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Abstract: Northwestern Russia remains the only region in Northern Eurasia where no regional
chironomid-based inference model for quantitative palaeoclimatic reconstructions has been devel-
oped. Using palaeolimnological methods, we investigated the subfossil chironomid remains in
surface sediments from a data set of 98 lakes from nine subregions of the European part of Northern
Russia. We identified 143 chironomid taxa in the investigated lakes. Multivariate statistical analyses
of chironomid and environmental data demonstrated that the mean July air temperature (T July),
distance from the tree line, water depth, pH, and altitude explain the most significant variance in
chironomid distribution. T July appeared to be the most important environmental variable. We
established a chironomid-based inference model for reconstructing T July from subfossil data. The
resulting West Russian two-component WA-PLS model includes 96 lakes (two lakes were excluded
as outliers), 143 chironomid taxa, r2 = 0.84 (r2 boot = 0.60), RMSEP boot = 1.34 ◦C, and can be
recommended for application in palaeoclimatic studies in the East of Northern Eurasia.

Keywords: chironomids; database; T July; inference model; lakes; sediments; northwest Russia

1. Introduction

Chironomids (Insecta: Diptera: Chironomidae), or non-biting midges, are holometa-
bolous insects. Their aquatic larvae usually constitute the most abundant macroinverte-
brate benthic group in freshwaters [1,2]. They are critical, primary consumers that play
an essential role in the biogeochemical cycling of nutrients in lake ecosystems [3,4]. Chi-
ronomids are diverse and nearly ubiquitous. Many studies prove that the abundance and
distribution of most chironomid taxa are temperature-dependent [5–8]. They respond
rapidly to climate change by virtue of the winged adult stage. The larval head capsules
preserve well in lake sediment deposits, and the subfossils are identifiable in most cases to
at least the genus morphotype [5]. Due to these features, chironomids have been proven
to be among the most reliable quantitative proxies of mean July air temperature [4–7].
Climatic reconstructions from palaeorecords are based on modern analogues (training sets)
from which the inference models or transfer function can be established. Past climates can
be quantified from fossil chironomid assemblages by using inference models that tie the
distribution and abundance of chironomids to the contemporary climate [4–6].
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Datasets describe the relationship between modern chironomid assemblages and
environmental conditions (predominantly the mean July air temperature (T July)). Based on
these datasets, inference models for reconstructing T July have been developed successfully
all over the world [9–11]. There are several datasets and chironomid-based inference
models for reconstructing the T July in Northern Europe [12–16]. Our previous studies on
the distribution and abundance of chironomids in lakes along environmental gradients
in north-eastern Eurasia encompass many regions, including the Polar Urals, Siberia, and
Kamchatka [16–20]. These modern chironomid-based training sets were used for the
development of region-quantitative transfer functions for reconstructing T July, water
depth (WD), and continentality (CI) [16,18,19].

However, chironomid distribution in relation to environmental factors in modern lake
sediments in the northern regions of east Europe (northwestern Russia) has never been
investigated [21,22] apart from case studies in the Bolshezemelskaya tundra and Pechora
River basin (northwest of the Polar Urals) [23–25].

Since chironomid-based inference models can hardly be used outside of the regions in
which they were developed [26–29], it was imperative to develop a regional chironomid-
based inference model for application in the east European North. For this reason, the main
goal of our investigation is to fill in this gap in chironomid studies in northern Eurasia.

In this paper, we present the results of our work in reanalysing and standardising
the taxonomy between our earlier published data from two regions in the west European
part of the Russian arctic (Pechora and Komi, Figure 1; [16,19,23]) and the addition of
new sampling regions to the data set: Anzher Solovki (seven lakes), the central European
region (three lakes), Karelian Isthmus and Ladoga (twenty-three lakes), the Kola Peninsula
(nine lakes), Karelia Zaonezhje (twelve lakes), Novaya Zemlya (one lake), and the Onega
Peninsula (six lakes) (Figure 1). Following taxonomic standardisation and the analysis of
taxonomic distances between the sampling regions, we merged the data sets. Merging the
datasets has essential advantages, including extending the environmental and geographical
gradients, increasing the representation of taxa in the calibration set, improving the perfor-
mance, and widening the applicability of the chironomid–temperature inference model by
providing more reliable estimates of the environmental optima of chironomid taxa [5,23].
The inclusion of a greater number of the geographically and ecologically suitable lakes
into the model increases the probability of better analogues between present and past
assemblages [5].

