—A Danish Case Study on Waste Paper. Waste Manag. 2007, 27, 1519–1530. [Google Scholar] [CrossRef] [PubMed]
- Moreschi, L.; Del Borghi, A.; Taramasso, A.C.; Gallo, M. Waste Management under Emergency Conditions: Life-Cycle Multicriteria Analysis as Decision Support System. Resources 2020, 9, 82. [Google Scholar] [CrossRef]
- Hemidat, S.; Achouri, O.; El Fels, L.; Elagroudy, S.; Hafidi, M.; Chaouki, B.; Ahmed, M.; Hodgkinson, I.; Guo, J. Solid Waste Management in the Context of a Circular Economy in the MENA Region. Sustainability 2022, 14, 480. [Google Scholar] [CrossRef]
- Yıldız-Geyhan, E.; Yılan, G.; Altun-Çiftçioğlu, G.A.; Kadırgan, M.A.N. Environmental and Social Life Cycle Sustainability Assessment of Different Packaging Waste Collection Systems. Resour. Conserv. Recycl. 2019, 143, 119–132. [Google Scholar] [CrossRef]
- Barchiesi, M.A.; Costa, R.; Di Pillo, F. The Link between the Compliance with Environmental Legislation on Separate Collection and the Municipal Solid Waste Costs. Sustainability 2022, 14, 5661. [Google Scholar] [CrossRef]
- Njoku, P.O.; Edokpayi, J.N.; Odiyo, J.O. Health and Environmental Risks of Residents Living Close to a Landfill: A Case Study of Thohoyandou Landfill, Limpopo Province, South Africa. Int. J. Environ. Res. Public Health 2019, 16, 2125. [Google Scholar] [CrossRef] [Green Version]
- Bernatik, A.; Rehak, D.; Cozzani, V.; Foltin, P.; Valasek, J.; Paulus, F. Integrated Environmental Risk Assessment of Major Accidents in the Transport of Hazardous Substances. Sustainability 2021, 13, 11993. [Google Scholar] [CrossRef]
- Bordean, D.M.; Pirvulescu, L.; Poiana, M.A.; Alexa, E.; Cozma, A.; Raba, D.N.; Borozan, A.B.; Misca, C.D.; Morar, A.; Obistioiu, D.; et al. An Innovative Approach to Assess the Ecotoxicological Risks of Soil Exposed to Solid Waste. Sustainability 2021, 13, 6141. [Google Scholar] [CrossRef]
- Ferronato, N.; Torretta, V. Waste Mismanagement in Developing Countries: A Review of Global Issues. Int. J. Environ. Res. Public Health 2019, 16, 1060. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferronato, N.; Rada, E.C.; Gorritty Portillo, M.A.; Cioca, L.I.; Ragazzi, M.; Torretta, V. Introduction of the Circular Economy Within Developing Regions: A Comparative Analysis of Advantages and Opportunities for Waste Valorization. J. Environ. Manag. 2019, 230, 366–378. [Google Scholar] [CrossRef] [PubMed]
- Wilson, D.C.; Velis, C.A. Waste Management—Still a Global Challenge in the 21st century: An Evidence-Based Call for Action. Waste Manag. Res. 2015, 33, 1049–1051. [Google Scholar] [CrossRef] [Green Version]
- Hettiarachchi, H.; Meegoda, J.N.; Ryu, S. Organic Waste Buyback as a Viable Method to Enhance Sustainable Municipal Solid Waste Management in Developing Countries. Int. J. Environ. Res. Public Health 2018, 15, 2483. [Google Scholar] [CrossRef] [Green Version]
- Ziyang, L.; Luochun, W.; Nanwen, Y.; Youcai, Z. Martial Recycling from Renewable Landfill and Associated Risks: A Review. Chemosphere 2015, 131, 91–103. [Google Scholar] [CrossRef] [PubMed]
- Vaverková, M.D. Landfill Impacts on the Environment—Review. Geosciences 2019, 9, 431. [Google Scholar] [CrossRef] [Green Version]
