Preconcentration and Solid Phase Extraction of Trace Metal Ions by Chemically Modified Graphene Oxide Nanoconstructs
Abstract
:1. Introduction
2. Experimental Section
2.1. Reagents and Solution
2.2. Instruments
2.3. Material Synthesis
2.4. Optimized SPE Procedure
3. Results and Discussion
3.1. Choice of Material
3.2. Characterization
3.3. Optimization of SPE Procedure
3.4. Effect of Sample pH
3.5. Effect of Sample Flow Rate
3.6. Eluent Type and Concentration
3.7. Interference and Selectivity Studies
3.8. Reusability Test
3.9. Effect of Adsorbent Amount
3.10. Adsorption Isotherms
3.11. Analytical Figures of Merits
3.12. Application of the Method
4. Comparison of Present Studies with Other Methods
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Johnston, R.B.; Hanchett, S.; Khan, M.H. The socio-economics of arsenic removal. Nat. Geosci. 2010, 3, 2. [Google Scholar] [CrossRef]
- Zhang, R.; Chen, T.; Zhang, Y.; Hou, Y.; Chang, Q. Health risk assessment of heavy metals in agricultural soils and identification of main influencing factors in a typical industrial park in northwest China. Chemosphere 2020, 252, 126591. [Google Scholar] [CrossRef] [PubMed]
- Zheng, L.; Zhou, Z.; Rao, M.; Sun, Z. Assessment of heavy metals and arsenic pollution in surface sediments from rivers around a uranium mining area in East China. Environ. Geochem. Health 2020, 42, 1401–1413. [Google Scholar] [CrossRef] [PubMed]
- Cai, Z.; Zou, H.; Chen, Y.; Wang, Z. Ultrasensitive determination of mercury by ICP-OES coupled with a vapor generation approach based on solution cathode glow discharge. Chin. Chem. Lett. 2022, 33, 2692–2696. [Google Scholar] [CrossRef]
- Lu, M.; Xiao, R.; Zhang, X.; Niu, J.; Zhang, X.; Wang, Y. Novel electrochemical sensing platform for quantitative monitoring of Hg(II) on DNA-assembled graphene oxide with target recycling. Biosens. Bioelectron. 2016, 85, 267–271. [Google Scholar] [CrossRef]
- Fowler, B.A.; Chou, C.H.S.J.; Jones, R.L.; Chen, C.J. CHAPTER 19-Arsenic. In Handbook on the Toxicology of Metals, 3rd ed.; Nordberg, G.F., Fowler, B.A., Nordberg, M., Friberg, L.T., Eds.; Academic Press: Burlington, NJ, USA, 2007; pp. 367–406. [Google Scholar] [CrossRef]
- Weerasundara, L.; Ok, Y.-S.; Bundschuh, J. Selective removal of arsenic in water: A critical review. Environ. Pollut. 2021, 268, 115668. [Google Scholar] [CrossRef]
- Dabrowiak, J.C. Metal Ion Imbalance in the Body. In Metals in Medicine; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2017; pp. 329–356. [Google Scholar] [CrossRef]
- Zhang, W.; Liu, M.; Li, C. Soil heavy metal contamination assessment in the Hun-Taizi River watershed, China. Sci. Rep. 2020, 10, 8730. [Google Scholar] [CrossRef]
- Bhattacharya, S.; Sharma, P.; Mitra, S.; Mallick, I.; Ghosh, A. Arsenic uptake and bioaccumulation in plants: A review on remediation and socio-economic perspective in Southeast Asia. Environ. Nanotechnol. Monit. Manag. 2021, 15, 100430. [Google Scholar] [CrossRef]
- Moens, M.; Branco, R.; Morais, P.V. Arsenic accumulation by a rhizosphere bacterial strain Ochrobactrum tritici reduces rice plant arsenic levels. World J. Microbiol. Biotechnol. 2020, 36, 23. [Google Scholar] [CrossRef]
- Hg, W. Available online: https://www.who.int/ipcs/assessment/public_health/mercury/en/ (accessed on 20 November 2022).