The main objectives of our investigation are to compare the faunal composition of
the previously studied and newly sampled parts of the data set to examine the influence
of environmental factors on chironomid distribution and abundance in the “chironomid-
environment” dataset of the lakes in northwestern Russia and to produce a chironomid-
based regional inference model for reconstructing past regional climate and environmental
changes in the north of eastern Europe.
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Figure 1. Location of the lakes in the sampling regions: Anzher Solovki (AS); central European re-
gion (EU), Karelian Isthmus, Ladoga (KL); Komi (KM, [19]); Kola Peninsula (KO); Karelia Zaonezhje 
(KZ); Novaya Zemlya (NZ); Onega Peninsula (OP); and Pechora (PE, [19]). Relief map and tree line 
have been taken from free online sources: https://maps-for-free.com; http://ecoregions.appspot.com 
(accessed on 27 February 2023). 

2. Materials and Methods  
2.1. Field Methods and Derivation of Climate Variables 

Surface sediment samples and environmental data were collected between 2015 and 
2020 in several regions of north European Russia. They were supplemented by the data 
collected earlier in the north-eastern part of European Russia (Komi and Pechora region) 
that were used in the previously published North Russian data set and inference models 
[19] (Figure 1). The data set included 98 lakes that are situated across wide latitudinal and 
longitudinal ranges and several environmental zones (arctic desert, tundra, forest tundra, 
northern taiga, and taiga) (Table 1). 

The sediment samples were collected from the deepest point of each lake using a 60 
mm diameter UWITEC gravity corer or an 80 mm diameter HON-Kajak corer [30] and a 
Voronkov lot. The water depth (WD) was measured using an echolot. The pH was meas-
ured using a multi-parameter instrument (WTW 330 i, 340 i). The mean July temperature 
(T July) for each site was obtained from a climatic data set compiled by New et al. [31] 
with a 10 min latitude/longitude resolution. Though this data set has some shortfalls (in-
cluding a relatively coarse resolution of the climate data; that the climate normals predate 
the collection of the chironomid data; and that the data span a cold phase of the Arctic 
Oscillation) [32], its global nature, homogeneity and consistency make it suitable for our 
investigation. In most cases, the data from local meteorological stations have gaps in their 
observations and cover different time spans. The distance from the tree line (DTL) was 
calculated using the treeline location [33] in ArcGIS [34]. 

Figure 1. Location of the lakes in the sampling regions: Anzher Solovki (AS); central European region
(EU), Karelian Isthmus, Ladoga (KL); Komi (KM, [19]); Kola Peninsula (KO); Karelia Zaonezhje (KZ);
Novaya Zemlya (NZ); Onega Peninsula (OP); and Pechora (PE, [19]). Relief map and tree line have
been taken from free online sources: https://maps-for-free.com; http://ecoregions.appspot.com
(accessed on 27 February 2023).

2. Materials and Methods
2.1. Field Methods and Derivation of Climate Variables

Surface sediment samples and environmental data were collected between 2015 and
2020 in several regions of north European Russia. They were supplemented by the data
collected earlier in the north-eastern part of European Russia (Komi and Pechora region)
that were used in the previously published North Russian data set and inference models [19]
(Figure 1). The data set included 98 lakes that are situated across wide latitudinal and
longitudinal ranges and several environmental zones (arctic desert, tundra, forest tundra,
northern taiga, and taiga) (Table 1).

The sediment samples were collected from the deepest point of each lake using a
60 mm diameter UWITEC gravity corer or an 80 mm diameter HON-Kajak corer [30] and a
Voronkov lot. The water depth (WD) was measured using an echolot. The pH was measured
using a multi-parameter instrument (WTW 330 i, 340 i). The mean July temperature (T
July) for each site was obtained from a climatic data set compiled by New et al. [31]
with a 10 min latitude/longitude resolution. Though this data set has some shortfalls
(including a relatively coarse resolution of the climate data; that the climate normals
predate the collection of the chironomid data; and that the data span a cold phase of the
Arctic Oscillation) [32], its global nature, homogeneity and consistency make it suitable for
our investigation. In most cases, the data from local meteorological stations have gaps in
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their observations and cover different time spans. The distance from the tree line (DTL)
was calculated using the treeline location [33] in ArcGIS [34].