- Vallero, D.A.; Blight, G. The Municipal Landfill. In Waste, 2nd ed.; Academic Press: Cambridge, MA, USA, 2019. [Google Scholar] [CrossRef]
- Laner, D.; Crest, M.; Scharff, H.; Morris, J.W.F.; Barlaz, M.A. A Review of Approaches for the Long-term Management of Municipal Solid Waste Landfills. Waste Manag. 2012, 32, 498–512. [Google Scholar] [CrossRef]
- Panhwar, Q.A.; Naher, U.A.; Radziah, O.; Shamshuddin, J.; Razi, I.M. Eliminating Aluminum Toxicity in an Acid Sulfate Soil for Rice Cultivation Using Plant Growth Promoting Bacteria. Molecules 2015, 20, 3628–3646. [Google Scholar] [CrossRef]
- Inostroza-Blancheteau, C.; Soto, B.; Ulloa, P.; Aquea, F. Resistance Mechanisms of Aluminum (Al3+) Phytotoxicity in Cereals: Physiological, Genetic and Molecular Bases. J. Soil Sci. Plant Nutr. 2008, 8, 57–71. [Google Scholar] [CrossRef]
- Rahman, M.A.; Lee, S.H.; Ji, H.C.; Kabir, A.H.; Jones, C.S.; Lee, K.W. Importance of Mineral Nutrition for Mitigating Aluminum Toxicity in Plants on Acidic Soils: Current Status and Opportunities. Int. J. Mol. Sci. 2018, 19, 3073. [Google Scholar] [CrossRef] [Green Version]
- Martyn, C.N.; Osmond, C.; Edwardson, J.A.; Barker, D.J.P.; Harris, E.C.; Lacey, R.F. Geographical Relation between Alzheimer’s Disease and Aluminium in Drinking Water. Lancet 1989, 1, 59–62. [Google Scholar] [CrossRef]
- Kawahara, M.; Kato-Negishi, M. Link between Aluminum and the Pathogenesis of Alzheimer’s Disease: The Integration of the Aluminum and Amyloid Cascade Hypotheses. Int. J. Alzheimer’s Dis. 2011, 276393. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bravo, S.; Amorós, J.A.; Pérez-de-los-Reyes, C.; García, F.J.; Moreno, M.M.; Sánchez-Ormeño, M.; Higueras, P. Influence of the Soil pH in the Uptake and Bioaccumulation of Heavy Metals (Fe, Zn, Cu, Pb and Mn) and other Elements (Ca, K, Al, Sr and Ba) in Vine Leaves, Castilla-La Mancha (Spain). J. Geochem. Explor. 2017, 174, 79–83. [Google Scholar] [CrossRef]
- Anderson, G.C.; Pathan, S.; Hall, D.J.M.; Sharma, R.; Easton, J. Short- and Long-Term Effects of Lime and Gypsum Applications on Acid Soils in a Water-Limited Environment: 3. Soil Solution Chemistry. Agronomy 2021, 11, 826. [Google Scholar] [CrossRef]
- Senze, M.; Kowalska-Góralska, M.; Czyż, K.; Wondołowska-Grabowska, A.; Łuczyńska, J. Aluminum in Bottom Sediments of the Lower Silesian Rivers Supplying Dam Reservoirs vs. Selesian Chemistry Parameters. Int. J. Environ. Res. Public Health 2021, 18, 13170. [Google Scholar] [CrossRef] [PubMed]
- Lee, A.; Kim, K. New Approach to Remove Heavy Metals from Wastewater by the Coagulation of Alginate-Rhamnolipid Solution with Aluminum Sulfate. Water 2020, 12, 3406. [Google Scholar] [CrossRef]
- Allman, C.J.; Gómez-Ortiz, D.; Burke, A.; Amils, R.; Rodriguez, N.; Fernández-Remolar, D. Hydrogeochemical Variability of the Acidic Springs in the Rio Tinto Headwaters. Water 2021, 13, 2861. [Google Scholar] [CrossRef]
- Mombelli, D.; Barella, S.; Gruttadauria, A.; Mapelli, C. Iron Recovery from Bauxite Tailings Red Mud by Thermal Reduction with Blast Furnace Sludge. Appl. Sci. 2019, 9, 4902. [Google Scholar] [CrossRef] [Green Version]
- Samal, P.; Vundavilli, P.R.; Meher, A.; Mahapatra, M.M. Recent Progress in Aluminum Metal Matrix Composites: A Review on Processing, Mechanical and Wear Properties. J. Manuf. Process. 2020, 59, 131–152. [Google Scholar] [CrossRef]