- Haseen, U.; Ahmad, H. Preconcentration and Determination of Trace Hg(II) Using a Cellulose Nanofiber Mat Functionalized with MoS2 Nanosheets. Ind. Eng. Chem. Res. 2020, 59, 3198–3204. [Google Scholar] [CrossRef]
- Basu, N.; Horvat, M.; Evers David, C.; Zastenskaya, I.; Weihe, P.; Tempowski, J. A State-of-the-Science Review of Mercury Biomarkers in Human Populations Worldwide between 2000 and 2018. Environ. Health Perspect. 2018, 126, 106001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Driscoll, C.T.; Mason, R.P.; Chan, H.M.; Jacob, D.J.; Pirrone, N. Mercury as a global pollutant: Sources, pathways, and effects. Environ. Sci. Technol. 2013, 47, 4967–4983. [Google Scholar] [CrossRef]
- Sioen, I.; De Henauw, S.; Van Camp, J.; Volatier, J.-L.; Leblanc, J.-C. Comparison of the nutritional–toxicological conflict related to seafood consumption in different regions worldwide. Regul. Toxicol. Pharmacol. 2009, 55, 219–228. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Yin, R.; Li, C.; Chen, D.; Grasby, S.E.; Li, T.; Ji, S.; Tian, H.; Peng, P.a. Global Hg cycle over Ediacaran–Cambrian transition and its implications for environmental and biological evolution. Earth Planet. Sci. Lett. 2022, 587, 117551. [Google Scholar] [CrossRef]
- Souza-Araujo, J.d.; Hussey, N.E.; Hauser-Davis, R.A.; Rosa, A.H.; Lima, M.d.O.; Giarrizzo, T. Human risk assessment of toxic elements (As, Cd, Hg, Pb) in marine fish from the Amazon. Chemosphere 2022, 301, 134575. [Google Scholar] [CrossRef]
- Environmental Protection Agency. Available online: https://www.epa.gov/ground-water-and-drinking-water/national-primary-drinking-water-regulations#Inorganic (accessed on 20 November 2022).
- Abdolmohammad-Zadeh, H.; Mohammad-Rezaei, R.; Salimi, A. Preconcentration of mercury(II) using a magnetite@carbon/dithizone nanocomposite, and its quantification by anodic stripping voltammetry. Mikrochim. Acta 2019, 187, 2. [Google Scholar] [CrossRef]
- Osterwalder, S.; Huang, J.H.; Shetaya, W.H.; Agnan, Y.; Frossard, A.; Frey, B.; Alewell, C.; Kretzschmar, R.; Biester, H.; Obrist, D. Mercury emission from industrially contaminated soils in relation to chemical, microbial, and meteorological factors. Environ. Pollut. 2019, 250, 944–952. [Google Scholar] [CrossRef]
- Abdollahi, N.; Akbar Razavi, S.A.; Morsali, A.; Hu, M.L. High capacity Hg(II) and Pb(II) removal using MOF-based nanocomposite: Cooperative effects of pore functionalization and surface-charge modulation. J. Hazard. Mater. 2020, 387, 121667. [Google Scholar] [CrossRef]
- Wang, K.; Chen, K.; Xiang, L.; Zeng, M.; Liu, Y.; Liu, Y. Relationship between Hg(II) adsorption property and functional group of different thioamide chelating resins. Sep. Purif. Technol. 2022, 292, 121044. [Google Scholar] [CrossRef]
- Souza, J.P.; Cerveira, C.; Miceli, T.M.; Moraes, D.P.; Mesko, M.F.; Pereira, J.S.F. Evaluation of sample preparation methods for cereal digestion for subsequent As, Cd, Hg and Pb determination by AAS-based techniques. Food Chem. 2020, 321, 126715. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, J.; Wen, T.; Liu, X.; Wang, Y.; Yang, H.; Sun, J.; Feng, J.; Dong, S.; Sun, J. Highly effective remediation of Pb(II) and Hg(II) contaminated wastewater and soil by flower-like magnetic MoS2 nanohybrid. Sci. Total Environ. 2020, 699, 134341. [Google Scholar] [CrossRef] [PubMed]