Table 1. Summary of environmental data for the 98 lakes. St.dev for standard deviation; skew
for skewness.

Parameters * Min. Max. Mean Median St.dev Skew

Latitude, N 56.22 70.59 64.17 64.89 3.22 −0.26
Longitude, E 28.85 66.32 42.05 36.03 12.77 0.50

Altitude, m a.s.l. 0 514 74.30 60.00 71.02 2.76
T July ◦C 9.20 18.10 15.04 15.1 1.97 −0.51

Water depth, m 0.70 140 9.74 5.7 16.39 5.88
pH 4.54 9.5 6.72 6.8 0.86 −0.05

Distance from treeline, km −1434 356 −390.42 −275 403.29 −0.35
Water depth, log 10 −0.15 2.15 0,77 0.76 0.40 0.59

Altitude, log 10 0.18 2.71 1.67 1.78 0.50 −0.66

* Vegetation types include: arctic desert; tundra; forest tundra; northern taiga; and taiga. They are presented in
more detail in the Supplementary electronic material, Table S1.

2.2. Chironomid Analysis

The treatment of the sediment samples for chironomid analysis followed the standard
techniques described in [27]. Chironomids were identified to the highest taxonomic resolu-
tion possible with reference to [27,35]. At least 50 head capsules (HC) were extracted from
each sample to reach the diversity of the chironomid population sufficient to accurately
estimate the inferred temperature [36,37].

2.3. Numerical Methods

The dataset of 98 lakes was analysed to examine the relationship between chironomid
distribution and abundance and the environmental variables. All taxon data were trans-
formed to percent abundances, calculated as the percentage of total identifiable chironomids
per sample. They were square root transformed prior to analysis [9,38]. Environmental
variables were controlled for skewness [39]. Significantly skewed data, values of which
exceeded two standard errors of skewness (regardless of sign) [40], were log transformed
(Altitude and WD). The remaining parameters were left untransformed.

A detrended correspondence analysis (DCA) with detrending by segments (rare taxa
downweighted) was performed on the chironomid data to explore the main pattern of
taxonomic variation between the investigated lakes and to determine the lengths of the
sampled environmental gradients [41,42]. Results of the DCA showed that the gradient
length of species scores for the axes 1 and 2 were 4.075 and 4.334 standard deviation units,
respectively, indicating that numerical methods based on a unimodal response model were
the most relevant for assessing the variation of the chironomid assemblages [43–45].

Variance inflation factors (VIF) were used to identify intercorrelated variables. Environ-
mental variables with a VIF greater than 20 were eliminated, starting with the variable with
the largest inflation factor and continuing until all remaining variables had values <20 [46].
We investigated the relationships between the significant environmental variables and the
individual axes by using correlation coefficients, t-values, and interest correlations [19,46].
The relationships between chironomid distribution and environmental variables were as-
sessed by canonical correspondence analyses (CCA), using each environmental variable as
the sole constraining variable. The statistical significance of each variable was tested using a
Monte Carlo permutation test with 999 unrestricted permutations [47]. Significant variables
(p ≤ 0.05) were retained for further analysis. Both the DCA and CCA were performed using
CANOCO 4.5 [48].

Taxonomic similarities between the investigated regions within the data set were
estimated using DCA, and the squared-chord distance was used as a measure of taxonomic
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distances [49] nad performed in the program PAST [50]. The TD values ranged from 0 to 2,
with 0 indicating an identical taxonomic composition of the samples [51].

2.4. Model Development

We used the environmental variable that explained the most variance in the data set
(as indicated by the CCAs) in order to develop quantitative transfer functions based on
weighted averaging partial least squares (WA-PLS) methods [15,19,52,53]. Relationships
between the significant environmental variables and the individual CCA axes in the models
were tested with t-values, correlation coefficients, and interset correlations. The critical
value for a t-test is 2.1 at the 5% significance level [46].

