Study on Atmospheric Water Resource Variation Characteristics in China and Influencing Factors of Precipitation Efficiency of Hydrometeors
Abstract
:1. Introduction
2. Data and Methods
2.1. Data
2.2. Methodology
2.2.1. Calculation of Characteristic Quantities Related to CWR
2.2.2. Least Squares Fit and Correlation Analysis
2.2.3. Mann–Kendall Trend Test
3. Results and Analysis
3.1. Long-Term Trends of PW across the Four Seasons
3.2. Long-Term Trends of Cloud Cover and CWC in Summer
3.3. Multi-Timescale Changes of CWR Characteristic Quantities in Each Sub-Region in Summer
3.3.1. Annual Variations
3.3.2. Monthly Variations
3.3.3. Ten-Day Variations
3.4. Relationship between PEh and Possible Factors in Each Sub-Region in Summer
4. Conclusions and Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, X.; Guo, X.; Zhu, J. Climatic Distribution Features and Trends of Cloud Water Resources over China. Chin. J. Atmos. Sci. 2008, 32, 1094–1106. (In Chinese) [Google Scholar]
- An, L.; Yao, Z.; Zhang, P.; Jia, S.; Zhao, J.; Gao, L.; Liu, Z. Regional characteristics and exploitation potential of atmospheric water resources in China. Int. J. Climatol. 2022, 42, 3225–3245. [Google Scholar] [CrossRef]
- Chahine, M.T. The hydrological cycle and its influence on climate. Nature 1992, 359, 373–380. [Google Scholar] [CrossRef]
- Cao, L.; Yu, J.; Ge, Z. Water vapor content in the atmosphere and its variation trend over North China. Adv. Water Sci. 2005, 16, 439–443. (In Chinese) [Google Scholar]
- Li, J.; Xu, Q.; Zhan, J.; Wei, H. Atmospheric precipitable water vapor at several typical zones in China. Infrared. Laser Eng. 2012, 41, 3055–3060. (In Chinese) [Google Scholar]
- Ma, X.; Shang, K.; Li, J.; Wang, J.; Kang, Y.; Wang, S. Spatial and Temporal Changes of Atmospheric Precipitable Water in the Eastern Part of Northwest China from 1981 to 2010. J. Desert Res. 2015, 35, 448–455. (In Chinese) [Google Scholar]
- Huang, X.; Wang, S.; Wang, X. Variations of Precipitable Water in Northwest China During 1960–2015. Meteor. Mon. 2018, 44, 1191–1199. (In Chinese) [Google Scholar]
- Zhu, B.; Zhang, Q.; Lu, G.; Li, D.; Li, C. Analysis of the distribution characteristics and trend of air vapor in Qilian Mountains. Plateau Meteor. 2019, 38, 935–943. (In Chinese) [Google Scholar]
- Zhou, C.; Jiang, X.; Li, Y.; Wei, G. Features of Climate Change of Water Vapor Resource over Eastern Region of the Tibetan Plateau and Its Surroundings. Plateau Meteor. 2009, 28, 55–63. (In Chinese) [Google Scholar]
- Zhou, S.; Wu, P.; Wang, C.; Han, J. Spatial distribution of atmospheric water vapor and its relationship with precipitation in summer over the Tibetan Plateau. J. Geogr. Sci. 2012, 22, 795–809. [Google Scholar] [CrossRef]
- Chang, S.; Liu, Y.; Hua, S.; Jia, R. Characteristics of atmospheric water vapor over the Qinghai-Tibetan Plateau in summer with global warming. Plateau Meteor. 2019, 38, 227–236. (In Chinese) [Google Scholar]
- Kaiser, D.P. Decreasing cloudiness over China: An updated analysis examining additional variables. Geophys. Res. Lett. 2000, 27, 2193–2196. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Chen, Y.; Peng, K.; Cui, C.; Zhang, G.; Liu, Q. Study on Cloud Water Resources of Mountain Ranges in Xinjiang Based on Aqua Satellite Data. J. Nat. Resour. 2011, 26, 89–96. (In Chinese) [Google Scholar]
