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Abstract: The negative effects of climate change have burdened humanity with the necessity of
decarbonization by moving to clean and renewable sources of energy generation. While energy
demand varies across the sectors, fisheries, including fishing and aquaculture, are among the most
energy intensive processes in the food production industry. The synergistic opportunities for co-
located aquaculture and renewable energy can thus provide a multifunctional use of space and
resources, creating opportunities to meet the identified energy demands of a variety of aquaculture
operations. This study has investigated a sustainable energy model for a small-scale shrimp farm in
western Taiwan with synergies for the dual use of the water area for solar photovoltaic electricity
generation and aquaculture. Based on the simulation results and SWOT analysis, recommendations
have been made for the design and operation of a solar-powered aeration system for shrimp farms.
The average monthly energy production of 32 MWh is attainable at the estimated canopy space on a
carport by installing 896 solar modules on the proposed site, fully covering the power demand of the
shrimp farm. These findings have significance for encouraging effective practices in deploying solar
techniques in aquaculture and making them replicable in global settings.

Keywords: aquavoltaics; solar photovoltaic; power generation; shrimp farm

1. Introduction

Among the many available sources of renewable energy, solar is clearly a promising
option, and its market has seen outstanding growth in recent years [1]. The transition to
renewable energy will require participation from the public and private sectors, as well as
from citizens and landowners. Incorporating solar energy production into urban planning
scenarios is thus essential as cities of the future become the centers of energy production
and consumption. Several studies have previously integrated energy considerations into
urban planning, with the primary objective of reducing the direct energy expenditures that
are caused by land-use activities [2–4], confirming the importance of solar accessibility in
the built environment.

With an expected annual growth rate of 13%, the International Energy Agency (IEA)
estimates that photovoltaic (PV) technologies will supply around 33% of the projected
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increase in energy consumption by the year 2030 [5]. Even though PV technology is favored,
owing to its compatibility, constructing a PV system in an urban setting is challenging.
Cities block more sunlight than rural areas because of their high population density, and the
abundance of buildings, roads, and trees in metropolitan areas may create intricate patterns
of shade [6]. One possible way around this issue is identifying suitable roof surfaces for PV
integration, which is an alternative with a market share of 40% in 2020 [7]. However, the
installation of such systems in urban environments, particularly on vertical facades, is chal-
lenged by variables such as inter-building solar reflections and overshadowing effects [8,9],
as well as energy- and climate-related challenges, such as high surface temperature [10]
and the risk of fire [11]. The socio-cultural sensitivity impact and land ownership issues
should also be considered [12–14]. Moreover, most roofs are not oriented or sloped in a way
that maximizes the effectiveness of solar panels, and there is always the risk that adding
solar panels would cause leaks by impeding water drainage. Therefore, identifying the
potential of solar energy, the economic viability, and an appropriate tilt angle in a particu-
lar region should be carefully considered in order to enhance the generation capacity of
solar energy [15].

Floating solar and agrivoltaics/aquavoltaics are other promising options that represent
fast-growing, but still small, markets [16]. These methods allow for less land use for solar sys-
tems and, with proper design, can provide a number of benefits, such as reducing evaporation,
providing shade to livestock, crops, or farmed fish, and, more importantly, providing clean
electricity for small-scale applications [17]. As a result of society’s continuing urbanization
and the increased food demand in cities, urban aquaculture has become more popular in
recent years [18] and it can relate to a variety of production areas, species involved, habitats,
and production intensities. Aquaculture in Taiwan has been practiced for almost 400 years,
and the country has a wide variety of culture target species, including milkfish [19].

Despite the misconception that aquaculture requires very little energy, the rapid
productivity gains over the past several decades have forced aquaculture systems to rely
increasingly on nonrenewable energy, mainly for their pumps and aerators, which are
integral parts of an aquaculture setup.

Solar energy is one of the clean energy sources for aquaculture, and it is used to farm
both freshwater and saltwater aquatic species in many regions of the world without relying
on the main power grid [20,21].

