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Abstract: Geologic material properties of hillslopes are inherently heterogeneous, with complex lay-
ering structures due to geological deposition processes. Lacking detailed sampling of the properties’
spatial distribution has led to the stochastic representation of the properties to address uncertainty
in the hillslope stability evaluation. This study treats the spatial distributions of the shear strength
parameters, the cohesion (c), and the internal friction angle (¢), in a synthetic two-dimensional slope
as stochastic random fields characterized by their means, variances, and correlation scales. This
study then evaluates the cross-correlation between these parameters and the factor of safety (FS)
using unconditional Monte Carlo simulation (MCS). Different from classical sensitivity analyses,
the cross-correlation analysis of FS and the stochastic parameter fields stresses the importance of
the orientation of the large-scale geological layering, the correlation between the geological media’s
cohesion, and the internal friction angle at the local scale on the probability and uncertainty of failure
of the heterogeneous hillslope. The analysis further guides the field sampling strategy to reduce un-
certainty in the slope stability analysis due to unknown heterogeneity. More importantly, it suggests
the location of stability reinforcement measures. The results of this study provide cost-effective tools
for geoengineers to deal with field slope stability analysis under uncertainty.

Keywords: correlation scales; cross-correlation analysis; shear strength parameters; slope stability;
spatial variability

1. Introduction

Shear strength parameters (cohesion (c) and internal friction angle (¢)) are the critical
parameters for evaluating slope stability. These parameters exhibit spatial variability at
different scales due to complex geological processes [1-3]. Many previous studies have
concluded that the spatial variability of geotechnical properties is vital in slope stability
evaluations [4-6]. For example, Qi et al. [7] investigated the effect of the spatial variability
of shear strength parameters on a two-dimensional slope’s critical slip surface distribution.
Griffiths et al. [8] and Jiang et al. [9] suggested that ignoring the spatial variability of the
shear strength parameters would lead to an underestimation of the probability of slope
failure when the coefficient of variation of the shear strength parameters was significant.
The slope stability evaluated using the mean value of the parameter could be misleading.
Cho [10] emphasized the importance of the spatial variability of soil mechanics’ parameters
in evaluating failure probability. Additionally, the effect of the spatial variability of soil
properties is crucial when the slope risk assessment is over large areas due to both the
variability and lack of measurements [11,12]. Based on genetic algorithms and machine
learning, Miao et al. [13,14] performed displacement prediction and landslide susceptibility
mapping over a large area and evaluated its uncertainty.

In recent years, geostatistical random field theory has been used to describe the
heterogeneity of parameters, using its mean, variance, and correlation scales to describe
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the most probable values, variability, and spatial structure of the parameter fields [15].
The heterogeneous parameter field is statistically isotropic when the horizontal correlation
scale is equal to the vertical correlation scale. The field is statistically anisotropic when the
horizontal correlation scale is different from the vertical correlation scale.

Combining random fields and Monte Carlo simulations (MCS), one can conduct a
cross-correlation analysis of heterogeneous shear-strength parameters and slope stability.
Cross-correlation analysis is a method that reveals the spatial relationship between pa-
rameters and processes, considering the variance and spatial structure of the parameters.
Recently, Cai et al. [16] proposed an effective sampling strategy in slope stability evalua-
tion based on the cross-correlation analysis of shear strength parameters and the factor of
safety (FS), defined as the ratio of the slope’s absolute strength to the actual applied load.
Cross-correlation analysis is widely used in many fields, such as underground engineering
and groundwater science. Using cross-correlation analysis, Gao et al. [17] investigated
the spatial relationship between the rock parameters of the unlined rock caverns and the
displacement at a location of interest. Mao et al. [18] studied the relationship between
observed heads and hydraulic properties at different times and locations of unconfined
aquifers during pumping tests. Sun et al. [19] proposed a temporal sampling strategy based
on the cross-correlation analysis of hydraulic parameters and observed hydraulic heads.