- Qian, X.; Wang, R.; Zhang, Q.; Sun, Y.; Li, W.; Zhang, L.; Qu, B. A delicate method for the synthesis of high-efficiency Hg (II) The adsorbents based on biochar from corn straw biogas residue. J. Clean. Prod. 2022, 355, 131819. [Google Scholar] [CrossRef]
- Ahmad, H.; Liu, C. Ultra-thin graphene oxide membrane deposited on highly porous anodized aluminum oxide surface for heavy metal ions preconcentration. J. Hazard. Mater. 2021, 415, 125661. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, H.; Ahmad Khan, R.; Heun Koo, B.; Alsalme, A. Cellulose Nanofibers@ZrO2 membrane for the separation of Hg(II) from aqueous media. J. Phys. Chem. Solids 2022, 168, 110812. [Google Scholar] [CrossRef]
- Lei, T.; Jiang, X.; Zhou, Y.; Chen, H.; Bai, H.; Wang, S.; Yang, X. A multifunctional adsorbent based on 2,3-dimercaptosuccinic acid/dopamine-modified magnetic iron oxide nanoparticles for the removal of heavy-metal ions. J. Colloid Interface Sci. 2023, 636, 153–166. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.; Tian, C.; Yang, T.; Fu, J.; Xu, H.; Wang, Y.; Lin, Z. A MOF-based trap with strong affinity toward low-concentration heavy metal ions. Sep. Purif. Technol. 2022, 301, 121946. [Google Scholar] [CrossRef]
- Venkateswara Raju, C.; Hwan Cho, C.; Mohana Rani, G.; Manju, V.; Umapathi, R.; Suk Huh, Y.; Pil Park, J. Emerging insights into the use of carbon-based nanomaterials for the electrochemical detection of heavy metal ions. Coord. Chem. Rev. 2023, 476, 214920. [Google Scholar] [CrossRef]
- Bharath, G.; Hai, A.; Rambabu, K.; Ahmed, F.; Haidyrah, A.S.; Ahmad, N.; Hasan, S.W.; Banat, F. Hybrid capacitive deionization of NaCl and toxic heavy metal ions using faradic electrodes of silver nanospheres decorated pomegranate peel-derived activated carbon. Environ. Res. 2021, 197, 111110. [Google Scholar] [CrossRef]
- Ahmad, H.; Alharbi, W.; BinSharfan, I.I.; Khan, R.A.; Alsalme, A. Aminophosphonic Acid Functionalized Cellulose Nanofibers for Efficient Extraction of Trace Metal Ions. Polymers 2020, 12, 2370. [Google Scholar] [CrossRef]
- Ahmad, H.; Cai, C.; Liu, C. Separation and preconcentration of Pb(II) and Cd(II) from aqueous samples using hyperbranched polyethyleneimine-functionalized graphene oxide-immobilized polystyrene spherical adsorbents. Microchem. J. 2019, 145, 833–842. [Google Scholar] [CrossRef]
- Mehdinia, A.; Salamat, M.; Jabbari, A. Amino-modified Graphene Oxide/Fe3O4 for Dispersive Solid-Phase Extraction of Cadmium Ions in Rice, Lentil, and Water Samples. Anal. Sci. 2020, 36, 317–322. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sitko, R.; Turek, E.; Zawisza, B.; Malicka, E.; Talik, E.; Heimann, J.; Gagor, A.; Feist, B.; Wrzalik, R. Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans. 2013, 42, 5682–5689. [Google Scholar] [CrossRef]
- Huang, T.; Tang, X.; Luo, K.; Wu, Y.; Hou, X.; Tang, S. An overview of graphene-based nanoadsorbent materials for environmental contaminants detection. TrAC Trends Anal. Chem. 2021, 139, 116255. [Google Scholar] [CrossRef]