- Zhang, Q.; Li, Y.; Chen, Q.; Ren, J. Temporal and Spatial Distributions of Cloud Cover over Southwest China in Recent 46 Years. Plateau Meteor. 2011, 30, 339–348. (In Chinese) [Google Scholar]
- Li, J.; Jian, B.; Zhao, C.; Zhao, Y.; Wang, J.; Huang, J. Atmospheric instability dominates the long-term variation of cloud vertical overlap over the Southern Great Plains site. J. Geophys. Res.-Atmos. 2019, 124, 9691–9701. [Google Scholar] [CrossRef]
- Mao, K.B.; Yuan, Z.J.; Zuo, Z.Y.; Xu, T.R.; Shen, X.Y.; Gao, C.Y. Changes in global cloud cover based on remote sensing data from 2003 to 2012. Chin. Geogr. Sci. 2019, 29, 306–315. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.; Kim, S.W.; Hwang, S.O.; Choi, J.N.; Ahn, K.B.; Kim, J. Comparative Analysis of the Cloud Behavior over Inland and Coastal Regions within Single Climate Characteristics. Atmosphere 2020, 11, 1316. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, N.; Wu, X.; Guo, Z.; He, J. Temporal and Spatial Characteristics and Influence Factors of Low Cloud Amount over China in 1951–2009. Plateau Meteor. 2013, 32, 1608–1616. (In Chinese) [Google Scholar]
- Liu, B.; Li, D. Spatio-Temporal Variation Features of Cloud Cover in China and Its Correlation to North Boundary Belt of Subtropical Summer Monsoon. Meteor. Mon. 2018, 44, 382–395. (In Chinese) [Google Scholar]
- Fu, C.; Dan, L.; Feng, J.; Peng, J.; Ying, N. Temporal and spatial variations of total cloud amount and their possible relationships with temperature and water vapor over China during 1960 to 2012. Chin. J. Atmos. Sci. 2019, 43, 87–98. (In Chinese) [Google Scholar]
- Su, Y.; Zhao, C.; Wang, Y.; Ma, Z. Spatiotemporal variations of precipitation in China using surface gauge observations from 1961 to 2016. Atmosphere 2020, 11, 303. [Google Scholar] [CrossRef] [Green Version]
- Wu, C.; Liu, L.; Chen, C.; Zhang, C.; He, G.; Li, J. Challenges of the polarimetric update on operational radars in China—Ground clutter contamination of weather radar observations. Remote Sens. 2021, 13, 217. [Google Scholar] [CrossRef]
- Li, Y.; Yu, R.; Xu, Y.; Zhang, X. Spatial distribution and seasonal variation of cloud over China based on ISCCP data and surface observations. J. Meteor. Soc. Japan 2004, 82, 761–773. [Google Scholar] [CrossRef] [Green Version]
- Li, J.M.; Jian, B.D.; Huang, J.P.; Hu, Y.X.; Zhao, C.F.; Kawamoto, K.; Liao, S.J.; Wu, M. Long-term variation of cloud droplet number concentrations from space-based Lidar. Remote Sens. Environ. 2018, 213, 144–161. [Google Scholar] [CrossRef]
- Zhao, C.F.; Chen, Y.Y.; Li, J.M.; Letu, H.S.; Su, Y.F.; Chen, T.M.; Wu, X.L. Fifteen-year statistical analysis of cloud characteristics over China using Terra and Aqua Moderate Resolution Imaging Spectroradiometer observations. In. J. Climatol. 2019, 39, 1–18. [Google Scholar] [CrossRef]
- Ma, Q.; You, Q.; Ma, Y.; Cao, Y.; Zhang, J.; Niu, M.; Zhang, Y. Changes in cloud amount over the Tibetan Plateau and impacts of large-scale circulation. Atmos. Res. 2021, 249, 105332. [Google Scholar] [CrossRef]