Due to its low operational cost, extended life cycle, environmental compatibility, ab-
sence of CO2 emissions, and low soil contamination, solar energy is increasingly being used
in aquaculture today [22] for different purposes, including power production for aerators
to oxygenate the water, feed dispensers, pumps, and water-heating systems. To keep the
dissolved oxygen (DO) level in fishponds at an optimal level, Applebaum et al. [23] built an
aeration system that used solar energy to power a paddle wheel. Prasetyaningsari et al. [24]
developed an aeration system to provide power for aeration equipment in Indonesian
fishponds. A 1 kW PV panel, eight batteries of 200 Ah, and a 0.2 kW inverter were utilized
to power the system for both the ventilation and the lighting. Using solar energy as its
primary power source, Liu et al. [25] created a device to manage the water quality in
freshwater fishponds.

Although the concept of creating an elevated solar power system that allows aqua-
cultural use underneath it has been discussed before, the dramatic cost reductions that
PV technology has undergone over the past decade have put this application into a new
perspective and have made economically viable solutions a real possibility [26–28].

Small-scale PV integration with fish farms is an emerging field that has not been well
addressed. To that end, this work makes an effort to give a detailed analysis of a sustainable
energy model for a small-scale shrimp farm. Based on the findings, recommendations are
made for the design and operation of a solar-powered aeration system for shrimp farms in
western Taiwan, which serves as a fishing center for the country. The findings of this study
are expected to optimize DO levels in the shrimp ponds of small farmers, raise the quality
and the output of the ponds, and lower the cost of electricity on the power grid.
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2. Methodology
2.1. Site Description

The optimal site for a solar PV system depends on a number of criteria, including
the amount of available solar irradiation, its proximity to the grid station, and the type
of land use in the area. After a visual evaluation of various fish farms with regards to
shadowing impact, a small-scale shrimp farm in western Tainan City, Qigu district, was
selected (Figure 1). The Qigu area is well known for its many types of fish, shrimp, and
other aquatic seafood, with fish farming being the principal profession of the residents.
Table 1 summarizes the biophysical features of the shrimp farm under consideration here.
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Figure 1. Geographical location of the studied fish farm in Qigu, Tainan, (Google Earth Pro 7.3.3.7786
(2021)).

Table 1. Biophysical characteristics of the shrimp farm.

Parameter Value Ref.

Surface area of the fish farm (m2) 3450 [This study]
Water depth (m) 2.0 [This study]
Salinity (ppt) 15 [This study]
Average water temperature (◦C) 25 [This study]
Average shrimp weight (g) 35 [This study]
Stocking density (shrimp/m2) 200 [This study]
Water respiration rate (mgL−1h−1) 0.4 [29]
Sediment respiration rate (mgL−1h−1) 0.43 [29]
Chlorophyll-a concentration (mg/L) 0.15 [30]

2.2. Analysis

Helioscope software was used as a simulation and design tool for this study. The
package includes a tool for estimating the shadows cast by structures such as towers, trees,
and buildings. It also requires input data, such as plant capacity, solar panel information,
inverter requirements, and PV panel information, to estimate energy production.

PV panels generate the most energy when they are mounted or positioned away from
the sun [31,32]. The best strategy to maximize a PV array’s energy production is to tilt it
at the correct tilt angle. In order to obtain the best PV energy output, several tilt angles
were assessed.

2.3. Climatic Conditions

South Taiwan (7920 km2) experiences tropical weather, with year-round average tem-
peratures of about 24 ◦C [33]. Sunlight is one of the most abundant natural resources in the
country, since it is located in a subtropical area that is surrounded by ocean (Figure 2). Central
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Taiwan is traversed by the Tropic of Cancer, hence there are many lengthy daylight hours and
little sunlight deflection [34]. Taiwan’s surface receives an estimated 1.71011 kW/h of solar
energy per day [35].
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2.4. Solar Aquaculture Canopy

Electric aerators use around 80% of the energy needed for farming, followed by water
pumping at 10%, and other uses at 10% [36]. Compared to other major aquaculture systems,
the energy efficiency of marine shrimp aquaculture is exceptionally high, as assessed by
the ratio of industrial energy input to food protein production [37]. Mechanical aeration
systems that are driven by internal combustion engines or electric motors are commonly
used in aquaculture ponds to regulate DO levels and distribute oxygen throughout the
pond’s water.