The performance and optimal number of components in the transfer functions were
assessed using bootstrapping cross validation. The resulting inference models were ex-
amined by means of the coefficient of determination (r2

boot), root mean squared error of
prediction (RMSEP), [54] and the max bias boot (the tendency of the model to under- or
overestimate the reconstructed parameter). The development of the transfer function aims
at a high coefficient of determination (r2

boot), a low RMSEP, and low mean and maximum
bias boot [55]. To improve the quality of the transfer function, we deleted several lakes from
the analysis. These lakes were defined as outliers based on their absolute residual of the
samples that exceeded the standard deviation of T July in all models [56].

Optima and tolerances for all chironomid taxa retained in the analyses were estimated
by weighted averages and weighted standard deviations [57]. The program C2, version
1.7.7, was used to develop transfer functions and to estimate N2 as a measure of the
frequency of occurrence of the taxa in the data set, optima, and tolerances [58,59].

To describe the relationship of chironomid taxa to the main environmental variable,
taxon response models were generated using generalized linear models (GLM) and set to a
quadratic degree and Poisson distribution (p < 0.05, significant; p < 0.001 highly significant)
in the CanoDraw component of CANOCO 4.5 [18,19,46].

3. Results
3.1. Environmental Parameters of the Lakes

The range of the available environmental parameters common for all lakes in the
dataset is presented in Table 1. The lakes in the West Russian set have an unskewed
distribution along the T July, pH, DTL, and parameters of geographical location (latitude
and longitude). The WD and altitude (Alt) have a skewed distribution and were log10
transformed. The lakes cover the T July gradient from 9.2 to 18.1 ◦C. Most of the lakes are
located within the T July range of 11.6 to 17.5 ◦C (Figure 2). The coldest lakes (9.2 to 11.6 ◦C)
are from the Polar Urals and Novaya Zemlya Yuzhny Island (NZ). There are only four lakes
deeper than 30 m (ca median ± st. dev): two lakes from the Polar Urals and two lakes from
the Ladoga region (Figure 1). Three lakes from the central European part of Russia have
the longest DTL to the south. The lake from the NZ is situated the furthest away from the
tree line to the north. There are four lakes with a pH above 8; 3 of them are from the Komi
region, and one is from the Karelian Isthmus (Malaya Ladoga). Sixteen lakes have a pH
below 6 (median ± st. dev.) and are from different regions.

3.2. Chironomid Fauna

The DCA (Figure 3) and TD (Table 2) analyses demonstrated that NZ is the most
taxonomically distinct region and has the closest similarity to Karelian Isthmus. The
taxonomical distinction of NZ and Karelian Isthmus is reflected in the DCA biplot, where
the lakes are placed as a group at the left side of the diagram (Figure 3). The taxonomically
closest regions (the lowest TD) are those in the middle of the DCA plot (Figure 3). These
are the geographically close regions: Zaonezhje, Anzher Solovki, and the Onega Peninsula.
Other taxonomically close regions are those in the right part of the DCA: Kola and Pechora
(Figures 1 and 3, Table 2). The median TD of all the investigated regions is 1.02.
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Figure 3. DCA of the lakes with respect to regions of their location based on the taxonomic composi-
tion of chironomid fauna. Regions (Abbreviations): Anzher Solovki (AS); central European region
(EU), Karelian Isthmus, Ladoga (KL); Komi (KM); Kola Peninsula (KO); Karelia Zaonezhje (KZ);
Novaya Zemlya (NZ); Onega Peninsula (OP); and Pechora (PE).

Table 2. Taxonomic distances (TD) between regions of investigations within the data set. Regions
are sorted from north to south. Regions (Abbreviations): Novaya Zemlya (NZ); Komi (KM); Kola
Peninsula (KO); Anzher Solovki (AS); Onega Peninsula (OP); Pechora (PE); Karelia Zaonezhje (KZ);
Karelian Isthmus, Ladoga (KL); and the central European region (EU).

