A Method for Calibrating the Transient Storage Model from the Early and Late-Time Behavior of Breakthrough Curves
Abstract
:1. Introduction
2. Methods
2.1. Approximation for the Rising Limb of the BTC
2.2. Approximation for the Decreasing Limb of the BTC
3. Application
3.1. Numerical Experiment
3.2. Field Experiment
4. Results and Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Symbol | Unit | Description |
---|---|---|
(kg m−3) | ||
(m2) | mean flow area | |
(m2) | transient storage area | |
(kg m−3), (-) | ||
(kg m−3) | concentration at the injection section | |
(kg m−3) | approximation for the rising limb of the BTC | |
(-) | dimensionless linear approximation of the rising limb | |
(kg m−3) | approximation for the decreasing limb of the BTC | |
(-) | dimensionless exponential approximation of the decreasing limb | |
(kg m−3) | concentration in the storage area | |
(kg m−3) | elementary solution of the advection–dispersion equation | |
(kg m−3) | concentration in the main flow channel | |
(m2 s−1) | longitudinal dispersion coefficient | |
(-) | Heaviside function | |
(-) | modified Bessel function of the first order and first kind | |
(kg m−3 s−1), (s−1) | ||
(s−1) | ||
(kg m−3), (-) | ||
(m3 s−1) | discharge | |
(s) | time | |
(s) | advective time | |
(s) | mean residence time in the storage area | |
(s) | time duration of a plateau injection | |
(-) | dimensionless time limit | |
(m s−1) | flow velocity | |
(m) | longitudinal distance from injection point | |
(s−1) | exchange rate | |
(s−1) | Dirac delta function | |
(s−1) | dummy variable for time | |
(s−1) | exponential RTD in the dead zones |
References
- Chatwin, P.C. On the interpretation of some longitudinal dispersion experiments. J. Fluid Mech. 1971, 48, 689–702. [Google Scholar] [CrossRef]
- Boano, F.; Harvey, J.W.; Marion, A.; Packman, A.I.; Revelli, R.; Ridolfi, L.; Wörman, A. Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Rev. Geophys. 2014, 52, 603–679. [Google Scholar] [CrossRef]
- Bottacin-Busolin, A. Non-Fickian dispersion in open-channel flow over a porous bed. Water Resour. Res. 2017, 53, 7426–7456. [Google Scholar] [CrossRef] [Green Version]
- Kwaw, A.K.; Dou, Z.; Wang, J.; Zhang, X.; Chen, Y. Advancing the knowledge of solute transport in the presence of bound water in mixed porous media based on low-field nuclear magnetic resonance. J. Hydrol. 2023, 617, 129059. [Google Scholar] [CrossRef]
- Salehin, M.; Packman, A.I.; Wörman, A. Comparison of transient storage in vegetated and unvegetated reaches of a small agricultural stream in Sweden: Seasonal variation and anthropogenic manipulation. Adv. Water Resour. 2003, 26, 951–964. [Google Scholar] [CrossRef]
- Magazine, M.K.; Pathak, S.K.; Pande, P.K. Effect of Bed and Side Roughness on Dispersion in Open Channels. J. Hydraul. Eng. 1988, 114, 766–782. [Google Scholar] [CrossRef]
- Jackson, T.R.; Haggerty, R.; Apte, S.V.; O’Connor, B.L. A mean residence time relationship for lateral cavities in gravel-bed rivers and streams: Incorporating streambed roughness and cavity shape. Water Resour. Res. 2013, 49, 3642–3650. [Google Scholar] [CrossRef]
- Chen, Z.; Tian, Z.; Zhan, H.; Huang, J.; Huang, Y.; Wei, Y.; Ma, X. The Effect of Roughness on the Nonlinear Flow in a Single Fracture with Sudden Aperture Change. Lithosphere 2022, 2022, 5775275. [Google Scholar] [CrossRef]
- Wallis, S.G.; Young, P.C.; Beven, K.J. Experimental investigation of the aggregated dead zone model for longitudinal solute transport in stream channels. Proc. Inst. Civ. Engin. 1989, 87, 1–22. [Google Scholar]