Most current studies have investigated the effect of the coefficient of variation of pa-
rameters on slope stability with statistical isotropic media. However, due to sedimentation
processes, geotechnical material often displays a layered structure [7,20-23]. The failure
types of slopes with layered structures are generally translational slides, mudslides, and
creep-fatigue [24-26]. That is, the correlation scales in different directions of the parameters
are different, which leads to the fact that parameter fields with statistical anisotropy are
standard. Moreover, Cai et al. [27] developed an analytical approach for the reliability
analysis of infinite slope stability in the presence of spatially variable shear-strength pa-
rameters. They concluded that the py increases when the correlation between c and tang
increases. Griffiths et al. [8] and Jiang et al. [9] obtained similar conclusions by studying
two-dimensional heterogeneous slopes using the random finite element method. The
correlation between ¢ and tang significantly influences the probability of slope failure.
However, the influence of the correlation between c and tang on slope stability considering
parameter statistical anisotropy has not been comprehensively studied. Likewise, studies
have compared the effect of the conditional random field with the unconditional random
field on slope stability analysis using MCS with the finite element method. They concluded
that conditional random field simulations could address the reduction in uncertainty due
to conditioning with sampled parameters in evaluating slope stability [28-31]. Nonethe-
less, these studies have not addressed the vital issue of reducing uncertainty by selecting
sampling locations. This issue (where to sample and how many sampling locations) to
reduce the uncertainty is critical since only a limited number of samples is available in
field situations.

This paper investigates the effect of statistical anisotropy of shear strength parameters
on slope stability. We first introduce the influence of the correlation scale on the param-
eter distribution and the method of cross-correlation analysis between the parameters
and FS. Then, we use a two-dimensional slope with statistical isotropy to analyze the
cross-correlation between parameters and FS. The comparison of the correlation analysis,
sensitivity analysis, and traditional limit equilibrium method comes next. The analyses
of the cross-correlations between parameters and FS, and the influences of the correlation
scales on slope stability in statistically anisotropic media are investigated. Lastly, using con-
ditional random fields with MCS, we compared the uncertainty in evaluating slope stability
for four different sampling schemes to validate the results of the cross-correlation analysis.
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2. Methodology
2.1. Random Field Modeling of Heterogeneity

This study adopts the random field theory to describe the heterogeneity of shear
strength parameters. The impossibility of obtaining the parameter values at every slope
location recommends that we consider the c (or ¢) of each position as a random variable. A
collection of these random variables of ¢ (or ¢) in the entire slope becomes a random field
characterized by a joint probability density function with mean, variance, and autocorrela-
tion function, which describes the probability of a parameter value at any slope location.
The mean represents the most likely value of the parameter, and the variance represents
its average deviation from the actual value (i.e., uncertainty) due to variability and lack of
measurements. On the other hand, the autocorrelation function quantifies the parameter’s
spatial structure (average spatial distribution of the clusters of the geotechnical properties
in the slope).

Suppose the slope has n x n random variables, and i and j = 1,2 ..., n, a two-
dimensional autocorrelation function is represented as follows:

X — % .
pij:exp[2<‘ 1/\ ]‘+|ylA ]/]’)] 1
x Y

where pj; is the autocorrelation coefficient between the parameter at location (x;, y;) and
location (x;, y;), and Ay and A, are the horizontal and vertical correlation scales, respectively.
Many other forms of the autocorrelation function are available. They all are ensemble
statistics (i.e., general knowledge). We, therefore, chose the most simplistic one. This study
considers the correlation scales of c and tan¢g as the same.