While aeration systems are commonly employed in shrimp farming due to their
numerous advantages, they have significant operating expenses, particularly when it
comes to the electricity that is necessary to operate the aerators. This is due to the fact that
the aerators must run constantly during the 100-day production cycle of marine shrimp
farming [37]. As a result, aeration systems should be adjusted in terms of their design and
operation in order to enhance the energy management in aerated ponds [38].

Aeration System Design

The key components of the system at the shrimp farm are the ponds where the shrimp
are held, solar panels, batteries, alkaline electrolyzers, the oxygen and hydrogen storage
systems, micro-bubble-producing systems, water treatment systems, and the associated
loads (Figure 3).

The typical three-month rearing cycle for white leg shrimp, which are raised exten-
sively in the Qigu region, consists of the hatchery, the nursery, and the grow-out phases.
The majority of the energy utilized throughout all three phases is accounted for by aeration
(60%) and water pumping (20%).
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Long-lasting power outages can have a devastating effect on the output of a shrimp farm.
Consequently, it is essential to properly design the solar energy system’s size. To maximize
efficiency, the PV panels, electrolyzers, batteries, and fuel cells at a shrimp farm must be sized
in relation to the farm’s total oxygen requirement. The following equation [29] depicts the
total oxygen demand, which takes into account the respiration rates of the cultured organisms,
water (phytoplankton), and sediment (decaying organic matter):

OD = ShR + WR + SR (1)

where OD is the oxygen demand (mg O2 L−1 h−1), ShR is the shrimp respiration rate
(mg O2 L−1 h−1), WR is the water respiration rate (mg O2 L−1 h−1), and SR is the sediment
respiration rate (mg O2 L−1 h−1).

Oxygen is produced by electrolysis and stored in a tank before being pumped to
the shrimp ponds. The aeration system’s foundation is micro-bubble creation, which is
employed for gas diffusion in the water. Due to the typical oxygen transfer efficiency of
around 9%/m, this system has a high oxygenation efficiency. However, the amount of
oxygen generated by the electrolyzer is practically greater than the whole amount of oxygen
required by shrimp farms, matching the high input power required by the electrolyzer [39].

The amount of PV energy required for the aeration system, which includes component
efficiencies such as micro-bubble generation (ηµ), the electrolyzer (ηe), the battery (ηb),
the power converters (ηc), and the photovoltaic arrays (ηpv), is calculated using the total
oxygenation system’s efficiency as follows:

η = ηµηeηbηcηpv (2)

The DO levels in shrimp ponds should be maintained at around 5 mg/L to promote
the best possible growth conditions and prevent a sharp decrease in DO concentrations,
especially during cloudy weather. The PV panels generate AC electricity during daylight
hours. The water treatment system, and the other associated loads, at the shrimp farm are
powered by the stable electricity, while the fluctuating electricity is stored in a battery and
then sent directly to the alkaline electrolyzer, which produces oxygen [40].

The oxygen-rich tank’s supply is pumped into the pond via a series of pipes built at
the pond’s base. The micro-bubbles used in the aeration system have much greater oxygen
transfer efficiencies than larger bubbles [39].
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2.5. SWOT Analysis

The strengths, weaknesses, opportunities, and threats analysis (SWOT) was developed
initially for use in business [41]. SWOT analysis is a technique that can provide important
information about the future viability of the investigated system by analyzing the strengths
(S), weaknesses (W), opportunities (O), and threats (T) of a given situation [42]. Although
SWOT analysis is used in many different contexts [43], it is most commonly used in
the energy sector. Chen et al. [44] applied SWOT analysis to examine the renewable
energy policies in three East Asian economies: Republic of Korea, Japan, and Taiwan.
Lupu et al. [45] performed a SWOT analysis of Romania’s solar energy potential and
identified the important variables for its development. Using a SWOT analysis of the
various forms of solar energy in the UAE, Salimi et al. [46] addressed the trends of solar
energy production and consumption in the UAE and developed strategies as a result.

Digital libraries and databases such as IEEE Xplore, Google Scholar, Springer, Elsevier,
and Multidisciplinary Digital Publishing Institute (MDPI) are typically searched using
keywords to collect the relevant literature on the topic and to classify the literature in order
to determine the topic’s strengths, weaknesses, opportunities, and threats.

