Development of Aquatic Index of Biotic Integrity and Its Driving Factors in the Diannong River, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of the Study Area and Sampling Site Placement
2.2. Sample Collection and Measurement
2.2.1. Water Sample Collection and Measurement
2.2.2. Plankton Sample Collection and Identification
2.2.3. Microorganism Collection and Identification
2.3. Selection of Reference Points
2.3.1. Water Quality Scoring
2.3.2. Habitat Composite Index
2.4. IBI Development and Water Ecological Health Evaluation
2.5. Statistical Analysis
3. Results
3.1. Characteristics of Aquatic Species
3.2. Results of Water Quality Parameters Values and Correlation Analysis
3.3. Results of Reference Point Selection
3.4. Development of Aquatic IBI
3.4.1. P-IBI
3.4.2. Z-IBI
3.4.3. M-IBI
3.5. Evaluation of Water Ecology Health Based on IBI
3.5.1. P-IBI Evaluation
3.5.2. Z-IBI Evaluation
3.5.3. M-IBI Evaluation
3.6. Relationship between Aquatic IBI and Water Body Physicochemical Factors
3.6.1. Stepwise Regression Analysis of Aquatic IBI and Water Environment Factors
3.6.2. Path Coefficient Analysis of Aquatic IBI and Water Environment Factors
4. Discussion
4.1. Development of Aquatic IBI in the Diannong River
4.2. Water Ecological Health Evaluation Based on IBI of Different Aquatic Organisms
4.3. Relationship between Aquatic IBI and Water Environmental Factors
4.4. Application and Impact of This Study
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karr, J.R. Assessment of biotic integrity using fish communities. J. Fish. 1981, 6, 21–27. [Google Scholar] [CrossRef]
- Zhang, Y.H.; Qv, X.D.; Wang, S.M.; Zhu, Y.; Liu, H.B.; Zhang, H.P.; Zhang, M.; Sun, S.J. River health assessment of Hun River Basin based on a benthic index of biological integrity. J. Resour. Environ. Yangtze Basin 2020, 29, 1374–1386. [Google Scholar]
- Cai, K.; Qin, C.Y.; Lee, J.Y.; Zhang, Y.; Niu, Z.C.; Lee, X.W. Preliminary study on the phytoplanktonic index of biotic integrity (P-IBI) assessment for lake ecosystem health: A case of Taihu Lake in Winter, 2012. J. Acta Ecol. Sin. 2016, 36, 1431–1441. [Google Scholar]
- Kruk, C.; Huszar, V.L.; Peeters, E.T.; Bonilla, S.; Costa, L.; Lürling, M.; Reynolds, C.S.; Scheffer, M. A Morpho-logical Classification Capturing Functional Variation in Phytoplankton. J. Freshw. Biol. 2010, 55, 614–627. [Google Scholar] [CrossRef]
- Zhang, Z.S.; Mo, Z.C.; Huang, H.M. Monitoring and evaluation of water pollution in the Tumen River using algae. J. Acta Hydrobiol. Sin. 1983, 97–104. [Google Scholar]
- Huang, W.Y.; Wu, T.G.; Shu, J.H. Water Environment Problems of Major Lakes and Reservoirs in China and Suggestions for Prevention and Control. J. Lake Sci. 1998, 83–90. [Google Scholar]
- Sun, G.; Lang, Y.; Fang, Y. Characteristics of zooplankton community in the aquatic ecosystem of Nanhu Lake of Changchun. J. Jilin Univ. Sci. Ed. 2006, 44, 663–667. [Google Scholar]