- Yang, Y.; Zhao, C.; Fan, H. Spatiotemporal distributions of cloud properties over China based on Himawari-8 advanced Himawari imager data. Atmos. Res. 2020, 240, 104927. [Google Scholar] [CrossRef]
- Zhou, X.; Zhang, H.; Jing, X. Distribution Variation Trends of Cloud Amount and Optical Thickness over China. J. Atmos. Environ. Optics 2016, 11, 1–13. (In Chinese) [Google Scholar]
- Fan, S.; Wang, W.; Lin, D. Tempral and Spatial Distribution Characteristics of Clouds with Different Types over China Based on ISCCP Data. J. Arid Meteor. 2020, 38, 213–225. (In Chinese) [Google Scholar]
- You, T.; Zhang, H.; Wang, H.; Zhao, M. Distribution of Different Cloud Types and Their Effects on Near-Surface Air Temperature during Summer Daytime in Central Eastern China. Chinese J. Atmos. Sci. 2020, 44, 835–850. (In Chinese) [Google Scholar]
- Liu, J.; You, Q.; Zhou, Y.; Ma, Q.; Cai, M. Distribution and trend of cloud water content in China based on ERA-Interim reanalysis. Plateau Meteor. 2018, 37, 1590–1604. (In Chinese) [Google Scholar]
- Liu, J.; You, Q.; Wang, N. Interannual anomaly of cloud water content and its connection with water vapor transport over the Qinghai-Tibetan Plateau in summer. Plateau Meteor. 2019, 38, 449–459. (In Chinese) [Google Scholar]
- He, X.; Song, M.; Zhou, Z. Temporal and Spatial Characteristics of Water Vapor and Cloud Water over the Qinghai Tibetan Plateau in Summer. Plateau Meteor. 2020, 39, 1339–1347. (In Chinese) [Google Scholar]
- You, Q.; Liu, J.; Nike, P. Changes of summer cloud water content in China from ERA-Interim reanalysis. Glob. Planet. Change 2019, 175, 210. [Google Scholar] [CrossRef] [Green Version]
- Cheng, J.; You, Q.; Cai, M.; Sun, J.; Zhou, Y. Cloud Water Resource over the Asian water tower in recent decades. Atmos. Res. 2022, 269, 106038. [Google Scholar] [CrossRef]
- Sui, C.-H.; Satoh, M.; Suzuki, K. Precipitation Efficiency and its Role in Cloud-Radiative Feedbacks to Climate Variability. J. Meteor. Soc. Japan Ser. II 2020, 98, 261. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Gui, S.; Ma, A.; Yang, R.; Zhang, Q. Interdecadal variability of summer precipitation efficiency in east Asia. Adv. Meteor. 2019, 2019, 3563024. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.C.; Yang, M.J.; Lin, P.H. Evolution of water budget and precipitation efficiency of mesoscale convective systems over the South China Sea. Terr. Atmos. Ocean. Sci. 2020, 31, 141–158. [Google Scholar] [CrossRef]
- Zhou, Y.; Cai, M.; Tan, C.; Mao, J.; Hu, Z. Quantifying the Cloud Water Resource: Basic Concepts and Characteristics. J. Meteor. Res. 2020, 34, 1242–1255. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, B.; Chen, Y. The Temporal and Spatial Variation of Water Vapor Content and Its Relationship with Precipitation in the Arid Region of Northwest China from 1970 to 2013. J. Nat. Res. 2018, 33, 1043–1055. (In Chinese) [Google Scholar]
- Cai, M.; Zhou, Y.; Liu, J.; Tang, Y.; Tan, C.; Zhao, J.; Ou, J. Diagnostic quantification of the cloud water resource in China during 2000–2019. J. Meteor. Res. 2022, 36, 292–310. [Google Scholar] [CrossRef]
- Zhao, Y.; Zhu, J. Assessing quality of grid daily precipitation datasets in China in recent 50 year. Plateau Meteor. 2015, 34, 50–58. (In Chinese) [Google Scholar]