In addition to the conventional methods of collecting keyword data (searching digital
libraries and publications), this study makes use of Google Trends, which is an open
online infoveillance tool developed by Google™ that displays the relative popularity of
different search terms in Google search results in real time. Google Trends has been widely
used by the scientific community, not just for monitoring, but also for producing quick
forecasts about a topic’s future [47]. It measures users’ web interest in a term (for example,
“renewable energy”) by returning a normalized number ranging from 0 to 100, known as
the relative search volume, which is proportionate to the ratio of keyword-related searches
to total web inquiries. The user may also limit the study to certain geographical locations
(continents, states, regions, cities, and so on) during a set time period [48]. In the current
study, the keywords of “solar farming”, “aquaculture”, “smart aquaculture”, and “smart
cities” were used for Google Trend analysis using worldwide and Taiwan mode from
10 October 2017 to 10 October 2022.

Two stages of SWOT analysis were completed. First, a list of contributors was com-
piled by a thorough examination of the relevant scholarly literature and Google Trends data.
Within the framework of the SWOT analysis, these elements were properly categorized.
Second, semi-structured interviews were conducted to further explore each aspect and pat-
tern that had been identified. The communication with the interviewees was accomplished
by telephone or videoconference. To provide a well-rounded and representative collection
of interviews, a convenient sampling strategy was applied to select 54 participants from a
wide range of sectors, including government, business, academia, and civil society. The
participants were given the original list of criteria and asked to rate the importance of each
item during the interviews. The final SWOT only included those variables that were rated
as either significant or highly important.

3. Results and Discussion
3.1. Analysis of Solar Radiation

The monthly solar radiation and the averaged sunshine duration (h) of Tainan city
have been depicted in Figure 4, confirming that southern Taiwan is an ideal place for solar
panel installation.

3.2. Energy Consumption Profile of the Shrimp Farm

For the pacific white shrimp, the nursery and grow-out periods cover around 90 days.
The shrimp larvae are first reared in the indoor nursery tank with bottom aeration. This
phase requires around 20–30 days before the juvenile shrimp are transferred to the full-size
grow-out pond. The grow-out pond must have constant surface and bottom aeration [49].
A single 3400 m2 pond uses an average of 16 MWh/month of energy during the growing
stage. Figure 5 shows the typical monthly pattern of electrical energy use.
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3.3. Configuration of Photovoltaic (PV) Panel for the Shrimp Farm

The quantity of the electricity that is generated by a PV panel per hour is determined
by a variety of parameters, including the intensity of the sun, the ambient temperature, the
velocity of the wind, and the module’s efficiency. The PV system’s hourly output power
can be estimated as follows [50]:

PPV = ηPV, STC.
[

1 +
µ

ηPV,STC
.(Ta − TSTC) +

9.5·µ·(NOCT − 20)·(1 − ηPV.STC)

800· ηPV,STC·(5.7 + 3.8·ν) ·Gg· APV· Gg

]
(3)

where PPV is the hourly power output from the PV system (W), ηPV, STC is the efficiency
of the PV module in standard test conditions (STC) (%), µ is the temperature coefficient
of the output power (%/◦C), Ta is the ambient temperature (◦C), TSTC is the standard test
condition temperature (25 ◦C), ν is the wind speed (m/s), NOCT is the nominal operating
cell temperature (◦C), APV is the PV array area that is related to the array power peak (m2),
and Gg is the global solar radiation on the tilted surface (W/m2). The PV module that has
been considered in this study with technical specifications is presented in Table 2.
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Table 2. Specifications of the selected PV module for the aquavoltaic system.

Parameter Value

Standard test condition efficiency (%) 19
Temperature coefficient of open circuit (%/◦C) −0.30
Voltage at point of maximum power (V) 38.87
Standard test condition temperature (◦C) 25
Nominal operation cell temperature (◦C) 45 ± 2
Area of the module (m2) 2.56
Maximum power (WP) 305

3.4. Simulation Results for Aquavoltaic System

The amount of oxygen that is required to maintain life in the grow-out ponds with the
biophysical qualities that are specified in Table 1 determines how effectively the electrolyzer
will perform. The power consumption of the electrolyzer is governed by the oxygen
losses that are caused by the organisms in the grow-out ponds, as well as the oxygen
that is generated by photosynthesis in the ponds. As a result, the electrolyzer’s electrical
consumption varies during the day, peaking at night due to the drop in oxygen generated
by photosynthesis (Figure 6).