- Manousi, N.; Rosenberg, E.; Deliyanni, E.A.; Zachariadis, G.A. Sample Preparation Using Graphene-Oxide-Derived Nanomaterials for the Extraction of Metals. Molecules 2020, 25, 2411. [Google Scholar] [CrossRef]
- Dreyer, D.R.; Park, S.; Bielawski, C.W.; Ruoff, R.S. The chemistry of graphene oxide. Chem. Soc. Rev. 2010, 39, 228–240. [Google Scholar] [CrossRef]
- Peng, W.; Li, H.; Liu, Y.; Song, S. A review on heavy metal ions adsorption from water by graphene oxide and its composites. J. Mol. Liq. 2017, 230, 496–504. [Google Scholar] [CrossRef]
- Li, W.; Zhang, J.; Zhu, W.; Qin, P.; Zhou, Q.; Lu, M.; Zhang, X.; Zhao, W.; Zhang, S.; Cai, Z. Facile preparation of reduced graphene oxide/ZnFe2O4 nanocomposite as magnetic sorbents for enrichment of estrogens. Talanta 2020, 208, 120440. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Zhang, J.; Li, W.; Yang, Y.; Qin, P.; Zhang, X.; Lu, M. Magnetic graphene oxide nanocomposites as the adsorbent for extraction and pre-concentration of azo dyes in different food samples followed by high-performance liquid chromatography analysis. Food Addit. Contam. Part A 2018, 35, 2099–2110. [Google Scholar] [CrossRef]
- Chen, M.L.; Sun, Y.; Huo, C.B.; Liu, C.; Wang, J.H. Akaganeite decorated graphene oxide composite for arsenic adsorption/removal and its proconcentration at ultra-trace level. Chemosphere 2015, 130, 52–58. [Google Scholar] [CrossRef]
- Wu, L.-K.; Wu, H.; Zhang, H.-B.; Cao, H.-Z.; Hou, G.-Y.; Tang, Y.-P.; Zheng, G.-Q. Graphene oxide/CuFe2O4 foam as an efficient absorbent for arsenic removal from water. Chem. Eng. J. 2018, 334, 1808–1819. [Google Scholar] [CrossRef]
- Amiri, M.; Shabani, A.M.H.; Dadfarnia, S.; Sadjadi, S. Simultaneous Functionalization and Reduction of Magnetic Graphene Oxide by L-Histidine and its Application for Magnetic Separation/Preconcentration of Antioxidant Trace Elements. Biol. Trace Elem. Res. 2019, 190, 262–272. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.; Yilmaz, E.; Sevinc, B.; Sahmetlioglu, E.; Shah, J.; Jan, M.R.; Soylak, M. Preparation and characterization of magnetic allylamine modified graphene oxide-poly(vinyl acetate-co-divinylbenzene) nanocomposite for vortex assisted magnetic solid phase extraction of some metal ions. Talanta 2016, 146, 130–137. [Google Scholar] [CrossRef]
- Hummers, W.S.; Offeman, R.E. Preparation of Graphitic Oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
- Infrared and Raman Characteristic Group Frequencies: 3rd ed by George Socrates (The University of West London, Middlesex, U.K.); J. Wiley and Sons: Chichester, UK, 2001; ISBN 0-471-85298-8.
- Long, G.L.; Winefordner, J.D. Limit of Detection A Closer Look at the IUPAC Definition. Anal. Chem. 1983, 55, 712A–724A. [Google Scholar] [CrossRef]
- Tavakkoli, N.; Habibollahi, S.; Amini Tehrani, S. Separation and preconcentration of Arsenic(III) ions from aqueous media by adsorption on MWCNTs. Arab. J. Chem. 2017, 10, S3682–S3686. [Google Scholar] [CrossRef] [Green Version]
- Song, Y.; Guo, F.; Zeng, P.; Liu, J.; Wang, Y.; Cheng, H. Simultaneous measurements of Cr, Cd, Hg and Pb species in ng L−1 levels by interfacing high performance liquid chromatography and inductively coupled plasma mass spectrometry. Anal. Chim. Acta 2022, 1212, 339935. [Google Scholar] [CrossRef]
Elements | GO Nanosheet (%) | GO−SH Nanosheet (%) |