Lake NZ KM KO AS OP PE KZ KL EU Median

NZ 0 1.39 1.38 1.37 1.38 1.35 1.35 1.28 1.38 1.37
KM 1.39 0 1.06 1.00 0.87 1.02 1.03 1.04 1.20 1.03
KP 1.38 1.06 0 0.94 0.77 0.85 0.96 0.84 1.28 0.94
AS 1.37 1.00 0.94 0 0.70 1.06 1.00 1.06 1.30 1.01
OP 1.38 0.87 0.77 0.70 0 0.98 1.03 0.95 1.28 0.95
PE 1.35 1.02 0.85 1.06 0.98 0 0.90 0.95 1.20 0.98
KZ 1.35 1.03 0.96 1.00 1.03 0.90 0 0.88 1.06 1.01
KL 1.28 1.04 0.84 1.06 0.95 0.95 0.88 0 1.18 0.96
EU 1.38 1.20 1.28 1.30 1.28 1.20 1.06 1.18 0 1.20

Median 1.37 1.03 0.94 1.01 0.95 0.98 1.01 0.96 1.20 1.02
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In the 98 investigated lakes from northwest European Russia (new), we identified
143 chironomid taxa. The most common taxa, which were found in more than 50% (≥49)
of the lakes, are Psectrocladius sordidellus-type, Procladius, Cladotanytarsus mancus-type,
Tanytarsus pallidicornis-type, Tanytarsus mendax-type, Sergentia coracina-type, Microtendipes
pedellus-type, Dicrotendipes nervosus-type, Polypedilum nubeculosum-type, Cladopelma later-
alis-type, and Tanytarsus lugens-type (Figure 4). The distribution of Oliveridia, Hydrobaenus
lugubris-type, Smittia—Parasmittia, Tvetenia bavarica-type, and Diplocaldiusis (rare) is re-
stricted to the coldest lakes in our data set (9–10.5 ◦C; Figure 4). Nanocladius rectinervis-type,
Paralauterborniella, the Nanocladius branchicolus-type, which is rare in the dataset, Einfeldia
dissidens-type, Harnischia, Nilothauma, and Orthocladius type I (not in Figure 4) are restricted
to the lakes from the warmest part of the temperature gradient (16–18.5 ◦C).
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3.3. Ordination of the Set of Data

A CCA with all environmental variables included in the analysis resulted in the
parameters presented in Table 3. VIFs from the CCAs show that the latitude and DTL
are intercorrelated. The latitude was eliminated from the analysis as having the greatest
VIF. A series of CCAs constrained to individual environmental variables and Monte Carlo
permutation tests (under full model) revealed that T July, WD, pH, DTL, and altitude
explain significant proportions (p < 0.05) of variance in the data set. A CCA with five
variables had a CCA eigenvalue of axis 1 of 0.154 and a CCA axis 2 of 0.086, explaining 4.7%
and 2.6% of the variance in the data, respectively (SEM, Table S2). The ratio of eigenvalues
of the CCA axes 1 and 2 in our study is 1.79 (λ1/λ2 = 0.154/0.086). This indicates that the
most important explanatory variables are most likely included in the analysis [60]. The
results of the forward selection suggest (Table 3) that the mean July air temperature was
the most significant variable in explaining chironomid distribution in NWE.

Axis 1 of CCA correlates with T July, and CCA axis 2 correlates with DTL (Table 4).
The absolute values of canonical coefficients are the highest, and their t-values are greater
than 2.1, the critical value for a t-test at the 5% significance level [46]. WD has the strongest
correlation with Axis 3. The pH correlates with Axis 4, and Alt demonstrates a correlation
with axes 2 and 4. From the obtained results, we can conclude that T July explains the most
significant part of the data variance and can be used to develop an inference model.
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Table 3. Significant environmental variables identified by forward selection in CCA of 98 lakes NWE
data set and the variance they explain.

Variable Variance
Explained

% Total Variance
Explained F Value Significance Leve

Mean July air temperature (T July) 0.155 38.5 4.069 0.002
Water depth (log 10) 0.092 22.8 2.480 0.002

Distance from tree line 0.084 20.8 2.294 0.002
pH 0.062 15.4 1.969 0.002

Altitude 0.010 2.5 1.700 0.008
Total variance explained 0.403

Total variance 3.293

Table 4. Environmental variables, canonical coefficients and t-values of significant environmental
variables used in the CCA.