- Sun, Y.K.; Yang, G.; Lee, C.L.; Wang, N. Establishment of zooplankton biotic integrity index in Jiaozhou Bay. J. Mar. Sci. 2015, 39, 1–7. [Google Scholar]
- Su, Y.; Xu, Y.X.; An, W.H.; Wang, Y.L.; He, Z.C.; Lou, Y.W.; Shen, A.L. Assessment of Ecosystem Health of an Urban River Based on the Microbe Index of Biotic Integrity (M-IBI). J. Environ. Sci. 2019, 40, 1270–1279. [Google Scholar] [CrossRef]
- Liao, J.Q.; Huang, Y. Research progress on using the index of biological integrity to assess aquatic ecosystem health. J. Chin. J. Appl. Ecol. 2013, 24, 295–302. [Google Scholar]
- Dong, J.; Lu, S.Q.; Wu, L.J.; Wang, Z.K.; Wang, H.J.; Xu, F. Evaluation of urban river ecosystem health in Beijing based on the microbial index of biotic integrity. J. Environ. Eng. 2022, 12, 1411–1419. [Google Scholar]
- Zhang, W.L.; Yang, G.; Wang, H.L.; Li, Y.; Niu, L.H.; Zhang, H.J.; Wang, L.F. Predicting bend-induced heterogeneity in sediment microbial communities by integrating bacteria-based index of biotic integrity and supervised learning algorithms. J. Environ. Manag. 2022, 304, 114267. [Google Scholar] [CrossRef] [PubMed]
- Zhu, W.T.; Liu, Y.Y.; Wang, S.T.; Yu, M.; Qian, W. Development of the microbial community-based index of biotic integrity to evaluate the wetland ecosystem health in Suzhou, China. J. Environ. Monit. Assess. 2019, 191, 377. [Google Scholar] [CrossRef] [PubMed]
- An, X.L.; Chen, T.T.; Zhao, H.; Zhang, Y.C.; Hou, Y.W.; Cai, C. Assessment of Ecosystem Health of Baogang Tailings Groundwater Based on Microbiome Index of Biotic Integrity (M-IBI). J. Environ. Sci. 2016, 37, 3413–3422. [Google Scholar]
- HJ 494-2009; Water Quality Sampling Technical Guidance. Industry Standards-Environmental Protection: Beijing, China, 2009.
- HJ 493-2009; Water Quality Sample Preservation and Management Technical Provisions. Industry Standards-Environmental Protection: Beijing, China, 2009.
- HJ 495-2009; Water Quality Sampling Program Design Technical Provisions. Industry Standards-Environmental Protection: Beijing, China, 2009.
- Tu, Q.Y. Specifications for Lake Eutrophication Survey, 2nd ed.; China Environmental Science Press: Beijing, China, 1990. [Google Scholar]
- SL 167-2014; Specifications for Reservoir Fisheries Resources Survey. Industry Standards-Water: Beijing, China, 2014.
- DB11/T 1721-2020; Technical Specifications for Aquatic Life Survey. Recommended Local Standards: Beijing, China, 2020.
- Han, M.S.; Shu, Y.F. Atlas of Freshwater Organisms in China; Ocean Press: Melbourne, Australia, 1995. [Google Scholar]
- Wang, J.J. Journal of Freshwater Rotifers in China; Science Press: Beijing, China, 1961. [Google Scholar]
- GB 3838-2002; Surface Water Environmental Quality Standards. National Standards: Beijing, China, 2002.