Water 2023, 15, x FOR PEER REVIEW 9 of 18 
 

 

condition temperature (25 °C), ν is the wind speed (m/s), 𝑁𝑂𝐶𝑇 is the nominal operating 
cell temperature (°C), 𝐴 is the PV array area that is related to the array power peak 
(m2), and 𝐺 is the global solar radiation on the tilted surface (W/m2). The PV module that 
has been considered in this study with technical specifications is presented in Table 2. 

Table 2. Specifications of the selected PV module for the aquavoltaic system. 

Parameter Value 
Standard test condition efficiency (%) 19 
Temperature coefficient of open circuit (%/°C) −0.30 
Voltage at point of maximum power (V) 38.87 
Standard test condition temperature (°C) 25 
Nominal operation cell temperature (°C) 45 ± 2 
Area of the module (m2) 2.56 
Maximum power (WP) 305 

3.4. Simulation Results for Aquavoltaic System 
The amount of oxygen that is required to maintain life in the grow-out ponds with 

the biophysical qualities that are specified in Table 1 determines how effectively the elec-
trolyzer will perform. The power consumption of the electrolyzer is governed by the ox-
ygen losses that are caused by the organisms in the grow-out ponds, as well as the oxygen 
that is generated by photosynthesis in the ponds. As a result, the electrolyzer’s electrical 
consumption varies during the day, peaking at night due to the drop in oxygen generated 
by photosynthesis (Figure 6). 

 

 
Figure 6. Hourly oxygen requirement and power demand at the shrimp farm with a base load of 1.2 
mg/L. 

The average monthly energy production of 32 MWh, (Figure 7a) is attainable at an 
estimated canopy space on a carport by installing 896 solar modules at a 180° azimuth 
angle facing south with 10° tilt angles, according to Helioscope, with July being the most 
energy efficient month of the year (Figure 7b). 

0

20

40

60

80

100

120

140

160

1

2

3

4

5

1 3 5 7 9 11 13 15 17 19 21 23 25

Po
w

er
 d

em
an

d 
(k

W
)

O
xy

ge
n 

ra
te

 (m
g/

L)

Time (hr)

Oxygen requirement Electrolyzer

Figure 6. Hourly oxygen requirement and power demand at the shrimp farm with a base load of
1.2 mg/L.

The average monthly energy production of 32 MWh, (Figure 7a) is attainable at an
estimated canopy space on a carport by installing 896 solar modules at a 180◦ azimuth
angle facing south with 10◦ tilt angles, according to Helioscope, with July being the most
energy efficient month of the year (Figure 7b).

3.5. SWOT Analysis of Aquavoltaics

To efficiently administer any innovative energy generated system, gathering society’s
perspectives is critical in order to gauge their attitudes toward the proposed system [51].
Since the objective of the SWOT analysis is to consider the internal and external factors,
therefore maximizing the potential of the strengths and opportunities while minimizing
the impact of the weaknesses and threats, a list of Google search terms that reveal the
consumers’ interest in adopting solar/PV panels in aquaculture activities was selected to
further investigate the effect of the stakeholders or the experts who are involved in the
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strategy. Using Google Trends data for a certain location and time period, data on the
search volume of the relevant phrases were collected in order to calculate the normalized
proportion of searches. The values in the Google Trends statistics represent the search
interest as a percentage of the peak search volume during the selected time period and
area. In other words, a value of 100 indicates that the highest search volume occurred at
this time in the specified location and time period, whereas a value of 0 indicates that the
search term accounts for less than 1% of the peak search volume [52,53].
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The yearly variation of “solar photovoltaic” in the worldwide search and in Taiwan
was plotted and has revealed a notable upward trend in both of the regions, as shown in
Figure 8. Although they have similar trends, the solar PV web search in Taiwan is about five
times less than that of the worldwide scale. The conflict in Ukraine may have served as a
harsh wake-up call for governments to take action and lessen their reliance on Russian fossil
fuels. It has increased the online search interest in renewable energy sources, notably solar
PV, to lessen their dependency on Russian fossil fuels. Taiwan, on the other hand, showed
a more cumulative web search in 2021, followed by a decreasing trend starting from 2022.
This could be possibly due to the increase in the costs of raw materials and supply chain
issues as a result of the pandemic. Moreover, solar power costs around USD 130/MWh in
Taiwan compared to USD 40 or less in the United States [54]. Moreover, because solar has
a cost premium of around 75% above traditional power sources, there is an urgent need
to increase solar capacity while lowering the costs as rapidly as possible. As Taiwan adds
more baseloads of renewable energy to the grid, these prices will have a significant impact
on economic performance and public interest. Cost-cutting should thus be an especially
important focus [54]. Furthermore, with rising tensions across the Taiwan Strait occurring
around the summer of 2022, renewable infrastructures may encounter unprecedented
interruption, which, given the highly concentrated supply chain, will almost certainly have
global ramifications in the near future [55].