Physically, the correlation scale represents the average dimensions (e.g., length, width,
and thickness) of heterogeneity (e.g., layers or stratifications) within the domain [32].
With specified mean, variance, and correlation scales, numerous realizations of parameter
distributions can be generated with different random seeds by a spectral representation
method [33,34]. In order to avoid negative values while generating the random fields, the
natural log-normal distribution of c and tang are employed. Figure 1 shows six realiza-
tions of the cohesion parameter field with the same mean and variance (y. = 15 kN/ m?2,
o, = 7.5 kN/m?), but with different correlation scales. These fields are called statistically
isotropic when the Ay is the same as the Ay (Figure 1a,b), and statistically anisotropic when
the Ay is different from the A (Figure 1c—f). In Figure 1c,d, the correlation scales are 1 m
in the vertical direction and 5 m and 10 m in the horizontal direction, respectively. As the
Ay becomes large, the strong and weak zones extend greatly in the horizontal direction,
and the slope shows an apparent horizontal layered structure. Figure le,f display the
cases where Ay =1m, A, =5m and Ay =1 m, A, =10 m, respectively. The slope exhibits a
vertically layered structure as the A, becomes greater than the A. In this study, we consider
different cases as follows. For statistical isotropy: Ay = Ay = 1 m; for statistical horizontal
anisotropy: Ay =1m, Ay =5m, 10 m, 20 m, 40 m, 80 m, respectively; for statistical vertical
anisotropy: Ay =1m, Ay, =5m, 10 m, 20 m, 40 m, respectively.

2.2. Slope Stability Analysis

MCS is one of the widely utilized methods to estimate the probability of failure and
the reliability of a slope with the general knowledge of the mean, variance, and correlation
scales of the geotechnical properties of a hill slope. This study, different from many previous
studies, adopts the MCS to investigate the effects of correlation scales on the analysis of the
probability of failure and reliability of a slope and guides the sampling scheme to reduce
the uncertainty of our estimated probability and reliability.
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Figure 1. Numerically generated realizations of ¢ in different correlation scales: (a,b) Ay = Ay = 1m,
with different random seed, (¢) Ay =5m, Ay =1m, (d) Ay =10m, Ay =1m, () Ay =1m, Ay =5m,
and (f) Ay =1m, A, =10 m.

For this purpose, a two-dimensional synthetic slope model for plane strain analysis
(Figure 2) with a slope height H = 10 m and slope inclination a = 26.6° was discretized
into 385 elements with 1 m X 1 m in size, and some of them are truncated because of the
slope surface. The left and right boundaries of the model are zero horizontal displacements
(1y = 0 m), the bottom boundaries are zero horizontal and vertical displacements (1, = 0 m,
uy = 0 m), and the slope surface is free displacement. The slope is assumed to be subjected
to gravity loads only and consists of elastic—perfectly plastic soils following the Mohr-
Coulomb failure criterion. Specifically, the loading stress at each element is the total weight
of the element above, and the shear strength of each element follows the Mohr—Coulomb
failure criterion. Other complex or advanced constitutive models [35-37] or numerical
simulation methods [38] could be used with corresponding randomized input parameters.
Table 1 lists the statistics of soil mechanical parameters, except for their correlation scales.
Subsequently, the corresponding FS for the entire slope was evaluated based on the finite
element strength reduction method (SRM) [39,40]. The program for calculating FS in this
study is mainly based on the program p64 [40], and the main difference lies in the automatic
MCS and the search for the critical strength reduction factor. The SRM has been widely used
due to its practicality and reliability. The factor of safety (FS) is defined as the proportion by
which ¢ and tang must be reduced in order to cause slope failure. The strength reduction
based on the Mohr-Coulomb criterion is shown in the following equation [39,40]:

c

Ctrial = SRE )
tan
tan Ptrial = ST;D (3)

where SRF is the strength reduction factor; cyi, and tangy, are the trial shear strength
parameters, which decrease with an increase in SRF. Several gradually increasing values of
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the SRF are tested, and the updated c,) and tangy, are used for elastoplastic analysis.
When the algorithm does not converge for 1000 iterations, the slope is considered as having
failed in this study. The smallest value of SRF causing failure is then interpreted as the
factor of safety FS. For example, the FS of this slope using the mean values (Table 1) as
input parameters, considering the slope as homogeneous, is 1.141.

15 e
H=10m
a=26.6°
10 = H
E
24 :
5 ,
00 AN B 10 15 20 25 30 4, 35

x(m)
Figure 2. The synthetic slope model.