- Zheng, B.H.; Zhang, Y.; Lee, Y.B. Study of indicators and methods for river habitat assessment of Liao River Basin. J. Acta Sci. Circumstantiae 2007, 27, 928–936. [Google Scholar] [CrossRef]
- Zheng, Y.W.; Yang, T.; Wang, N.; Wan, X.H.; Hu, C.T.; Sun, L.K.; Yan, X.R. Quantifying hydrological-ecological response relationships based on zooplankton index of biotic integrity and comprehensive habitat quality index—A case study of typical rivers in Xi’an, China. Sci. Total Environ. 2022, 858, 159925. [Google Scholar] [CrossRef]
- Lee, B.T.; Liu, L.; Zhu, Y.; Chen, X. Assessment of river health by using the phytoplanktonic index of biotic integrity. J. Yellow River 2020, 42, 73–78. [Google Scholar]
- Ma, T.T.; Fan, Y.M.; Lee, K.Y.; Hu, Z.J.; Wu, Z.S. Ecological health assessment of main estuaries of lake Taihu based on phytoplankton index of biotic integrity. J. Ecol. Rural Environ. 2021, 37, 501–508. [Google Scholar] [CrossRef]
- Chen, Q.; Chai, Y.H.; Wang, T.E.; Sun, X.; Yu, H.X.; Chai, F.Y.; Lin, H. Evaluation of water ecological status of Zhalong Wetland based on zooplankton integrity. J. Environ. Monit. China 2022, 38, 87–95. [Google Scholar] [CrossRef]
- Chen, Y.F.; Yan, H.; Xia, T.; Yao, C.Y.; Wang, H.; Qiu, Y.; Liu, L. Ecosystem assessment of Taihu Lake Basin based on zooplankton index of biological integrity. J. Nanjing Tech. Univ. Nat. Sci. Ed. 2022, 44, 335–343+356. [Google Scholar]
- Zhu, W.T.; Qian, W.; Yu, M.; Xuan, X.Z. Health evaluation of wetlands in Suzhou City based on microbiome index of biotic integrity. J. Res. Environ. Sci. 2019, 32, 423–430. [Google Scholar] [CrossRef]
- Huang, Y.; Shu, Z.Y. Bacterioplankton index of biotic integrity (BP-IBI): An approach for assessing river ecosystem health in Dianchi Watershed. J. Environ. Sci. 2013, 34, 3010–3018. [Google Scholar] [CrossRef]
- Deng, J.M.; Cai, Y.J.; Chen, Y.W.; Zhang, L. Structure of phytoplankton community and its relationship with environmental factors in Lake Honghu. J. Lake Sci. 2010, 22, 70–78. [Google Scholar]
- Li, Z.X.; Ma, C.; Sun, Y.N.; Lu, X.X.; Fan, Y.W. Ecological health evaluation of rivers based on phytoplankton biological integrity index and water quality index on the impact of anthropogenic pollution: A case of Ashi River Basin. Front. Microbiol. 2022, 13. [Google Scholar] [CrossRef] [PubMed]
- Buhungu, S.; Sibomana, C.; Adjahouinou, D.C.; Ntakimazi, G.; Bonou, C.A.; Montchowui, E. Assessment of the ecological status of the Kinyankonge River (Burundi), using a Biotic Integrity Index of zooplankton (BII-zooplankton). Afr. J. Aquat. Sci. 2020, 45, 442–451. [Google Scholar] [CrossRef]
- Houssou, A.M.; Adjahouinou, D.C.; Bonou, C.A.; Montchowui, E. Plankton index of biotic integrity (P-IBI) for assessing ecosystem health within the Ouémé River basin, Republic of Benin. Afr. J. Aquat. Sci. 2020, 45, 452–465. [Google Scholar] [CrossRef]
- Zhu, H.; Hu, X.D.; Wu, P.P.; Chen, W.M.; Wu, S.S.; Li, Z.Q.; Zhu, L.; Xi, Y.L.; Huang, R. Development and testing of the phytoplankton biological integrity index (P-IBI) in dry and wet seasons for Lake Gehu. J. Ecol. Indic. 2021, 129, 107882. [Google Scholar] [CrossRef]
- Li, F.Q.; Cai, Q.H.; Ye, L. Developing a benthic Index of biological integrity and some relationships to environmental factors in the Subtropical Xiangxi River, China. Int. Rev. Hydrobiol. 2010, 95, 171–189. [Google Scholar] [CrossRef]