- Silveira, N.C.G.; Martins, M.L.F.; Bezerra, A.C.S.; Araújo, F.G.S. Red Mud from the Aluminium Industry: Production, Characteristics, and Alternative Applications in Construction Materials—A Review. Sustainability 2021, 13, 12741. [Google Scholar] [CrossRef]
- Zinoveev, D.; Pasechnik, L.; Fedotov, M.; Dyubanov, V.; Grudinsky, P.; Alpatov, A. Extraction of Valuable Elements from Red Mud with a Focus on Using Liquid Media—A Review. Recycling 2021, 6, 38. [Google Scholar] [CrossRef]
- Occhicone, A.; Vukčević, M.; Bosković, I.; Ferone, C. Red Mud-Blast Furnace Slag-Based Alkali-Activated Materials. Sustainability 2021, 13, 11298. [Google Scholar] [CrossRef]
- Feng, L.; Yao, W.; Zheng, K.; Cui, N.; Xie, N. Synergistically Using Bauxite Residue (Red Mud) and Other Solid Wastes to Manufacture Eco-Friendly Cementitious Materials. Buildings 2022, 12, 117. [Google Scholar] [CrossRef]
- Mintaș, O.; Vicaș, G. Level I and II Environmental Assessment-Red Sludge Dump, Compartment C0, Dump Owner SC Fibrocim SRL; Environmental Report; SC Fibrocim SRL: Oradea, Romania.
- Szakács, A.; Kovacs, M. Volcanic Landforms and Landscapes of the East Carpathians (Romania) and Their Geoheritage Values. Land 2022, 11, 1064. [Google Scholar] [CrossRef]
- Mintaş, O.; Mintaş, I. The Impact and Vulnerabilities of Agriculture in Nord-West Region of Romania to Climate Change. In Annals of the University of Oradea, Fascicle: Protection of the Environment; University of Oradea: Oradea, Romania, 2020; Volume XXXV, pp. 95–100, Year 25. [Google Scholar] [CrossRef]
- Ministry of Waters, Forests and Environmental Protection of Romania. Order No. 184/1997 (Updated) for the Approval of the Environmental Assessment Procedure. Available online: https://legislatie.just.ro/Public/DetaliiDocument/11971 (accessed on 14 January 2023).
- Ministry of Waters, Forests and Environmental Protection of Romania. Order No. 756/1997 (Updated) for the Approval of the Regulation Regarding the Assessment of Environmental Pollution. Available online: https://legislatie.just.ro/Public/DetaliiDocument/13572 (accessed on 14 January 2023).
- Law, No. 163/2015 on National Standardization. Available online: https://www.asro.ro/ (accessed on 14 January 2023).
- Helming, K.; Daedlow, K.; Hansjürgens, B.; Koellner, T. Assessment and Governance of Sustainable Soil Management. Sustainability 2018, 10, 4432. [Google Scholar] [CrossRef] [Green Version]
- Gavrilescu, M. Water, Soil, and Plants Interactions in a Threatened Environment. Water 2021, 13, 2746. [Google Scholar] [CrossRef]
- Virto, I.; Imaz, M.J.; Fernández-Ugalde, O.; Gartzia-Bengoetxea, N.; Enrique, A.; Bescansa, P. Soil Degradation and Soil Quality in Western Europe: Current Situation and Future Perspectives. Sustainability 2015, 7, 313–365. [Google Scholar] [CrossRef] [Green Version]
- Alvarenga, P. Soil Pollution Assessment and Sustainable Remediation Strategies. Environments 2022, 9, 46. [Google Scholar] [CrossRef]
- Law, No. 458/2002 Regarding the Quality of Drinking Water. Available online: https://legislatie.just.ro/Public/DetaliiDocument/37723 (accessed on 14 January 2023).