Based on literature reviews, and Google Trend analysis, different factors affecting
aquavoltaics in Taiwan are classified in various categories in the SWOT analysis, as shown
in Figure 9.

3.5.1. Strengths

There is great potential for solar farming in Taiwan because of the country’s low
latitude. As shown in Figure 4, the daily solar radiation in Taiwan typically ranges from 3
to 5 kWh/m2. The solar radiation increases as the latitude decreases. The sun radiation in
southern Taiwan is 1.2–1.5 times higher than in northern Taiwan [56], making it an ideal
site for solar panel installations.
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Since Taiwan has a high population density, dual-use strategies with promising appli-
cations in agriculture and aquaculture are becoming increasingly important. When solar
PV technology is integrated with aquaculture, synergies are created, as aquaculture may
benefit from the module shadowing effects at peak temperatures and the solar panels’
efficiency values are increased due to the proximity to cold water [57].

To encourage PV growth in Taiwan, the government has suggested a number of
initiatives. Research and development (R&D) activities have been ramped up in order to
lower prices and guarantee PV preparedness for rapid deployment, with legislative and
regulatory backing for technological advancements in the medium and long term. The
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government has proposed several plans to stimulate PV development in Taiwan [58]. An
increase in renewable energy from around 5% in 2016 to 20% by 2025 was announced by
the government [59]. It is anticipated that 20 GW of PV and 4.2 GW of wind power (WP)
will be made available by 2025 [60,61] as part of the two-year solar PV promotion plan and
the four-year WP promotion plan, respectively. In addition, the government of Taiwan has
instituted the highest feed-in tariff (FIT) in the world in an effort to attract international
investors. Compared to the UK’s 15-year FIT (74.75 and 57.50 GBP/MWh), following
tendering in 2017 and 2019, respectively, and Germany’s 12-year FIT [62], Taiwan’s FIT is
not only higher but is also applicable for a longer period.

Renewable energy sources may be used in a variety of ways as an energy source for
aquaculture because of the advantages that have been outlined above. Aerators, water
pumps, automated dispensers, and other devices may all be operated with the help of solar
energy, which is particularly useful for power generation, as well as illuminating fish and
shrimp farms [63].

3.5.2. Weaknesses

When combined with the development of social and economic infrastructure, solar-
based power generation has the potential to electrify aquaculture, assuring economic
prosperity [64]. High capital and installation costs are, however, one of the obstacles to the
widespread adoption of solar-based power generation [65,66]. According to the interviews
with the relevant companies in the off-grid solar industry, the large initial investment that
is required by low-income households is a major obstacle to the widespread adoption of
their technology. Aquavoltaic projects have uncertain economic feasibility because of the
difficulty in estimating the costs and capital that are needed.

Even if the coexistence of fisheries and electricity is a trend, education is still necessary
to convince people that an energy transition is necessary. The coordination between the
solar industry, the landlord, and the fisherman is crucial, since most of the fish farms that
the fishermen maintain are leased. For example, in Qigu, the land price has increased since
the PV installation companies have paid 10 times the rent to the owner of the fishing ponds.
As a result of the increased land rent and a lack of fishponds for aquaculture farmers, some
pond owners are considering canceling their contracts with the original rented farmers and
renting to PV installers [67].