---|---|---|
Carbon | 62.446 | 65.687 |
Hydrogen | 4.646 | 5.216 |
Oxygen | 32.908 | 26.135 |
Sulfur | - | 2.962 |
Parameters | GO Nanosheet | GO−SH Nanosheet |
---|---|---|
Surface area (m2/g) | 772.494 | 1351.371 |
Pore volume (cc/g) | 1.288 | 1.214 |
Pore size (nm) | 1.458 (microporous) | 0.866 (microporous) |
Foreign Ions | Added as | Amount Added (µg L−1) | % Recovery | |
---|---|---|---|---|
As(III) RSD) | Hg(II) (RSD) | |||
Cl− | NaCl | 7.5 × 103 | 99.5 (3.82) | 97.0 (4.20) |
Br− | NaBr | 8.0 × 103 | 99.0 (2.89) | 98.6 (3.85) |
PO42− | Na2HPO4 | 5.4 × 103 | 95.6 (4.10) | 98.5 (3.65) |
NO3− | NaNO3 | 7.5 × 103 | 100.0 (2.87) | 99.8 (3.30) |
CO32− | Na2CO3 | 5.8 × 102 | 100.0 (3.18) | 99.4 (2.97) |
SO42− | Na2SO4 | 5.5 × 102 | 99.5 (3.88) | 99.2 (2.95) |
Na+ | NaCl | 7.5 × 103 | 99.6 (3.85) | 99.3 (2.52) |
K+ | KCl | 6.0 × 103 | 99.2 (3.85) | 99.5 (2.96) |
Ca2+ | CaCl2 | 3.0 × 103 | 97.5 (4.02) | 99.2 (3.45) |
Mg2+ | MgCl2 | 3.0 × 103 | 98.7 (3.95) | 98.0 (3.68) |
Zn2+ | ZnCl2 | 2.5 × 102 | 98.6 (4.04) | 99.2 (3.15) |
Cd2+ | CdCl2 | 2.0 × 102 | 98.6 (3.98) | 99.2 (3.81) |
Ni2+ | Ni(NO3)2 | 2.4 × 102 | 96.8 (3.87) | 98.4 (3.78) |
Cu2+ | Cu(NO3)2 | 2.0 × 102 | 98.3 (4.20) | 98.7 (3.68) |
Co2+ | Co(NO3)2 | 3.0 × 102 | 97.8 (4.42) | 98.6 (4.26) |
Humic acid | - | 35 | 95.5 (3.88) | 96.2 (3.87) |
Fulvic acid | - | 35 | 96.0 (2.98) | 95.8 (3.66) |
Parameters | As(III) | Hg(II) |
---|---|---|
Calibration range | 1–1000 µg L−1 | 1–1000 µg L−1 |
Regression equation | A = 13.9562 XAs + 0.0547 | A = 107.4142 XHg + 4.0685 |
Coefficient of variation | 0.9989 | 0.9998 |
LOD (µg L−1) | 0.04 ± 0.01 | 0.04 ± 0.01 |
LOQ (µg L−1) | 0.20 ± 0.02 | 0.20 ± 0.02 |
Precision (RSD) | 3.894 | 4.203 |
Identity | Spiked Value (µg) | Value Found (µg L−1) ± Standard Deviation (% Recovery of Added Amount; RSD) (Values of t-Test) | |
---|---|---|---|
As(III) | Hg(II) | ||
Tap water | 0 | Not detected | Not detected |
5 | 5.01 ± 0.05 (100.1; 2.37) (1.15) | 5.05 ± 0.12 (101; 4.03) (1.09) | |
Ground water | 0 | 1.50 ± 0.08 | 2.32 ± 0.21 |
5 | 6.56 ± 0.20 (101.2; 2.35) (1.52) | 7.82 ± 0.32 (100; 1.88) (1.82) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsalme, A.; Ahmad, H.; Khan, R.A.; Koo, B.H.; Alharbi, G.M.; Alhadlaq, S.I. Preconcentration and Solid Phase Extraction of Trace Metal Ions by Chemically Modified Graphene Oxide Nanoconstructs. Water 2023, 15, 1121. https://doi.org/10.3390/w15061121
Alsalme A, Ahmad H, Khan RA, Koo BH, Alharbi GM, Alhadlaq SI. Preconcentration and Solid Phase Extraction of Trace Metal Ions by Chemically Modified Graphene Oxide Nanoconstructs. Water. 2023; 15(6):1121. https://doi.org/10.3390/w15061121
Chicago/Turabian StyleAlsalme, Ali, Hilal Ahmad, Rais Ahmad Khan, Bon Heun Koo, Ghadah M. Alharbi, and Shahad I. Alhadlaq. 2023. "Preconcentration and Solid Phase Extraction of Trace Metal Ions by Chemically Modified Graphene Oxide Nanoconstructs" Water 15, no. 6: 1121. https://doi.org/10.3390/w15061121
APA StyleAlsalme, A., Ahmad, H., Khan, R. A., Koo, B. H., Alharbi, G. M., & Alhadlaq, S. I. (2023). Preconcentration and Solid Phase Extraction of Trace Metal Ions by Chemically Modified Graphene Oxide Nanoconstructs. Water, 15(6), 1121. https://doi.org/10.3390/w15061121