- Law No. 311/2004 for the Amendment and Completion of Law No. 458/2002 Regarding the Quality of Drinking Water. Available online: http://www.namr.ro/wp-content/uploads/2013/02/legea311.pdf (accessed on 14 January 2023).
- Zohud, A.; Alam, L. A Review of Groundwater Contamination in West Bank, Palestine: Quality, Sources, Risks, and Management. Water 2022, 14, 3417. [Google Scholar] [CrossRef]
- Masood, A.; Tariq, M.A.U.R.; Hashmi, M.Z.U.R.; Waseem, M.; Sarwar, M.K.; Ali, W.; Farooq, R.; Almazroui, M.; Ng, A.W.M. An Overview of Groundwater Monitoring through Point-to Satellite-Based Techniques. Water 2022, 14, 565. [Google Scholar] [CrossRef]
- Sur, I.M.; Micle, V.; Polyak, E.T.; Gabor, T. Assessment of Soil Quality Status and the Ecological Risk in the Baia Mare, Romania Area. Sustainability 2022, 14, 3739. [Google Scholar] [CrossRef]
- Ruan, H.; Qiu, L.; Chen, J.; Liu, S.; Ma, Z. Government Trust, Environmental Pollution Perception, and Environmental Governance Satisfaction. Int. J. Environ. Res. Public Health 2022, 19, 9929. [Google Scholar] [CrossRef]
- Kunes, R.; Havelka, Z.; Olsan, P.; Smutny, L.; Filip, M.; Zoubek, T.; Bumbalek, R.; Petrovic, B.; Stehlik, R.; Bartos, P. A Review: Comparison of Approaches to the Approval Process and Methodology for Estimation of Ammonia Emissions from Livestock Farms under IPPC. Atmosphere 2022, 13, 2006. [Google Scholar] [CrossRef]
- Cacciuttolo Vargas, C.; Pérez Campomanes, G. Practical Experience of Filtered Tailings Technology in Chile and Peru: An Environmentally Friendly Solution. Minerals 2022, 12, 889. [Google Scholar] [CrossRef]
- Álvarez, M.L.; Méndez, A.; Rodríguez-Pacheco, R.; Paz-Ferreiro, J.; Gascó, G. Recovery of Zinc and Copper from Mine Tailings by Acid Leaching Solutions Combined with Carbon-Based Materials. Appl. Sci. 2021, 11, 5166. [Google Scholar] [CrossRef]
- Benndorf, J.; Restrepo, D.A.; Merkel, N.; John, A.; Buxton, M.; Guatame-Garcia, A.; Dalm, M.; de Waard, B.; Flores, H.; Möllerherm, S.; et al. TRIM4Post-Mining: Transition Information Modelling for Attractive Post-Mining Landscapes—A Conceptual Framework. Mining 2022, 2, 248–277. [Google Scholar] [CrossRef]
- Abramowicz, A.; Rahmonov, O.; Chybiorz, R. Environmental Management and Landscape Transformation on Self-Heating Coal-Waste Dumps in the Upper Silesian Coal Basin. Land 2021, 10, 23. [Google Scholar] [CrossRef]
- Wei, L.; Zhang, Y.; Zhao, Z.; Zhong, X.; Liu, S.; Mao, Y.; Li, J. Analysis of Mining Waste Dump Site Stability Based on Multiple Remote Sensing Technologies. Remote Sens. 2018, 10, 2025. [Google Scholar] [CrossRef] [Green Version]