Furthermore, the cooperation of farmers is crucial to the success of aquavoltaic projects.
Due to a lack of education, experience, and infrastructure, some fish farm operators are
hesitant about installing solar panels, despite the fact that doing so might greatly benefit
their businesses [68]. Aquavoltaic systems are still a very new technology, thus there has
not been much progress on any significant projects in the area. Since the actual impacts of
the installation of solar panels on aquaculture are unknown, the cost of such a project is
more than that of a standard solar project, and the risk is higher as well. Indeed, data on
the effectiveness, the durability, and the reliability of the dynamic aquavoltaic system are
lacking at the present time.

Nevertheless, potential environmental damage is a major shortcoming of aquavoltaics.
PV installations may alter the region’s environment, since most fish farms are situated in
coastal locations that are known for their rich ecosystems and industrial features. Aqua-
culture practices may need to be modified as a result of the widespread installation of
PV systems in rural regions, which will affect the surrounding landscape and change the
habitats of the local animals and water birds. In the absence of clear communication, local
opposition is also likely to grow [69].

There may be ecological, economic, political, and social conflicts as a result of the shift
to renewable energy, according to Sovacool’s political ecology framework [70]. Over the last
decade, researchers have paid more attention to the environmental effects of utility-scale
renewable energy (USRE) development, particularly when USRE expansion conflicts with
animal habitat protection [71–73].
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Qigu for instance, where the majority of the fishery and electricity symbiosis projects
are located, is a nationally protected and ecologically sensitive wetland that is home to
numerous endangered terrestrial and marine species, including black-faced spoonbills,
peregrine falcons, oriental white storks, and Kishi velvet shrimp [74]. Bird mortality, biodi-
versity and habitat loss, and aesthetic consequences are only some of the environmental
concerns that were emphasized by Dhar et al. [75]. Preventing further damage to the
environment and keeping the ecosystem in good condition afterward is of primary impor-
tance. New insights into how such tradeoffs might be resolved by long-term commitments
and the variables influencing the locals’ willingness to support ecological conservation
could be derived through studying the residents’ preferences for ecological conservation,
aquaculture fisheries, and renewable energy development [74].

3.5.3. Opportunities

In many countries, nonprofits and other organizations can qualify for grants and tax
breaks from the government. To encourage the use of solar energy instead of fossil fuels,
the government of Taiwan has also established incentive programs. In addition to FIT,
legislation was passed in 2009 in response to the Kyoto Protocol that aimed to encourage
and support the growth of renewable energy in order to accelerate the transition to a
low-carbon energy economy [76]. The private sector has generated energy since the 1980s,
but they can only sell it to Tai-power at the average electricity rate. The private sector
incentives have increased with the new FIT institution, receiving a larger profit margin
than 2009’s average power cost. This measure has also created a 20-year contract between
the government’s Tai-power company and renewable energy providers. This deal assures
Tai-power’s purchasing of renewable-generated electricity at a predetermined price [77].
As the price of solar panels continues to drop worldwide, and tax incentives continue to
increase, more farmers are making the switch to solar power.

One of the less well-known advantages of pursuing renewable energy is the chance
to strengthen energy diplomacy, which may help a nation to deal with the geopolitical
repercussions of an energy crisis. Energy diplomacy refers to the practice of conducting
international relations with the goals of securing reliable energy supplies and expanding
commercial possibilities in the energy industry [78]. Increased energy diversity and re-
silience is the result of energy trading, which in turn promotes greater competition, security,
and prosperity in the energy sector by allowing for exports and investment, decreasing
emissions, boosting economies, and providing market opportunities for innovative energy
technologies and supplies [79].

The energy diplomacy between Singapore and the United Arab Emirates, for instance,
led to discussions about improving bilateral relations and increasing collaboration in areas
including commerce, investment, tourism, and food security, despite Singapore’s lack of
domestic energy production [80]. Obviously, each of the aforementioned opportunities has
the potential to greatly cut global carbon emissions. While the electricity-intensive solar PV
manufacturing industry today is mostly supported by fossil fuels, solar panels only need
to be operational for 4–8 months to offset the emissions that were generated during their
production. The typical lifespan of a solar panel of 25 years or more, making this payback
period seem rather short in comparison [81].