- Davis, P.M.; Atkinson, T.C. Longitudinal dispersion in natural channels: 3. An aggregated dead zone model applied to the River Severn, U.K. Hydrol. Earth Syst. Sci. 2000, 4, 373–381. [Google Scholar] [CrossRef]
- Haggerty, R.; McKenna, S.A.; Meigs, L.C. On the late-time behavior of tracer test breakthrough curves. Water Resour. Res. 2000, 36, 3467–3479. [Google Scholar] [CrossRef] [Green Version]
- Deng, Z.; Bengtsson, L.; Singh, V.P. Parameter estimation for fractional dispersion model for rivers. Environ. Fluid Mech. 2006, 6, 451–475. [Google Scholar] [CrossRef]
- Marion, A.; Zaramella, M. A residence time model for stream-subsurface exchange of contaminants. Acta Geophys. Pol. 2005, 53, 527. [Google Scholar]
- Marion, A.; Zaramella, M.; Bottacin-Busolin, A. Solute transport in rivers with multiple storage zones: The STIR model. Water Resour. Res. 2008, 44, W10406. [Google Scholar] [CrossRef] [Green Version]
- Boano, F.; Packman, A.I.; Cortis, A.; Revelli, R.; Ridolfi, L. A continuous time random walk approach to the stream transport of solutes. Water Resour. Res. 2007, 43. [Google Scholar] [CrossRef]
- Young, P.; Garnier, H. Identification and estimation of continuous-time, data-based mechanistic (DBM) models for environmental systems. Environ. Model. Softw. 2006, 21, 1055–1072. [Google Scholar] [CrossRef] [Green Version]
- Bottacin-Busolin, A. Modeling the effect of hyporheic mixing on stream solute transport. Water Resour. Res. 2019, 55, 9995–10011. [Google Scholar] [CrossRef]
- Haggerty, R.; Martí, E.; Argerich, A.; von Schiller, D.; Grimm, N. Resazurin as a “smart” tracer for quantifying metabolically active transient storage in stream ecosystems. J. Geophys. Res. Atmos. 2009, 114, G03014. [Google Scholar] [CrossRef] [Green Version]
- González-Pinzón, R.; Peipoch, M.; Haggerty, R.; Martí, E.; Fleckenstein, J.H. Nighttime and daytime respi-ration in a headwater stream. Ecohydrology 2016, 9, 93–100. [Google Scholar] [CrossRef]
- Knapp, J.L.A.; González-Pinzón, R.; Haggerty, R. The resazurin-resorufin system: Insights from a decade of “smart” tracer development for hydrologic applications. Water Resour. Res. 2018, 54, 6877–6889. [Google Scholar] [CrossRef]
- Argerich, A.; Haggerty, R.; Martí, E.; Sabater, F.; Zarnetske, J. Quantification of metabolically active transient storage (MATS) in two reaches with contrasting transient storage and ecosystem respiration. J. Geophys. Res. Atmos. 2011, 116, G03034. [Google Scholar] [CrossRef] [Green Version]
- Lemke, D.; Liao, Z.; Wöhling, T.; Osenbrück, K.; Cirpka, O.A. Concurrent conservative and reactive tracer tests in a stream undergoing hyporheic exchange. Water Resour. Res. 2013, 49, 3024–3037. [Google Scholar] [CrossRef]
- Bottacin-Busolin, A.; Dallan, E.; Marion, A. STIR-RST: A Software tool for reactive smart tracer studies. Environ. Model. Softw. 2020, 135, 104894. [Google Scholar] [CrossRef]
- Haggerty, R.; Argerich, A.; Martí, E. Development of a “smart” tracer for the assessment of microbiological activity and sediment-water interaction in natural waters: The resazurin-resorufin system. Water Resour. Res. 2008, 44, W00D01. [Google Scholar] [CrossRef]
- Lemke, D.; González-Pinzón, R.; Liao, Z.; Wöhling, T.; Osenbruck, K.; Haggerty, R.; Cirpka, O.A. Sorption and transformation of the reactive tracers resazurin and resorufin in natural river sediments. Hydrol. Earth Syst. Sci. 2014, 18, 3151–3163. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.L.; Steele, T.W.J.; Stuckey, D.C. Metabolic reduction of resazurin; location within the cell for cytotoxicity assays. Biotechnol. Bioeng. 2017, 115, 351–358. [Google Scholar] [CrossRef] [PubMed]