Table 1. Prior statistics of shear strength and other parameters for the numerical model.

Parameters Values

Mean of cohesion, p. 15 kN/m?
Coefficient of variation of cohesion, COV, 0.5
Mean of friction angle, i, 10°
Coefficient of variation of friction angle, COV,, 0.5
Dilation angle, i 0°

Young’s modulus, E 1 x 10° kPa

Poisson’s ratio, v 0.3

Unit weight, 7 20 kN/m?3

Using this synthetic hill slope model and MCS, we evaluated the probability of slope
failure pyand the reliability index p according to the following formula [16]:

N
ETN @
prs — 1
= 5
="t ©)

where N is the number of realizations in MCS; in this study, N = 500 realizations. Nfs.; is
the number of realizations whose FS value is less than 1 (i.e., the slope fails). A small value
of Nrs«1 implies that the probability of failure of the slope is small. In Equation (5), urs is
the mean value and ofg is the standard deviation of FS values of N realizations of MCS.
(urs — 1) represents the slope stability and ors represents the uncertainty in the evaluating
FS. Therefore, the larger B is, the more reliable the estimated FS is and the smaller the
probability of slope failure.

2.3. Cross-Correlation Analysis

In the next step, we investigate the sensitivity of a slope’s FS to the parameters” het-
erogeneity at every part of the slope. Cross-correlation analysis is the sensitivity analysis
of system response cast in a stochastic framework with the consideration of variability
(variance) and spatial structure (correlation scales) of the heterogeneous slope (e.g., [18,19]).
Specifically, a cross-correlation map represents the most likely relationship between sys-
tem responses and spatial variability in system properties. This study applies the cross-
correlation analysis to examine the relationship between shear strength parameters and
slope stability:
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where x; is the position vector of the parameter considered; prsc(x;) and prstane(x;) are the
cross-correlations between the cohesion and the internal friction angle at the location x;
and FS, respectively. FSy is the FS at the ky, realization; c(x;,k) is the cohesion at the location
x; and ky, realization; tang(x; k) is the tangent of the internal friction angle at the location x;
and ky, realization. Lastly, o¢(x;) is the standard deviation of the cohesion; Ttane(x;) is the
standard deviation of tang.

3. Results of Cross-Correlation Analysis for Statistical Isotropy

This section examines the cross-correlation between FS and two independent variables
(cohesion ¢ and the internal friction angle tang) with correlation scales of 1 m in both
horizontal and vertical directions (statistically isotropic cases). The cross-correlation maps
between the shear strength parameters and FS (Figure 3) reveal that prgs, is positive at the
toe and the top of the slope (Figure 3a), suggesting a large c value at these areas leads to
the greater FS value of the slope. On the other hand, the interior of the slope areas has a
positive correlation between tang and FS (Figure 3b). The remaining areas have correlation
values close to zero, meaning that shear strength in these areas (i.e., most of the slope
surface and the back of the slope.) has little effect on the slope stability.

(a) Prse (b) Prsiany
0.30

I 0.25 o
0.20
0.15

Figure 3. (a) Cross-correlation map of FS and ¢, (b) Cross-correlation map of FS and tang for
statistical isotropy.

Comparing Figure 3a,b, we observe that the locations of the positive correlation regions
of the two parameters are different. Such a difference implies that the mechanisms of ¢ and
tang on slope stability are different within the slope. Physically, ¢ is the maximum shear
stress a rupture surface can carry when the normal stress is absent. On the other hand,
tang is the coefficient that converts the normal stress at the rupture surface to frictional
force. According to the Mohr-Coulomb yield criterion, the shear strength of a geotechnical
material is equal to the sum of ¢ and the normal stress multiplied by tang. In the interior
of the slope, due to the gravity of the overlying material of the slope, the material in the
interior is subjected to high normal stresses, and the coefficient tang becomes the key factor
transforming the normal stress into the anti-slip force. The larger tang is, the greater the
anti-slip force under the same normal stress. Therefore, the value of tang in the slope’s
interior greatly influences the slope stability.