- Zhang, P.; Yao, Z.; Jia, S.; Chang, Z.; Sang, J.; Gao, L.; Zhao, W.; Wang, W.; Zhu, X. Study of the characteristics of atmospheric water resources and hydrometeor precipitation efficiency over the Liupan Shan area. Chin. J. Atmos. Sci. 2020, 44, 421–434. (In Chinese) [Google Scholar]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Monthly Averaged Data on Single Levels from 1979 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS): Reading, UK, 2019. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Biavati, G.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Rozum, I.; et al. ERA5 Hourly Data on Pressure Levels from 1979 to Present; Copernicus Climate Change Service (C3S) Climate Data Store (CDS): Reading, UK, 2018. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA-5 global reanalysis. QJR Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, C. Influence of Saharan dust on the large-scale meteorological environment for development of tropical cyclone over North Atlantic Ocean Basin. J. Geophys. Res. Atmos. 2020, 125, e2020JD033454. [Google Scholar] [CrossRef]
- Shen, L.; Zhao, C.; Yang, X. Insight into the seasonal variations of the sea-land breeze in Los Angeles with respect to the effects of solar radiation and climate type. J. Geophys. Res. Atmos. 2021, 126, e2020JD033197. [Google Scholar] [CrossRef]
- Xia, Y.; Wang, Y.; Huang, Y.; Hu, Y.; Bian, J.; Zhao, C.; Sun, C. Significant contribution of stratospheric water vapor to the poleward expansion of the Hadley circulation in autumn under greenhouse warming. Geophys. Res. Lett. 2021, 48, e2021GL094008. [Google Scholar] [CrossRef]
- Platnick, S.; King, M.; Hubanks, P. MODIS Atmosphere L3 Daily Product; NASA MODIS Adaptive Processing System; Goddard Space Flight Center: Greenbelt, MA, USA, 2017. [Google Scholar]
- Meyer, K.; Yang, P.; Gao, B.C. Tropical ice cloud optical depth, ice water path, and frequency fields inferred from the MODIS level-3 data. Atmos. Res. 2007, 85, 171–182. [Google Scholar] [CrossRef]
- Bao, S.; Letu, H.; Zhao, C.; Tana, G.; Shang, H.; Wang, T.; Lige, B.; Bao, Y.; Purevjav, G.; He, J.; et al. Spatiotemporal distributions of cloud parameters and the temperature response over the Mongolian Plateau during 2006–2015 based on MODIS data. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2018, 12, 549–558. [Google Scholar] [CrossRef]
- Bao, S.; Letu, H.; Zhao, J.; Sheng, H.; Lei, Y.; Duan, A.; Chen, B.; Bao, Y.; He, J.; Wang, T.; et al. Spatiotemporal distributions of cloud parameters and their response to meteorological factors over the Tibetan Plateau during 2003–2015 based on MODIS data. Int. J. Climatol. 2019, 39, 532–543. [Google Scholar] [CrossRef] [Green Version]
- Mudelsee, M. Climate Time Series Analysis: Classical Statistical and Bootstrap Methods, 2nd ed.; Springer: Dordrecht, Netherlands; Heidelberg, Germany; London, UK; New York, NY, USA, 2014; ISBN 978-3-319-04449-1. [Google Scholar]
- Mann, H.B. Non-Parametric Test against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods, 4th ed.; Charles Griffin: London, UK, 1975. [Google Scholar]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Wang, S.; Xu, T.; Nie, W.; Jiang, C.; Yang, Y.; Fang, Z.; Li, M.; Zhang, Z. Evaluation of Precipitable Water Vapor from Five Reanalysis Products with Ground-Based GNSS Observations. Remote Sens. 2020, 12, 1817. [Google Scholar] [CrossRef]