- Dallan, E.; Regier, P.; Marion, A.; González-Pinzón, R. Does the Mass Balance of the Reactive Tracers Resazurin and Resorufin Close at the Microbial Scale? J. Geophys. Res. Biogeosci. 2020, 125, e2019JG005435. [Google Scholar] [CrossRef]
- Bencala, K.E.; Walters, R.A. Simulation of solute transport in a mountain pool-and-riffle stream: A transient storage model. Water Resour. Res. 1983, 19, 718–724. [Google Scholar] [CrossRef]
- Mulholland, P.J.; Marzolf, E.R.; Webster, J.R.; Hart, D.R.; Hendricks, S.P. Evidence of hyporheic retention of phosphorus in Walker Branch. Limnol. Oceanogr. 1997, 42, 443–451. [Google Scholar] [CrossRef]
- Valett, H.M.; Morrice, J.A.; Dahm, C.N.; Campana, M.E. Parent lithology, surface-groundwater exchange, and nitrate retention in headwater streams. Limnol. Oceanogr. 1996, 41, 333–345. [Google Scholar] [CrossRef]
- Briggs, M.A.; Gooseff, M.N.; Arp, C.D.; Baker, M.A. A method for estimating surface transient storage parameters for streams with concurrent hyporheic storage. Water Resour. Res. 2009, 45, W00D27. [Google Scholar] [CrossRef]
- Bottacin-Busolin, A.; Marion, A.; Musner, T.; Tregnaghi, M.; Zaramella, M. Evidence of distinct contaminant transport patterns in rivers using tracer tests and a multiple domain retention model. Adv. Water Resour. 2011, 34, 737–746. [Google Scholar] [CrossRef]
- Kerr, P.; Gooseff, M.; Bolster, D. The significance of model structure in one-dimensional stream solute transport models with multiple transient storage zones–competing vs. nested arrangements. J. Hydrol. 2013, 497, 133–144. [Google Scholar] [CrossRef]
- Marion, A.; Zaramella, M.; Packman, A.I. Parameter Estimation of the Transient Storage Model for Stream–Subsurface Exchange. J. Environ. Eng. 2003, 129, 456–463. [Google Scholar] [CrossRef] [Green Version]
- Zaramella, M.; Packman, A.I.; Marion, A. Application of the transient storage model to analyze advective hyporheic exchange with deep and shallow sediment beds. Water Resour. Res. 2003, 39, 1198. [Google Scholar] [CrossRef] [Green Version]
- Marion, A.; Zaramella, M. Diffusive Behavior of Bedform-Induced Hyporheic Exchange in Rivers. J. Environ. Eng. 2005, 131, 1260–1266. [Google Scholar] [CrossRef]
- Nordin, C.F.; Troutman, B.M. Longitudinal dispersion in rivers: The persistence of skewness in observed data. Water Resour. Res. 1980, 16, 123–128. [Google Scholar] [CrossRef]
- González-Pinzón, R.; Haggerty, R.; Dentz, M. Scaling and predicting solute transport processes in streams. Water Resour. Res. 2013, 49, 4071–4088. [Google Scholar] [CrossRef] [Green Version]
- Gooseff, M.N.; Briggs, M.A.; Bencala, K.E.; McGlynn, B.L.; Scott, D.T. Do transient storage parameters directly scale in longer, combined stream reaches? Reach length dependence of transient storage interpretations. J. Hydrol. 2013, 483, 16–25. [Google Scholar] [CrossRef]
- Haggerty, R.; Wondzell, S.M.; Johnson, M.A. Power-law residence time distribution in the hyporheic zone of a 2nd-order mountain stream. Geophys. Res. Lett. 2002, 29, 1640. [Google Scholar] [CrossRef] [Green Version]
- Knapp, J.L.; Kelleher, C. A Perspective on the Future of Transient Storage Modeling: Let’s Stop Chasing Our Tails. Water Resour. Res. 2020, 56, e2019WR026257. [Google Scholar] [CrossRef] [Green Version]
- Davis, P.M.; Atkinson, T.C.; Wigley, T.M.L. Longitudinal dispersion in natural channels: 2. The roles of shear flow dispersion and dead zones in the River Severn, U.K. Hydrol. Earth Syst. Sci. 2000, 4, 355–371. [Google Scholar] [CrossRef] [Green Version]
- Olver, F.W.J. Asymptotic and Special Functions; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; National Bureau of Standards Applied Mathematics Series-55; US Government Printing Office: Washington, DC, USA, 1972.