- Williams, D.J. Improving Performance of Soil Covers over Waste Rock Dump Tops in Dry Climates. In Mine Closure 2013: Proceedings of the Eighth International Seminar on Mine Closure, Australian Centre for Geomechanics, Cornwall, Australia; Tibbett, M., Fourie, A.B., Digby, C., Eds.; ACG: Queensland, Australia, 2013; pp. 265–278. [Google Scholar] [CrossRef] [Green Version]
- Chabuk, A.; Al-Ansari, N.; Alkaradaghi, K.; Al-Rawabdeh, A.M.M.; Laue, J.; Hussain, H.M.; Pusch, R.; Knutsson, S. Landfill Final Cover Systems Design for Arid Areas Using the HELP Model: A Case Study in the Babylon Governorate, Iraq. Sustainability 2018, 10, 4568. [Google Scholar] [CrossRef] [Green Version]
- Si, M.; Chen, Y.; Li, C.; Lin, Y.; Huang, J.; Zhu, F.; Tian, S.; Zhao, Q. Recent Advances and Future Prospects on the Tailing Covering Technology for Oxidation Prevention of Sulfide Tailings. Toxics 2023, 11, 11. [Google Scholar] [CrossRef] [PubMed]
- Ghorbani, M.; Konvalina, P.; Walkiewicz, A.; Neugschwandtner, R.W.; Kopecký, M.; Zamanian, K.; Chen, W.-H.; Bucur, D. Feasibility of Biochar Derived from Sewage Sludge to Promote Sustainable Agriculture and Mitigate GHG Emissions—A Review. Int. J. Environ. Res. Public Health 2022, 19, 12983. [Google Scholar] [CrossRef] [PubMed]
- Matei, I.; Pacurar, I.; Rosca, S.; Bilasco, S.; Sestras, P.; Rusu, T.; Jude, E.T.; Tăut, F.D. Land Use Favourability Assessment Based on Soil Characteristics and Anthropic Pollution. Case Study Somesul Mic Valley Corridor, Romania. Agronomy 2020, 10, 1245. [Google Scholar] [CrossRef]
- Đurđević, D.; Žiković, S.; Blecich, P. Sustainable Sewage Sludge Management Technologies Selection Based on Techno-Economic-Environmental Criteria: Case Study of Croatia. Energies 2022, 15, 3941. [Google Scholar] [CrossRef]
- Sabbahi, S.; Ben Ayed, L.; Trad, M.; Berndtsson, R.; Karanis, P. Parasitological Assessment of Sewage Sludge Samples for Potential Agricultural Reuse in Tunisia. Int. J. Environ. Res. Public Health 2022, 19, 1657. [Google Scholar] [CrossRef] [PubMed]
No. Crt. | Quality Indicator | Method of Analysis [40] |
---|---|---|
1 | Granulometric analysis (sieving) | SR EN ISO 14688-1: 2018 |
2 | pH (potentiometric) | SR 7184/13-2001 PTL-19 |
3 | Dry matter and water content | SR ISO 11465-1998 PT-63 |
4 | Sulphates | SR ISO 11048-1999 PTL-23 |
5 | Iron | EPA 6200 PTL-37 Ed.5 rev.0 |
6 | Aluminum | SR ISO 11047-1999 PTL-68 |
No. Crt. | Quality Indicator | Method of Analysis [40] |
---|---|---|
1 | pH | SR ISO 10523/12 PTL-19 |
2 | Total iron | SR ISO 6332/C91-2006 PTL-14 |
3 | Sulfur | EPA 375.4 PTL-23 ed.5 rev 0 |
4 | Aluminum | SR ISO 12020-2004 PTL-33 |
5 | Sodium | STAS 3223/2-1980 PTL-36 |
No. Crt. | Quality Indicator | Depth, cm | Sample Collection Points | |||
---|---|---|---|---|---|---|
P1 | P2 | P3 | P4 | |||
1 | pH | 05–20 | 9.88 | 7.94 | 8.72 | 8.54 |
20–40 | 9.69 | 8.84 | 8.72 | 8.59 | ||