Parameters
Canonical Coefficients t-Values Interset Correlation

Axis 1 Axis 2 Axis 3 Axis 4 Axis 1 Axis 2 Axis 3 Axis 4 Axis 1 Axis 2 Axis 3 Axis 4

T July −0.41 −0.03 −0.39 −0.23 −5.31 −0.46 −6.38 −3.53 −0.73 −0.02 −0.32 −0.07
DTL 0.39 −0.42 −0.32 −0.20 5.29 −5.35 −5.18 −2.97 −0.18 0.76 0.22 −0.03
WD 0.16 0.18 −0.20 −0.02 5.17 5.45 −7.76 −0.81 0.18 0.46 −0.53 0.003
pH 0.02 −0.11 0.08 0.24 0.55 −3.26 −2.96 7.97 −0.001 −0.24 −0.30 0.55
Alt 0.01 −0.13 −0.05 −0.11 0.35 −3.89 −2.05 −4.41 0.13 −0.20 −0.180 −0.150

3.4. Development of Inference Models and Taxon-Specific T July Optima

The T July models with all 98 lakes and all 143 chironomid taxa included in the analyses
had coefficients of determination below 0.5 (r2

boot = 0.4–0.47), an RMSEP = 1.49–1.75,
and max biases boot = 2.78–3.92 (Table 5, Figure 5A). The elimination of two outliers
improved the statistical parameters of the model. For the 96 lakes and 143 chironomid taxa
data set, the two-component WA-PLS model has an r2

boot = 0.60 and RMSEP = 1.34 ◦C
(Table 5, Figure 5B). The model tends to over-predict temperatures below 15 ◦C and under-
predict temperatures above 15 ◦C.

Table 5. WA-PLS models for reconstructing mean July air temperature (T July). Root mean squared
error for the training set (apparent RMSE); squared correlation between inferred and observed
values(r2); average bias in residuals (Av Bias); maximum bias in residuals (Max Bias); squared
correlation between bootstrap predicted and observed values (r2

boot); average bias in bootstrap
residuals (Ave Bias boot); maximum bias in bootstrap residuals (Max_Bias boot); root mean squared
error of prediction (RMSEP boot); % reduction in RMSEP (% Change); and randomisation t-test
significance (t-test).

WAPLS
Component RMSE r2 Av

Bias
Max
Bias r2

boot
Ave

Bias boot

Max_
Bias boot

RMSEP %
Change t-Test

Full model (98 lakes. 143 taxa)

1 1.113 0.68 0.005 1.344 0.45 −0.047 3.63 1.51 . . . . . .
2 0.833 0.82 −0.044 0.857 0.49 −0.050 3.92 1.49 1.16 0.16
3 0.638 0.89 0.022 0.775 0.47 −0.052 3.27 1.59 −6.40 0.68
4 0.497 0.94 0.002 0.805 0.44 −0.037 2.90 1.68 −5.76 0.90
5 0.414 0.96 −0.005 0.654 0.43 −0.043 2.78 1.75 −3.92 0.98

Minus 2 lakes (96 lakes. 143 taxa)

1 1.086 0.69 −0.005 1.647 0.58 −0.090 3.27 1.37 . . . . . .
2 0.778 0.84 −0.040 0.722 0.60 −0.082 3.37 1.34 1.63 0.07
3 0.583 0.91 0.017 0.837 0.61 −0.097 2.66 1.38 −2.08 0.12
4 0.455 0.95 −0.003 0.648 0.60 −0.078 2.29 1.44 −4.17 0.81
5 0.374 0.96 −0.007 0.399 0.59 −0.077 2.18 1.48 −3.23 0.91
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Trends in residuals are shown with a LOESS smoother (span = 0.45).

Of the 143 taxa, 61 have more than ten occurrences in the 96 lakes data set (apart from
the undefined Chironomini, Tanytarsini, Orthocladiinae, Tanypodinae, and Chironomini
larvula). All these 61 taxa have N2 ≥ 5, and their optima are likely to be reliably esti-
mated [58] (Supplementary Electronic Material (SEM), Table S3). The T July optima for
chironomid taxa in the data set ranged from 16.7 ◦C (Microchironomus), followed by Tanytar-
sus lactescens-type (16.6 ◦C) and Chironomus plumosus-type (16.4 ◦C), to 12.2 ◦C (Corynocera
oliveri-type). Several taxa have T July optima below 12.2 ◦C, but they are rare in the data set.
Test, using the generalized linear models showed that in the investigated dataset, 65.6% of
the taxa with more than ten occurrences have a significant or highly significant relationship
to T July (16.4% of the taxa have a highly significant relationship (p ≤ 0.001) to T July.