On the other hand, at the toe and top of the slope, the geotechnical mass experiences
low normal stress, and the material’s cohesion ¢ dictates the shear strength and influences
slope stability. The above discussions should explain the differences in the cross-correlation
patterns in Figure 3a,b. For this reason, one must recognize that the impact areas of these
two parameters are different when evaluating slope stability.

Comparing the potential sliding surface (the red line in Figure 3) calculated by the limit
equilibrium method [41] using the mean values of parameters, we observe that the region
of positive correlation partially overlaps the surface. This result demonstrates that the
cross-correlation analysis of FS and parameters pinpoint the slope’s critical areas. Moreover,
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the cross-correlation analysis identifies potential sliding zones in contrast to a single sliding
surface obtained by the limit equilibrium method.

The sensitivity analysis results of FS to the cohesion (the sensitivity of FS to c, J.,
Figure 4a) and internal friction angle (the sensitivity of FS to tang, Jiane, Figure 4b) display
similar patterns to those in Figure 3a,b, derived from MCS. The sensitivity analysis of FS
to the parameter takes the following steps. First, the parameter at each location is set as
the mean value, and the FS of the homogeneous slope is evaluated by the finite element
strength-reduction method. Then, we applied a perturbation of the parameter at a spatial
location x;, keeping the parameter at the other locations as the mean value. We subsequently
evaluated the FS corresponding to this perturbation. The ratio of the change of FS to the
perturbation is the sensitivity of FS to the parameter at this position. After calculating
the sensitivity at each location, we derived a sensitivity map. The map shows that the
sensitivity of FS to c is greater at the foot and top of the slope compared to other regions,
and the sensitivity of FS to tang is more significant in the interior of the slope. Notice that
the sensitivity analysis, based on the perturbation method, aims at the change of FS per
change in the given mean value of the parameter, ignoring the variability (variance) and
spatial structure (correlation scale) of the parameters [42]. Specifically, the cross-correlation
analysis considers many possible slopes with heterogeneous parameter fields with the
same mean parameter value but different perturbations and spatial structure patterns. It
then summarizes the results statistically. Consequently, the sensitivity analysis results
(Figure 4) differ from the cross-correlation analysis (Figure 3), and the cross-correlation
analysis is most appropriate for cases where spatial parameter values are unknown (i.e.,
realistic field situations).

tang
5.0¢10™
4.5x10™
4.0x10°
3.56%10°
3.0x10°
2.5x10™
2.0x10°
1.5x10°
1.0x10°
5.0x107
0.0

x(m) x(m)
Figure 4. (a) Sensitivity map of FS to ¢, (b) sensitivity map of FS to tang.

4. Results of Cross-Correlation Analysis for Statistical Anisotropy
4.1. Statistical Horizontal Anisotropy (Horizontal Correlation Scale > Vertical Correlation Scale)

This section investigates the results of the cross-correlation analysis between FS and
shear strength parameters (c and tang) with different Ay values (Figure 5) while Ay =1 m.
Figure 5a,c show the cross-correlation maps between FS and c, for A, of ¢ equal to 5, 10,
and 20 m, respectively. The cross-correlation maps between FS and tang, for Ay of tang
equal to 5, 10, and 20 m are presented in Figure 5d,f, respectively. We observe that the
positive areas of prs. and prstanp €xpand as Ay increases, but the areas are confined to the
areas at the slope toe. Comparing the results to the cross-correlation map of the statistically
isotropic parameters (Figure 3), we notice that prs. develops from the toe. In contrast,
PFstang develops from the inside of the slope.

Figure 6a,d illustrate the probability of failure (py), reliability p index, the mean of FS
(#rs), and the standard deviation of FS (0rs) as a function of the normalized horizontal
correlation scale, respectively. The normalized horizontal correlation scale is A, /(H/tanx),
the ratio of the horizontal correlation scale to the horizontal projection of the slope length,
H/tana. Notice that « is the slope inclination angle. Since the correlation between ¢ and
tang (¢ is the friction angle) is generally unclear [8,9,16], this study also examines the effect
of perfectly positively, zero, and negatively correlated c and tang perturbation relationships
and they are indicated by the red, green, and blue lines in these figures, respectively.
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Figure 5. Cross-correlation maps of FS and ¢ (a—c) and tang (d—f) under three different horizontal
statistical anisotropic correlation scales.