- Casatti, L.; Ferreira, C.P.; Langeani, F. A fish-based biotic integrity index for assessment of lowland streams in southeastern Brazil. Hydrobiologia 2009, 623, 173–189. [Google Scholar] [CrossRef]
- Detenbeck, N.E.; Cincotta, D.A. Comparability of a regional and state survey: Effects on fish IBI assessment for West Virginia, U.S.A. Hydrobiologia 2008, 603, 279–300. [Google Scholar] [CrossRef]
- Blocksom, K.A.; Kurtenbach, J.P.; Klemm, D.J.; Fulk, F.A.; Cormier, S.M. Development and evaluation of the Lake Macroinvertebrate Integrity Index (LMII) for New Jersey lakes and reservoirs. J. Environ. Monit. Assess. 2002, 77, 311–333. [Google Scholar] [CrossRef] [PubMed]
- Maxted, J.R.; Barbour, M.T.; Gerritsen, J.; Poretti, V.; Primrose, N.; Silvia, A.; Penrose, D.; Renfrow, R. Assessment framework formid—Atlantic coastal plain streams using benthic macroinvertebrates. J. North Am. Benthol. Soc. 2000, 19, 128–144. [Google Scholar] [CrossRef]
- Ruaro, R.; Gubiani, D.A. A scientometric assessment of 30 years of the Index of Biotic Integrity in aquatic ecosystems: Applications and main flaws. Ecol. Indic. 2013, 29, 105–110. [Google Scholar] [CrossRef]
- Zhao, R.Z.; Zhao, H.X.; Qiu, X.C. Multivariate analysis of the relationship between zooplankton and water environment factors in the mainstream of the Heihe River. J. Hydroecology 2020, 41, 81–88. [Google Scholar] [CrossRef]
- He, S.J.; Gou, J.M.; Yin, J.; Qiu, X.C.; Zhao, R.Z. Structure of zooplankton community in Ningxia section of the Yellow River main stream and its relationship with water environment factors. J. Water Resour. Power 2022, 40, 66–69+18. [Google Scholar] [CrossRef]
- O’Connor Reilly, F.; McMeans Bailey, C.; Rooney Neil Guzzo Matthew, M.; Young Joelle, D.; McCann Kevin, S. Species portfolio effects dominate seasonal zooplankton stabilization within a large temperate lake. Ecology 2023, 104, e3889. [Google Scholar]
- Niu, L.; Li, Y.; Wang, P.F.; Zhang, W.; Li, J.; Wu, H. Development of a microbial community-based index of biotic integrity (MC-IBI) for the assessment of the ecological status of rivers in the Taihu Basin, China. Ecol. Indicat. 2018, 85, 204–213. [Google Scholar] [CrossRef]
- Devarajan, N. Occurrence of antibiotic resistance genes and bacterial markers in a tropical river receiving hospital and urban wastewaters. PLoS ONE 2016, 11, e0149211. [Google Scholar] [CrossRef]
- He, C.F. Study on the Health and Biological Integrity Mechanism of Lake Ecosystem Based on M-IBI and P-IBI; North China Electric Power University: Beijing, China, 2018. [Google Scholar]
- Fang, J.H.; Dong, J.Y.; Li, C.C.; Chen, H.; Wang, L.F.; Lv, T.S.; He, H.; Liu, J. Response of microbial community composition and function to emergent plant rhizosphere of a constructed wetland in northern China. Appl. Soil Ecol. 2021, 168, 104141. [Google Scholar] [CrossRef]
- Zhang, L.; Xu, H. Evaluation of the health status of the Diannong River, an artificial river in Ningxia. J. Hydroecol. 2020, 41, 16–22. [Google Scholar]
- Brettum, P. Changes in the volume and composition of phytoplankton after acidification of a humic lake. J. Environ. Int. 1996, 22, 619–628. [Google Scholar] [CrossRef]
- Yang, S.Q.; Zu, T.X.; Wang, H.B.; Wang, L.J.; Chen, T.R. Relationship between the structure of phytoplankton community and environmental factors in the Zhangye section of Heihe River. J. Lake Sci. 2019, 31, 159–170. [Google Scholar]
- Lin, Q.; You, W.H.; Xu, F.J.; Yu, Q.J.; Yu, H.G. Zooplankton community structure and its relationship with environmental factors in Dishui Lake. J. Acta Ecol. Sin. 2014, 34, 6918–6929. [Google Scholar]