4. Discussion

The new NWE dataset continues to our earlier studies on the influence of environmen-
tal factors on chironomid distribution and abundance in northern Eurasia. Our previous
work included collecting taxonomic and ecological information on the lakes that are widely
distributed across northern Eurasia [17–19,61–64]. The T July gradient presented in this
manuscript from the NWE dataset (9.2 ◦C to 18.1 ◦C) is shorter than those in the WS
(8.8–19 ◦C) and ES (3.4 to 18.8 ◦C) or NR (1.8 to 18.8 ◦C) and differs considerably from
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the T range in the dataset from Kamchatka (1.8–13.3 ◦C) [16,19]. However, it demon-
strates a similar or greater length when comparing the T July range in our study with the
other datasets available for arctic regions of northern Eurasia (Sweden 7.0–14.7 ◦C, [12];
11.3–17.1 ◦C, [14]; Norway 3.5–16 ◦C, [16]). The sampled range of temperatures in the NWE
sufficiently reflects the modern ecological conditions in the region. Still, it shows some
skewness in the distribution along the T July gradient, which can be seen as a task for our
future investigation.

As in most chironomid-based datasets, the T July is the most significant explanatory
variable in the NWE [65]. Though the DTL was not included in the original study [19],
it was recently shown that DTL explain the highest proportion of variance in the north
Russian dataset [19], while T July is the second important variable [65]. DTL is an important
variable in the NWE, explaining a substantial proportion of the variance. Though T July
and DTL appeared as non-biased parameters in the NWE, it was shown earlier that tree line
position is related to climate in anthropogenically undisturbed areas [66–68]. However, DTL
is a complex parameter that depends on different aspects of the climate, including T July.
Therefore, even though the DTL can play an essential role in the chironomid distribution,
from an ecological point of view it is more reasonable to perform reconstructions of direct
parameters such as T July.

In the NWE, we investigated the chironomid fauna of the east European part of north-
ern Eurasia using a palaeoecological approach. Although the taxonomic resolution of
the palaeoecological study is lower than that of traditional hydrobiological or faunistic
investigations [27], our findings revealed a high chironomid taxonomic richness in sev-
eral new northern regions of Eurasia. The most widely distributed in the new data set
taxa (Psectrocladius sordidellus-type, Procladius, Cladotanytarsus mancus-type, Tanytarsus pal-
lidicornis-type, Tanytarsus mendax-type, Sergentia coracina-type, Microtendipes pedellus-type,
Dicrotendipes nervosus-type, Polypedilum nubeculosum-type, Cladopelma lateralis-type, and
Tanytarsus lugens-type) are identical to the most frequent taxa found in previously studied
regions in Siberia, Kamchatka, and the Far East [19,44,69–73]. Due to the wide range of their
environmental tolerances, these taxa have a cosmopolitan distribution [19]. Additionally, it
may be that each morphotype comprises different species in different regions [27].

Fauna of the coldest lakes in the dataset (NZ and the Polar Urals) include several
chironomid taxa that are also common in the coldest lakes of the Eastern regions of the
Russian Arctic: Hydrobaenus lugubris-type, Diplocladius, and Oliveridia. However, Orthocla-
dius type I and Hydrobaenus conformis-type, dominant in the coldest areas of Siberia, have
only single occurrences in the NWE dataset. This is probably due to the limited number
of lakes with a T July below 10 ◦C in the NWE, while these taxa dominate communities
of lakes with a T July well below 10 ◦C in Siberia. Both taxa can probably be found more
abundantly in the European part of Russia where the T July gradient of the NWE will
be extended.

There are differences in the T July optima of the non-rare, common taxa between the
available datasets. All T July optima in the NWE are higher than in Kamchatka [19]. The T
July optima of 13 out of the 39 non-rare, common taxa for all datasets differ only within the
calculated taxon-specific T July tolerances (SEM, Table S2). These are the most widespread
taxa: Procladius, Chironomus plumosus-type, Chironomus anthracinus-type, Cladopelma, later-
alis-type Microtendipes pedellus-type, Polypedilum nubeculosum-type, Cladotanytarsus mancus-
type, Corynocera ambigua, Paratanytarsus penicillatus-type, Tanytarsus mendax-type, Tanytarsus
pallidicornis-type, Parakiefferiella bathophila-type, and Paraphaenocladius.