40–60 | 9.78 | 9.09 | 8.74 | 8.97 | ||
2 | Dry matter and water content, % | 05–20 | 99.26 | 94.38 | 98.47 | 92.60 |
20–40 | 97.69 | 82.58 | 99.30 | 94.95 | ||
40–60 | 98.48 | 75.65 | 85.65 | 83.00 | ||
3 | Sulfates, mg kg−1 dry substance | 05–20 | 108.4 | 50.40 | 426.5 | 233.5 |
20–40 | 130.6 | <50 | 120.9 | 77.19 | ||
40–60 | 119.5 | <50 | 86.38 | <50 | ||
4 | Total iron, mg kg−1 dry substance | 05–20 | 24,754 | 32,113 | 24,612 | 19,962 |
20–40 | 17,974 | 19,207 | 74,638 | 23,569 | ||
40–60 | 21,364 | 21,960 | 45,002 | 53,708 | ||
5 | Aluminum, mg kg−1 dry substance | 05–20 | 44,312 | 61,328 | 47,858 | 57,953 |
20–40 | 46,672 | 56,773 | 51,866 | 54,675 | ||
40–60 | 45,492 | 67,087 | 59,280 | 43,104 |
No. Crt. | Quality Indicator | Depth, cm | Sample Collection Points | ||||||
---|---|---|---|---|---|---|---|---|---|
D1 | D2 | D3 | D4 | D5 | D6 | D7 | |||
1 | pH | 100 | 7.20 | 7.32 | 7.47 | 7.31 | 7.39 | 7.11 | 7.47 |
250 | 7.45 | 7.37 | 8.16 | 7.45 | 7.17 | 7.37 | 7.34 | ||
2 | Dry matter and water content, % | 100 | 96.93 | 98.05 | 96.17 | 96.82 | 97.73 | 96.91 | 97.79 |
250 | 98.58 | 97.46 | 98.28 | 98.09 | 98.69 | 98.54 | 97.29 | ||
3 | Sulfates, mg kg−1 dry substance | 100 | <50 | <50 | 173.06 | <50 | 66.34 | <50 | <50 |
250 | <50 | 106.34 | 122.85 | 74.48 | 193.88 | <50 | 69.04 | ||
4 | Total iron, mg kg−1 dry substance | 100 | 23,809 | 18,738 | 17,448 | 34,721 | 18,962 | 14,678 | 16,744 |
250 | 14,529 | 18,718 | 20,634 | 12,125 | 12,922 | 10,365 | 12,687 | ||
5 | Aluminum, mg kg−1 dry substance | 100 | 15,229 | 13,544 | 15,736 | 16,842 | 14,332 | 15,528 | 15,557 |
250 | 8973.4 | 14,978 | 12,294 | 10,498 | 8846.6 | 8850.5 | 13,115 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mintaș, O.S.; Simeanu, C.; Berchez, O.; Marele, D.C.; Osiceanu, A.G.; Rusu, T. Impact of Red Sludge Dumps, Originating from Industrial Activity, on the Soil and Underground Water. Water 2023, 15, 898. https://doi.org/10.3390/w15050898
Mintaș OS, Simeanu C, Berchez O, Marele DC, Osiceanu AG, Rusu T. Impact of Red Sludge Dumps, Originating from Industrial Activity, on the Soil and Underground Water. Water. 2023; 15(5):898. https://doi.org/10.3390/w15050898
Chicago/Turabian StyleMintaș, Olimpia Smaranda, Cristina Simeanu, Octavian Berchez, Daniela Camelia Marele, Adrian Gheorghe Osiceanu, and Teodor Rusu. 2023. "Impact of Red Sludge Dumps, Originating from Industrial Activity, on the Soil and Underground Water" Water 15, no. 5: 898. https://doi.org/10.3390/w15050898
APA StyleMintaș, O. S., Simeanu, C., Berchez, O., Marele, D. C., Osiceanu, A. G., & Rusu, T. (2023). Impact of Red Sludge Dumps, Originating from Industrial Activity, on the Soil and Underground Water. Water, 15(5), 898. https://doi.org/10.3390/w15050898