- Zhang, Y.; Bi, Z.L.; Zhang, X.; Song, J.X.; Lee, N. Effects of land-use types on nitrate pollution of surface water in Guanzhong area in the Weihe River basin. J. Acta Ecol. Sin. 2019, 39, 4319–4327. [Google Scholar]
- Bai, H.F.; Wang, Y.R.; Song, J.X.; Xu, W.J.; Wu, Q.; Zhang, Y. Spatio-temporal characteristics and driving factors of zooplankton community structure in the Shaanxi section of Weihe River, China. J. Chin. J. Ecol. 2022, 41, 1602–1610. [Google Scholar] [CrossRef]
- Nilssen, J.P. Tropical lake-functional ecology and future development: The need for a process-orientated approach. Hydrobiologia 1984, 113, 231–242. [Google Scholar] [CrossRef]
- Chai, Y.; Peng, T.; Guo, K.; Lee, X.S.; He, Y.F. Correlation analysis between phytoplankton community structure and environmental factors in Haizi Lake in spring. J. Hydroecol. 2014, 35, 56–62. [Google Scholar]
- Zhu, X.; Xu, Z.P.; Luo, Y.D.; Peng, F.Q.; Pang, Q.Q.; Xie, L.; Ma, Y.K.; Wang, L.M. effect of different concentrations of the overlying water on the release of fluoride and microbial communities of lake sediments. J. Lake Sci. 2022, 34, 843–854. [Google Scholar]
- Lv, M.J. Response of Planktonic Bacterial Community Structure to Different Water Environments in Dianchi Basin; Peking University: Beijing, China, 2003. [Google Scholar]
- Wang, Q.H.; Hao, Z.; Ding, R.R.; Li, H.B.; Tang, X.M.; Chen, F.Z. Host Dependence of Zooplankton-Associated Microbes and Their Ecological Implications in Freshwater Lakes. Water 2021, 13, 2949. [Google Scholar] [CrossRef]
- Ren, W.; Zhong, Y.; Meligrana, J.; Anderson, B.; Watt, W.E.; Chen, J.; Leung, H.L. Urbanization, land use, and water quality in Shanghai. J. Environ. Int. 2003, 29, 649–659. [Google Scholar] [CrossRef]
- Shi, Z.Y.; Han, D.Y.; Gao, C.Y.; Chen, J.H.; Wu, J.H.; Wang, X.F. Effects of Survey Data Uncertainty on the Results of Fish-Index of Biological Integrityin Waters near Chongming Island. J. Shanghai Ocean. Univ. 2022, pp. 1–12. Available online: http://kns.cnki.net/kcms/detail/31.2024.S.20221020.1011.002.html (accessed on 4 March 2023).
- Wang, L.L.; Wang, X.M.; Yang, W.B.; Chen, Y.X.; Ding, F.; Li, D.H.; Wang, Y.X. River Ecosystem Health Evaluation of Juma River in Beijing Based on Fish-Index of Biotic Integrity. Asian J. Ecotoxicol. 2021, 16, 160–169. [Google Scholar]
- Li, H.Q.; Luo, Z.L.; Sun, G.; Shi, N.N.; Xiao, N.W. Application of F-IBI to evaluate the river health of the North Canal. J. Hydroecol. 2023, 44, 34–40. [Google Scholar] [CrossRef]
- Huang, B.B.; Li, G.J.; Feng, M.C.; Chen, Y.W.; Xu, J. Health assessment of Ganjiang River mainstream based on B-IBI. J. Water Resour. Water Eng. 2020, 31, 30–36+41. [Google Scholar]
- Liu, Y.Y.; Ayi, Q.L.; Zhang, S.R.; Wu, X.R.; Wan, B.N.; Zhang, X.P.; Zeng, B. Comparative study on the suitability of periphytic algae and phytoplankton in river health assessment. J. Acta Ecol. Sin. 2020, 40, 3833–3843. [Google Scholar]
- Liu, H.Y.; Song, G.F.; Wang, H.R.; Li, M.Y.; Li, D.; Lv, B.B. River health assessment of Qingshui River in Ningxia city based on the Benthic Index of Biological Integrity. J. Environ. Prot. Sci. 2023, 10, 1–10. [Google Scholar] [CrossRef]
- Wang, S.; Lu, X.B.; Jiao, L. Health evaluation of the main stream of Lazigou in Gansu based on macrobenthic IBI. J. Gansu Water Resour. Hydropower Technol. 2022, 58, 11–15. [Google Scholar] [CrossRef]