The rest of the non-rare taxa demonstrate some distinction (Figure 6). For Phaenopsectra
flavipes-type, Micropsectra radialis-type, Heterotrissocladius maeaeri-type, and Psectrocladius
sordidellus-type, the T July optima have intermediate values between the WS and ES.
Cricotopus laricomalis-type, Pseudochironomus, Parachironomus varus-type, and Dicrotendipes
nervosus-type have T July optima lower in the eastern datasets. For the rest of the taxa, the
T July optima are higher in the NWE than in WS and ES datasets. Therefore, the presence
of these taxa in sediment samples can substantially influence the reconstructed T July.
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The most notable difference is observed for Sergentia coracina-type and Stictochironomus,
known as cold stenotherm taxa [27,74,75]. In the new, they have T July optima of 14.7 ◦C
and 14.1 ◦C, respectively (SEM, Table S3), which are approximately 3 ◦C higher than in
the WS and ES. This is most likely due to the limited number of sites with a low T July in
the NWE.

The revealed differences in the T optima of the non-rare chironomid taxa can play
an essential role in the palaeoclimatic reconstructions if a non-regional dataset and an
inference model are used.

The obtained chironomid-based, NWE mean July air temperature inference model
has fairly moderate coefficients of determination and a good RMSEP when compared
with other chironomid-based mean July air temperature inference models [12–16]. An
earlier version of the NWE was used in palaeoclimatic reconstruction [29] and showed
high sensitivity, revealing T July fluctuations during the Late Weichselian and Holocene in
eastern Europe. Though improvements are still required in order to reach better transfer
function parameters, the NWE model can be applied for palaeoclimatic reconstructions in
most northern and northwestern Eurasia.

5. Conclusions

We compiled an NWE calibration set from seven new northwest European and two
previously investigated northeast European regions of arctic and sub-arctic Russia.

The mean July air temperature is the most important explanatory variable in the NWE.
The sampled range of temperatures in the NWE sufficiently reflects the current ecological
conditions in the region; however, cold areas are under-represented in the dataset.

The most widely distributed chironomid taxa in the NWE data set are identical to the
dominant taxa found in previously studied regions in Siberia and Kamchatka. The T July
optima of the taxa that are dominant in all north Russian datasets (NWE, west Siberian,
east Siberian, and north Russian) differ only within the ranges of calculated, taxon-specific
T July tolerances. They are higher than the T July optima of these taxa in the Kamchatka
regional dataset.

The T optima of the other non-rare chironomid taxa demonstrate some distinction.
The revealed differences in the T optima of the non-rare chironomid taxa can play an
essential role in palaeoclimatic reconstructions if a non-regional dataset and inference
model are used.

The obtained NWE chironomid-based mean July air temperature inference model has
solid statistical parameters (r2 = 0.84; r2

boot = 0.60; RMSEP boot = 1.34◦C) and can be applied
for palaeoclimatic reconstructions in most parts of the northern and northwestern Eurasia.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w15050976/s1. Table S1: Summary of the environmental data for
the regions of investigations. WD for water depth; Table S2: Eigenvalues. Cumulative % variance
and significance of the CCA axes; Table S3: Number of occurrences (N), maximum abundance (Max),
N2, response to T July (WS model: HOF model; NWE, ES, FM, NR, and FE models: Resp, value for
significance of the relationship with the T July based on generalized linear response model, set to
a quadratic degree and Poisson distribution p < 0.05: - not significant; significant, small x; highly
significant, p < 0.001, capital X), and WA optima (Opt) and tolerances (tol) for taxa with more than
10 occurrences in data-sets. HOF model I shows no response to July air temperature; II shows a
sigmoidal increasing or decreasing response; III shows a response which reaches a plateau; IV shows
a unimodal response; and V shows a skewed, unimodal response. Data sets: NWE—northwest
European Russia, WS—west Siberian, ES—east Siberian, FM—full model, NR—north Russian, FE—
Far East.
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