3.5.4. Threats

The successful implementation of renewable energy technology requires not only capi-
talizing on the many advantages but also taking into account the risks or threats that are
involved and developing ways to mitigate them. Recent policy uncertainties and instabili-
ties confronting the global economy have raised doubts about renewable energy’s ability to
bring about long-term economic growth [82]. For instance, when energy costs are unstable,
profit-maximizing businesses may delay or abandon investment plans, leading to a fall in
total production [83]. In addition, questions remain about how well these technologies will
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be received by the general public. When new technologies are actually installed, there may
be limited social approval due to potential concerns or uncertainties [84].

Promoting renewable energy sources is challenging due to their potential adverse
effects on the environment. Over the past decade, there has been increasing discussion over
the environmental effects of USRE growth, especially when it conflicts with the efforts to
protect wildlife habitats [72,73,85–87].

In addition, inequitable planning and decision making can result in the privatization
of public assets [70]; for example, the salt pan wetlands in Taiwan that were once owned
by the government were converted into private solar farms, depriving the locals of the
financial benefits that had previously accrued by them [88].

Bird habitat overlaps with several fishponds, salt pans, farms, and reservoirs in
Taiwan. One of the biggest challenges to the country’s energy transition, particularly in the
southwest, is that the Budai Wetlands in Chiayi, which are Taiwan’s greatest wintering area
for migrating waterbirds, has already had solar panels constructed upon it, disrupting the
wildlife habitat. In Taiwan, many fishponds, salt pans, farms, and reservoirs overlap with
bird habitat [89]. Wetland ecosystems and aquaculture land are particularly vulnerable to
the harmful effects of the government’s recent solar development expansion. That concern
is exacerbated by the fact that solar projects with an installed capacity of less than 500 MW
are exempt from environmental impact assessment (EIA) requirements [90].

Climate change effects on renewables, on the other hand, are a rapidly expanding
field of study. Heat waves and heavy rains are only two examples of how climate change is
threatening the reliability of renewable energy sources. Solar panels perform best between
15 ◦C and 35 ◦C, and extreme heat can reduce their effectiveness [91]. Introducing climate
change vulnerability and adaptation considerations into projects’ prioritization and site se-
lection, as well as developing screening tools to identify at-risk proposed projects, can assist
the energy sector and power utilities in evaluating their implementation strategies [92].

Finally, the significant changes in the industrial regimes that are required by these
energy transitions are likely to meet resistance from the existing organizations. Concerns
about the technological viability and socioeconomic costs of the energy transition, as well
as the perceived threat to profitability and organizational stability, are among the reasons
for opposition [93].

SWOT analysis is an effective method for assessing the situation of a market for the tech-
nology that is under consideration. It may be utilized on its own, tailored to certain contexts
or locations, and serve as a platform for the establishment of individualized objectives [94].

4. Conclusions

Relying on alternative energy sources to cultivate aquatic creatures is a remarkable
step forward in environmentally responsible aquaculture. Solar panels that are installed
atop the fish farm can filter out extensive sunlight, generate power, and keep the pond
at a comfortable temperature all at once, making “Fishery and Electricity Symbiosis” a
novel paradigm of cross-industry collaboration. This method of production not only gives
the land area a second look at being put to use, but it also helps to reduce the load on
the power grid. The shrimp farm’s case study has revealed that all of the solar power
that is supplied by the solar canopy would be used internally, which makes the farm an
energy efficient system. Moreover, since they will be sitting above the water, the solar
panels will assist in reducing the water loss due to evaporation and protect the aquatic
life from piscivorous birds. This is a practical and sustainable strategy to reduce the costs
of aquaculture output globally, but notably in East and Southeast Asia. The increased
large-scale development of renewable energy sources will further reduce energy prices in
the future. A lot of advantages and possibilities exist for solar PV integration with fish
farming practices in coastal locations, and the SWOT analysis that has been described
in this study may be used as a tool for the future development of aquavoltaic systems.
The system has been shown to have technological advantages, being an innovative and
efficient system with room for development given its present market phase. Aquavoltaics
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may contribute to a sustainable future for the world’s economy and the environment by
addressing the interconnectedness of the food, energy, and water systems.
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