- Xu, Z.X.; Liu, L.F. Assessment on the Aquatic Ecosystem Health of the Weihe River Basin Based on Periphyton. J. Yellow River. 2020, 42, 123–129. [Google Scholar]
Parameter Types | Number | Biological Parameters | Response to Interference |
---|---|---|---|
Community structure | M1 | Total number of phytoplankton taxonomic units | − |
M2 | Number of Cyanobacterial taxonomic units | − | |
M3 | Number of Dinoflagellate taxonomic units | − | |
M4 | Number of Cryptophyte taxonomic units | + | |
M5 | Number of Golden Algae taxonomic units | − | |
M6 | Number of Yellow Algae taxonomic units | − | |
M7 | Number of Diatom algae taxonomic units | − | |
M8 | Number of Nudibranch taxonomic units | + | |
M9 | Number of Green Algae taxonomic units | + | |
M10 | Number of Cyanobacterial taxonomic units % | − | |
M11 | Number of Dinoflagellate taxonomic units % | − | |
M12 | Number of Cryptophyte taxonomic units % | + | |
M13 | Number of Golden Algae taxonomic units % | − | |
M14 | Number of Yellow Algae taxonomic units % | − | |
M15 | Number of Diatom algae taxonomic units % | − | |
M16 | Number of Nudibranch taxonomic units % | + | |
M17 | Number of Green Algae taxonomic units % | + | |
Community quantity | M18 | Relative abundance of Cyanobacterial | − |
M19 | Relative abundance of Dinoflagellate | − | |
M20 | Relative abundance of Cryptophyte | + | |
M21 | Relative abundance of Golden Algae | − | |
M22 | Relative abundance of Yellow Algae | − | |
M23 | Relative abundance of Diatom | − | |
M24 | Relative abundance of Nudibranch | + | |
M25 | Relative abundance of Green Algae | + | |
M26 | Relative abundance of the top 3 dominant species | − | |
Community function | M27 | Relative abundance of edible algae | − |
M28 | Relative abundance of inedible algae | + | |
M29 | Relative abundance of algal blooms | + | |
M30 | Relative abundance of toxic-producing algae | + | |
Tolerant taxa | M31 | Relative abundance of stain-resistant species | − |
M32 | Relative abundance of sensitive species | − | |
Diversity index | M33 | Shannon-winner index | + |
M34 | Marglef index | + | |
M35 | Pielou index | + | |
M36 | Simpson index | + |
Parameter Types | Number | Biological Parameters | Response to Interference |
---|---|---|---|
Community structure | M37 | Total number of zooplankton taxonomic units | + |
M38 | Number of Protozoan taxonomic units | + | |
M39 | Number of Rotifer taxonomic units | + | |
M40 | Number of Cladoceran taxonomic units | − | |
M41 | Number of Copepods taxonomic units | + | |
Community quantity | M42 | Relative abundance of Protozoan | + |
M43 | Relative abundance of Rotifer | + | |
M44 | Relative abundance of Cladoceran | − | |
M45 | Relative abundance of Copepods | + | |
M46 | Protozoan biomass % | − | |
M47 | Rotifer biomass % | + | |
M48 | Cladoceran biomass % | − | |
M49 | Copepods biomass % | − | |
M50 | Relative abundance of the top 3 dominant species | − | |
Diversity index | M51 | Shannon-winner index | − |
M52 | Marglef index | + | |
M53 | Pielou index | − | |
M54 | Simpson index | + | |
Nutritional structure | M55 | Relative abundance of predators | − |
M56 | Relative abundance of filter-feeders | − |
Parameter Types | Number | Biological Parameters | Responses to Interference |
---|---|---|---|
Community structure | M57 | Number of microbial taxonomic units | + |
M58 | OTUs | + | |
M59 | Observed species | + | |
Community quantity | M60 | Relative abundance of Chloroflexi | + |
M61 | Relative abundance of Desulfobacterota | + | |