- Fischer, H.B. Discussion of “Simple method for predicting dispersion in stream”. J. Environ. Eng. Div. 1975, 101, 453–455. [Google Scholar] [CrossRef]
Section | Distance | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (m2 s−1) | (m2) | (m2) | (s−1) | (-) | (s−1) | (-) | (s−1) | (-) | (g m−3) | |
500 | 0.735 | 2.00 | 1.0 × 10−1 | 1.0 × 10−4 | 1.400 | −1.75 × 10−3 | 4.63 × 101 | 2.04 × 10−3 | −4.32 | 0.502 | |
1000 | 1.100 | −1.50 × 10−3 | 2.22 × 103 | 1.63 × 10−3 | −7.27 | 0.347 | |||||
1500 | 1.044 | −1.25 × 10−3 | 2.00 × 104 | 1.31 × 10−3 | −8.96 | 0.274 |
Section | Distance | Fit | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
(m) | (s−1) | (-) | (s−1) | (-) | (m2 s−1) | (m2) | (m2) | (s−1) | (-) | (mg m−3) | ||
262 | Approx. | −2.11 × 10−3 | 98.5 | 2.21 × 10−3 | −2.278 | 0.279 | 0.202 | 2.93 × 10−2 | 4.00 × 10−4 | 1.33 | 48.12 | |
Optim. | - | - | - | - | 0.243 | 0.200 | 3.72 × 10−2 | 5.65 × 10−4 | 1.21 | |||
567 | Approx. | −1.80 × 10−3 | 4252.9 | 8.86 × 10−4 | −2.582 | 0.090 | 0.244 | 1.86 × 10−2 | 4.55 × 10−4 | 1.02 | 42.8 | |
Optim. | - | - | - | - | 0.535 | 0.270 | 1.86 × 10−2 | 1.37 × 10−4 | 1.16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dallan, E.; Bottacin-Busolin, A.; Zaramella, M.; Marion, A. A Method for Calibrating the Transient Storage Model from the Early and Late-Time Behavior of Breakthrough Curves. Water 2023, 15, 979. https://doi.org/10.3390/w15050979
Dallan E, Bottacin-Busolin A, Zaramella M, Marion A. A Method for Calibrating the Transient Storage Model from the Early and Late-Time Behavior of Breakthrough Curves. Water. 2023; 15(5):979. https://doi.org/10.3390/w15050979
Chicago/Turabian StyleDallan, Eleonora, Andrea Bottacin-Busolin, Mattia Zaramella, and Andrea Marion. 2023. "A Method for Calibrating the Transient Storage Model from the Early and Late-Time Behavior of Breakthrough Curves" Water 15, no. 5: 979. https://doi.org/10.3390/w15050979
APA StyleDallan, E., Bottacin-Busolin, A., Zaramella, M., & Marion, A. (2023). A Method for Calibrating the Transient Storage Model from the Early and Late-Time Behavior of Breakthrough Curves. Water, 15(5), 979. https://doi.org/10.3390/w15050979