Figure 6. (a-d) are pf, B, jirs and org of FS obtained by MCS for different Ay and pctany values.

According to these figures, if ¢ and tang are positively correlated or uncorrelated
(i.e., the red and green lines), the probability of failure in Figure 6a and the standard
deviation of FS (ors) in Figure 6d rapidly increase as Aytana/H approaches one and
stabilize afterward. On the other hand, the reliability (8) (Figure 6b) and the mean of FS (yrs)
(Figure 6¢) decrease exponentially. These results stem from the fact that for horizontally
layered slopes, the layer with the lowest parameters (such as the weak interlayer or the
stratum with highly developed joints and fractures) controls the stability of the slope. A
longer correlation scale means that the layer with the weakest strength covers most of the
slope, and the slope is less stable. On the other hand, from the physical meaning of the
correlation between c and tang, the higher the correlation is, the lower c is at a location,
and the lower the tang at the same location. Therefore, the slope is less stable (i.e., the red
line is higher than the green line in Figure 6a).

The blue lines in all figures depict the behaviors of these quantities for the case where
¢ and tang are negatively correlated. The blue lines show that as A tana/H increases,
the pr value increases slightly but remains very low (about 0.05), while the reliability f
index increases and remains high at about 2.4. The value of jrs increases from 1.075 to
1.085 and remains constant over the rest of Ay(tana/H). The value of org decreases first at
Ax(tana/H) = 0.5 and remains almost constant at a small value. The trends are distinctly
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different from when pctang is 1 or 0. The negative correlation means that a large c is at
one location, and a small tang is at the same location or vice versa. As a result, the slope
stability no longer decreases significantly or even increases slightly.

Opverall, an underestimation of A, can result in an overestimated slope stability when
evaluating the stability of horizontally layered slopes—the importance of identifying the
spatial structure of the slope is clear.

4.2. Statistical Vertical Anisotropy (Horizontal Correlation Scale < Vertical Correlation Scale)

Figure 7 shows the cross-correlation map between FS and shear strength parameters
(c and tang) with different A, values when the slope has vertically stratified formations.
Figure 7a—c illustrate the cross-correlation maps between FS and ¢, and A, of c with 5, 10, and
20 m, respectively, while their horizontal correlation scales are 1 m. These figures indicate
a distinctly positive correlation between FS and c at the toe of the slope. Furthermore, as
Ay increases, the high correlation area becomes more concentrated and vertical, and the
cross-correlation value weakens slightly.

y(m)

y(m)

Figure 7. Cross-correlation maps of FS and c (a—c) and tang (d—f) under three different vertical
statistical anisotropic correlation scales.

Figure 7d—f demonstrate the cross-correlation maps between FS and tang, and A, of
tang equal to 5, 10, and 20 m, respectively. We observe that FS and tang are positively
correlated at the area x = 20 to 25 m and y = 0 to 5 m, and the cross-correlation decreases
slightly as Ay increases.

The behaviors of py, B, pirs, and ops in the slopes with longer vertical correlation scales
than the horizontal one as a function of A,,/H (the vertical correlation scale normalized by
the height of the slope, H) are displayed in Figure 8a—c, and d, respectively. First, we notice
that the value of probability failure (py) in this case is much less than that in the horizontal
layering slope (i.e., Figure 8a vs. Figure 6a), regardless of the effects of various factors as in
Figure 6. In other words, vertical stratification (the orientation of the large-scale structures)
plays a more dominant role than the others do in slope stability.