M62 | Relative abundance of Cyanobacteria | + | |
M63 | Relative abundance of Bdellovibrionota | + | |
M64 | Relative abundance of Campylobacterota | + | |
M65 | Relative abundance of Proteobacteria | − | |
M66 | Relative abundance of highest dominant taxonomic units | − | |
M67 | Relative abundance of the top 2 dominant taxonomic units | − | |
M68 | Relative abundance of the top 3 dominant taxonomic units | − | |
M69 | Relative abundance of the top 4 dominant taxonomic units | − | |
M70 | Relative abundance of the top 5 dominant taxonomic units | − | |
Tolerant taxa | M71 | relative abundance of NH3-N tolerant genus | + |
M72 | Relative abundance of NH3-N intermediate genus | − | |
M73 | Relative abundance of NH3-N sensitive genus | − | |
M74 | Relative abundance of TN-tolerant genus | − | |
M75 | Relative abundance of TN intermediate genus | + | |
M76 | Relative abundance of TN-sensitive genus | + | |
M77 | Relative abundance of high-temperature tolerant genus | − | |
M78 | Relative abundance of high-temperature intermediate genus | − | |
M79 | Relative abundance of high-temperature sensitive genus | + | |
M80 | Relative abundance of pollution-tolerant genus | + | |
M81 | Relative abundance of pollution intermediate genus | + | |
M82 | Relative abundance of pollution-sensitive genus | − | |
Diversity index | M83 | Chao1 index | + |
M84 | Shannon-winner index | + | |
M85 | Simpson index | + | |
M86 | Ace index | + | |
M87 | PD-whole-tree index | + | |
M88 | Goods-coverage index | + |
Stepwise Regression Equation | R | p |
---|---|---|
lnP-IBI = −26.242 + 4.869 lnWT + 6.362 lnpH | 0.789 | 0.0001 |
lnZ-IBI = −5.783 − 0.278 lnTDS + 2.871 lnWT + 0.149 lnTN | 0.894 | 0.0001 |
lnM-IBI = 2.588 + 0.471 lnF − 0.121 lnEC | 0.828 | 0.0001 |
Dependent Variable | Independent Variable | Direct Effect | Indirect Effect rijPj | |
---|---|---|---|---|
Pi | By lnWT | By lnpH | ||
lnP-IBI | lnWT | 0.667 | - | 0.01911 |
lnpH | 0.39 | 0.032683 | - |
Dependent Variable | Independent Variable | Direct Effect | Indirect Effect rijPj | ||
---|---|---|---|---|---|
Pi | By lnTDS | By lnWT | By lnTN | ||
lnZ-IBI | lnTDS | −0.665 | - | −0.071314 | −0.024108 |
lnWT | 0.394 | 0.120365 | - | −0.014112 | |
lnTN | 0.294 | 0.05453 | −0.018912 | - |
Dependent Variable | Independent Variable | Direct Effect | Indirect Effect rijPj | |
---|---|---|---|---|
Pi | By lnF− | By lnEC | ||
lnM-IBI | lnF− | 0.752 | - | −0.009936 |
lnEC | −0.368 | 0.020304 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, L.; Liu, S.; Qiu, X.; Zhao, R.; Zhao, Z.; Wan, Y.; Cao, Z. Development of Aquatic Index of Biotic Integrity and Its Driving Factors in the Diannong River, China. Water 2023, 15, 1130. https://doi.org/10.3390/w15061130
Lee L, Liu S, Qiu X, Zhao R, Zhao Z, Wan Y, Cao Z. Development of Aquatic Index of Biotic Integrity and Its Driving Factors in the Diannong River, China. Water. 2023; 15(6):1130. https://doi.org/10.3390/w15061130
Chicago/Turabian StyleLee, Lin, Shuangyu Liu, Xiaocong Qiu, Ruizhi Zhao, Zengfeng Zhao, Yongpeng Wan, and Zhanqi Cao. 2023. "Development of Aquatic Index of Biotic Integrity and Its Driving Factors in the Diannong River, China" Water 15, no. 6: 1130. https://doi.org/10.3390/w15061130
APA StyleLee, L., Liu, S., Qiu, X., Zhao, R., Zhao, Z., Wan, Y., & Cao, Z. (2023). Development of Aquatic Index of Biotic Integrity and Its Driving Factors in the Diannong River, China. Water, 15(6), 1130. https://doi.org/10.3390/w15061130