- Zhang, D.; Shi, C.; Zhang, T.; Shen, R.; Wang, Z. Comparative Analysis of the Total Cloud Cover Products of Various Data in China. Plateau Meteor. 2022, 41, 803–813. (In Chinese) [Google Scholar]
- Taylor, K.E.; Ghan., S.J. An analysis of cloud liquid water feedback and global climate sensitivity in a general circulation model. J. Clim. 1992, 5, 907–919. [Google Scholar] [CrossRef]
- Shupe, M.D.; Intrieri, J.M. Cloud radiative forcing of the Arctic surface: The influence of cloud properties, surface albedo, and solar zejiith angle. J. Clim. 2004, 17, 616–628. [Google Scholar] [CrossRef]
- Albrecht, B.A. Aerosols, cloud microphysics, and fractional cloudiness. Science 1989, 245, 1227–1230. [Google Scholar] [CrossRef]
- Han, Q.; Rossow, W.B.; Zeng, J.; Welch, R. Three different behaviors of liquid water path of water clouds in aerosol-cloud interactions. J. Atmos. Sci. 2002, 59, 726–735. [Google Scholar] [CrossRef]
- Roeckner, E.; Schlese, U.; Biercamp, J.; Loewe, P. Cloud optical depth feedbacks and climate modelling. Nature 1987, 32, 138–140. [Google Scholar] [CrossRef]
- Yang, B.; Zhang, H.; Peng, J.; Wang, Z.; Jin, X. Analysis on Global Distribution Characteristics of Cloud Microphysical and Optical Properties Based on the CloudSat Data. Plateau Meteor. 2014, 33, 1105–1118. (In Chinese) [Google Scholar]
Region | P (mm·yr−1) | Gh (mm·yr−1) | CWR (mm·yr−1) | PEh (%·yr−1) | ||||
---|---|---|---|---|---|---|---|---|
b | β | b | β | b | β | b | β | |
NW | 0.25 | 0.16 | −1.17 | 1.1 | −1.43 | 0.83 | 0.08 | −0.02 |
NC | 1.29 | 1.13 | −0.24 | 0.06 | −1.53 | −2.56 | 0.19 | 0.22 |
NE | 4.07 * | 3.67 * | 6.46 | 5.75 | 2.39 | 1.1 | 0.22 | 0.26 |
TP | 0.68 | 0.27 | 1.87 | 1.35 | 1.19 | 1.68 | −0.08 | −0.07 |
SW | 3.17 | 2.64 | 0.78 | 1.35 | −2.39 | −1.29 | 0.26 * | 0.25 |
CR | 1.04 | −0.92 | −2.96 | −5.53 | −4 | −4.77 | 0.2 | 0.22 |
SE | 2.52 | 3.54 | 0.04 | 1.72 | −2.48 | −1.92 | 0.24 * | 0.29 * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
An, L.; Yao, Z.; Zhang, P.; Jia, S.; Zhao, J.; Liu, Z.; Zhang, Z. Study on Atmospheric Water Resource Variation Characteristics in China and Influencing Factors of Precipitation Efficiency of Hydrometeors. Water 2023, 15, 1020. https://doi.org/10.3390/w15061020
An L, Yao Z, Zhang P, Jia S, Zhao J, Liu Z, Zhang Z. Study on Atmospheric Water Resource Variation Characteristics in China and Influencing Factors of Precipitation Efficiency of Hydrometeors. Water. 2023; 15(6):1020. https://doi.org/10.3390/w15061020
Chicago/Turabian StyleAn, Lin, Zhanyu Yao, Pei Zhang, Shuo Jia, Jieyun Zhao, Zhen Liu, and Zequn Zhang. 2023. "Study on Atmospheric Water Resource Variation Characteristics in China and Influencing Factors of Precipitation Efficiency of Hydrometeors" Water 15, no. 6: 1020. https://doi.org/10.3390/w15061020
APA StyleAn, L., Yao, Z., Zhang, P., Jia, S., Zhao, J., Liu, Z., & Zhang, Z. (2023). Study on Atmospheric Water Resource Variation Characteristics in China and Influencing Factors of Precipitation Efficiency of Hydrometeors. Water, 15(6), 1020. https://doi.org/10.3390/w15061020