Nevertheless, Figure 8 shows that when pctang is 1 (the red line), with the increase in
Ay, pr and ofs decrease, and yirs and B increase, indicative of the fact that as A, increases,
the stability of the slope increases and the uncertainty of the evaluation decreases. This
result stems from the fact that when a slope is vertically layered, the high-strength layer
controls the stability, similar to anti-slip piles. The longer A, means that the layer with high
strength is extensive, and when pctang is 1, the ¢ is large and so is ¢ large, and the anti-slip
pile can be effective, leading to high slope stability.
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Figure 8. (a-d) are pf, B, jirs, and ors of FS obtained by MCS for different A, and pctany values.

When pctang is 0 or —1 (the green and blue line in Figure 8), the increase in A, leads
to increases in pyand ops, and it decreases pps and B values, suggesting that increasing Ay,
worsens the stability of the slope and increases the uncertainty of the evaluation. These
trends are the opposite of when pctang is 1, likely because ¢ and tang are uncorrelated or
perfectly negatively correlated, and the effect of anti-slip piles weakens.

4.3. Effects of the Number of Realizations in MCS

All the results above are from 500 MCS. To ensure that the number of simulations
is sufficient to obtain representative results, we plot Figure 9 to show the effect of the
number of realizations on pr and prs at Ay = 10 m and 20 m, respectively, and A, = 1 m,
in these conditions, ors are the maximums. As shown in the figure, the mean values
of prand prs fluctuate widely within 150 realizations but stabilize after more than 300
realizations, certifying the adequacies of the number of realizations used in the MCS and
the results’ representativeness.

1.00 - 1.10

0.80 =105

I A=10m (3, *tana/i=0.5) 100

0.60 Pf, 2 =10m (3 _*tana/H=0.5) 1

a—_ Ppgo A =20m (3 *tane/H=1.0) 4 g g5 4
0,40 Pf,3 =20m (. *anw/H=10) ] =

' d0.90

0.20 Joss

0.00 M NI 1 1 ] 0.80

100 200 300 400
number of realizations

Figure 9. Pf and pirs, when A, = 1 m and Ay = 10 m and 20 m, respectively, as functions of the number
of realizations.

5. Effects of Conditional Random Fields

To demonstrate that sampling in highly correlated zones (conditioning on the stochas-
tic fields) reduces the uncertainty in the FS assessment, we conducted numerical experi-
ments considering two cases where only the cohesion field is a stochastic process. Case 1
used the distribution of c in Figure 1a as the reference field, and Case 2 used the ¢ distribu-
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tion in Figure 1c. The mean, variance, and A, of the random fields in the two cases were
identical, except that A, was different.

We considered four sampling schemes (Figure 10). In Scheme 1, samples were taken
at the toe of the slope at three 5 m deep vertical boreholes (Figure 10a). In Scheme 2, the
three boreholes were near the slope top (Figure 10b). Scheme 3 took samples over a 15
m borehole horizontally into the slope at the corner of the slope (Figure 10c). The fourth
scheme sampled a 15 m borehole horizontally near the top of the slope (Figure 10d). These
four schemes took a soil sample every meter to obtain 15 samples. As such, we could
evaluate the effects of the same number of parameter values in different correlation areas
for conditioning on the estimates of FS of the slope.

(a) Scheme 1 (b)Scheme 2
15 15
o

10 10 [
£
>

5 5

0 0

0 10 15 ( )20 0 5 10 15 ( )20 25 30 35
x{m xX{m
(¢)Scheme 3 (d) Scheme 4
15 15 T
OOO0O00O0S .
0 sy,

. -~ o
= |HERN =
£ T E
> >

5 5

00 5 10 15 20 25 30 35 00 5 10 15 20 25 30 35

x(m) x(m)

Figure 10. Borehole locations of four sampling schemes.

With the sampled data, 500 realizations of the conditional random field correspond-
ing to each sampling scheme were generated using the Kriging Superposition Approach
(KSA) [43,44]. The resulting conditional realizations honored the sampled values at the
sampled locations and retained the specified spatial statistics of the random fields. After-
ward, we used them to conduct MCS as the previous unconditional MCS, and the results
are summarized in Table 2.

Table 2. The results of conditional MCS.

Scheme 1 Scheme 2 Scheme 3 Scheme 4
urs of Case 1 1.033 1.041 1.031 1.040
ors of Case 1 0.066 0.072 0.058 0.072
Ugs of Case 2 0.935 0.939 0.924 0.935
ofs of Case 2 0.094 0.105 0.082 0.112

The reference FS of Case 1 is 1.031. The prs of sampling Scheme 3 is the closest to
the FS of the reference since the sampling area is primarily in the high correlation region.
Sampling Scheme 1, which samples a smaller portion of the highly correlated region, yields
uFS value that is the second closest to the reference value. Since sampling Schemes 2 and 4
cover the minimal correlation between the parameters and FS, they yield a yrs that differs
significantly from the reference value and is close to the urg of the unconditional random
simulation, indicative of their ineffectiveness for defining the actual factor of safety.

For Case 2, the reference FS is 0.922. The results of the conditional MCS are similar
to Case 1, and the mean and standard deviation of FS are the best for sampling Scheme 3.
Moreover, due to the apparent layered structure of Case 2 (Ax = 5 m), Scheme 3 with
horizontal borehole sampling yields significantly better results than the other three schemes.
As expected, the uncertainty in the FS evaluated for sampling Scheme 3, which samples
the most highly correlated areas, is the smallest in both Case 1 and Case 2. That is,
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sampling the high correlation areas’” parameters is critical for evaluating slope stability
because it reduces uncertainty significantly more than sampling in other regions. As
demonstrated in this example, cross-correlation analysis guides optimal borehole placement
locations. Furthermore, we could suggest that focusing on the high correlation areas for
slope reinforcement measures is essential since the same reinforcement measures will be
more effective in the high correlation areas than in the low correlation areas.

6. Conclusions

Cross-correlation analysis of the shear strength parameters and FS of statistically
anisotropic heterogeneous slopes shows that the large-scale heterogeneity structures dom-
inate the stability of a slope. Specifically, with the given mean and variance of the shear
strength parameters, the probability of failure of slopes with a long vertical correlation
scale (vertical structure) is much smaller than that with a long horizontal correlation scale
(horizontal structure).

In statistically isotropic parameter fields, the distributions of the high correlation areas
of prsc and prstang are different: the former distributes at the toe and top of the slope, and
the latter in the interior of the slope.

For the slope with the long horizontal correlation scale, the high correlation area
of shear strength parameters with FS is located at the toe of the slope and distributed
horizontally. The larger A is, the longer the extension of the area in the horizontal direction
is. In addition, when ¢ and tang are positively correlated or uncorrelated, the larger Ay is,
and the less stable the slope is. When c and tang are perfectly negatively correlated, the
effect of Ay on the stability of the slope decreases.

In the slope with a long vertical correlation scale, the high correlation area of the shear
strength parameter with FS is located at the toe of the slope and distributed vertically. With
the increase in Ay, the correlation in the high correlation region slightly decreases, and the
region’s distribution becomes more vertical than others. Moreover, when ¢ and tan¢ are
positively correlated, the larger Ay is, and the more stable the slope is. When c and tang are
negatively correlated or uncorrelated, the larger A, is, and the less stable the slope is.

This study further demonstrates that sampling in high cross-correlation regions can
reduce the uncertainty in slope stability analysis. In addition, when the slope has an
apparent layered structure (statistical anisotropy), the sampling direction consistent with
its structure is recommended.

In summary, to evaluate the stability of a slope, first, one must detect the orientation
of the large-scale structures (i.e., long correlation scales). The knowledge of the correlation
between ¢ and tang becomes essential, which dictates the probability of slope failure in
the slopes with horizontal layering. The cross-correlation analysis presented in this study
yields the location of the critical areas where shear strength parameters affect slope stability.
Furthermore, these high cross-correlation regions guide the optimal borehole placement
locations to reduce uncertainty in slope stability analysis and even for the selection of slope
stability reinforcement locations.
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