Retrofitting Vertical Slot Fish Pass with Brush Blocks: Hydraulics Performance
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Prototype Measurements
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Alp AAkyüz, M.; Kucukali, S. Ecological impact scorecard of small hydropower plants in operation: An integrated approach. Renew. Energy 2020, 162, 1605–1617. [Google Scholar]
- HPE-Hydropower Europe Forum 2021. Research and Innovation Agenda (RIA). Available online: www.hydropower-europe.eu (accessed on 15 January 2023).
- Peter, A.; Schoelzel, N.; Wilmsmeier, L.; Albayrak, I.; Bravo-Córdoba, F.J.; García-Vega, A.; Fuentes-Pérez, J.F.; Valbuena-Castro, J.; Carazo-Cea, O.; Escudero-Ortega, C.; et al. The Attractiveness of Fishways and Bypass Facilities. In Novel Developments for Sustainable Hydropower; Rutschmann, P., Kampa, E., Wolter, C., Albayrak, I., David, L., Stoltz, U., Schletterer, M., Eds.; Springer: Cham, Switzerland, 2022; pp. 61–81. [Google Scholar] [CrossRef]
- Gysi, M.H. Combination of mitigation strategies & challenges for decisionmaking in Switzerland. In Proceedings of the FIThydro Stakeholder Workshop Alpine Region, Augsburg, Germany, 10–11 September 2018. [Google Scholar]
- Gessner, J. If we build it, will they use it? Fish passage facilitation at man-made obstacles. In Proceedings of the Fish Passages and Migrations Workshop, Istanbul, Turkey, 9–11 September 2016; p. 19. [Google Scholar]
- Wanningen, H. Swimways of the world: Optimizing the policy cycle to open up rivers for migratory fishes. In Proceedings of the Fish Passages and Migrations Workshop, Istanbul, Turkey, 9–11 September 2016; p. 18. [Google Scholar]
- Kucukali, S.; Hassinger, R. Flow and Turbulence Structure in a Vertical Slot–Brush Fish Pass. In Recent Trends in Environmental Hydraulics; Springer: Berlin, Germany, 2020; pp. 137–146. [Google Scholar]
- Rajaratnam, N.; Van der Vinne, G.; Katopodis, C. Hydraulics of vertical slot fishways. J. Hydraul. Eng. 1986, 112, 909–927. [Google Scholar] [CrossRef]
- Rajaratman, N.; Katopodis, C.; Solanki, S. New designs for vertical slot fishways. Can. J. Civ. Eng. 1992, 19, 402–414. [Google Scholar] [CrossRef]
- Tarrade, L.; Texier, A.; David, L.; Larinier, M. Topologies and measurements of turbulent flow in vertical slot fishways. Hydrobiologia 2008, 609, 177–188. [Google Scholar] [CrossRef] [Green Version]
- Tarrade, L.; Pineau, G.; Calluaud, D.; Texier, A.; David, L.; Larinier, M. Detailed experimental study of hydrodynamic turbulent flows generated in vertical slot fishways. Environ. Fluid Mech. 2011, 11, 1–21. [Google Scholar] [CrossRef] [Green Version]
- Marriner, B.A.; Baki, A.B.M.; Zhu, D.Z.; Thiem, J.D.; Cooke, S.J.; Katopodis, C. Field and numerical assessment of turning pool hydraulics in a vertical slot fishway. Ecol. Eng. 2014, 63, 88–101. [Google Scholar] [CrossRef]
- Liu, M.; Rajaratnam, N.; Zhu, D.Z. Mean flow and turbulence structure in vertical slot fishways. J. Hydraul. Eng. 2006, 132, 765–777. [Google Scholar] [CrossRef]
- Bermúdez, M.; Puertas, J.; Cea, L.; Pena, L.; Balairón, L. Influence of pool geometry on the biological efficiency of vertical slot fishways. Ecol. Eng. 2010, 36, 1355–1364. [Google Scholar] [CrossRef]
- Bombač, M.; Novak, G.; Mlačnik, J.; Četina, M. Extensive field measurements of flow in vertical slot fishway as data for validation of numerical simulations. Ecol. Eng. 2015, 84, 476–484. [Google Scholar] [CrossRef]
- Quaresma, A.L.; Romão, F.; Branco, P.; Ferreira, M.T.; Pinheiro, A.N. Multi slot versus single slot pool-type fishways: A modelling approach to compare hydrodynamics. Ecol. Eng. 2018, 122, 197–206. [Google Scholar] [CrossRef]
- Hassinger, R. Steigerung der energieumwandlung in schlitzpässen mit borstenelemen-ten. In Report on Laboratory Tests on a 1:1 Scale; Kassel University: Kassel, Germany, 2007. (In German) [Google Scholar]
- Puertas, J.; Cea, L.; Bermudez, M.; Pena, L.; Rodriguez, A.; Rabunal, J.R.; Balairon, L.; Lara, A.; Aramburu, E. Computer application for the analysis and design of vertical slot fishways in accordance with the requirements of the target species. Ecol. Eng. 2012, 48, 51–60. [Google Scholar] [CrossRef]
- Mallen-Cooper, M. Fish passage in Australia: Universal lessons. In Proceedings of the Fish Passage 2015 Conference, Groningen, The Netherlands, 22–24 June 2015. [Google Scholar]
- Coe, T. Swimming abilities of Mekong fish species. In Proceedings of the Fish Passage 2016 Conference, Amherst, MA, USA, 22 June 2016. [Google Scholar]
- Santos, J.M.; Branco, P.; Katopodis, C.; Ferreira, T.; Pinheiro, A. Retrofitting pool-and-weir fishways to improve passage performance of benthic fishes: Effect of boulder density and fishway discharge. Ecol. Eng. 2014, 73, 335–344. [Google Scholar] [CrossRef]
- Calluaud, D.; Pineau, G.; Texier, A.; David, L. Modification of vertical slot fishway flow with a supplementary cylinder. J. Hydraul. Res. 2014, 52, 614–629. [Google Scholar] [CrossRef]
- DWA (German Association for Water, Wastewater and Waste). Merkblatt DWA-M 509: Fischaufstiegsanlagen und Fischpassierbare Bauwerke—Gestaltung, Bemessung, Qualitätssicherung; Deutsche Vereinigung für Wasserwirtschaft: Hennef, Germany, 2014. (In German) [Google Scholar]
- Alp, A.; Akyüz, A.; Özcan, M. Efficiency and suitability of fish passages in River Ceyhan, Turkey. In Proceedings of the Fish Passage 2015 Conference, Groningen, The Netherlands, 22–24 June 2015. [Google Scholar]
- Kucukali, S.; Hassinger, R. Flow and turbulence structure in a baffle–brush fish pass. PI Civ. Eng.-Water Manag. 2018, 171, 6–17. [Google Scholar] [CrossRef]
- Piquet, J. Turbulent Flows. Models and Physics; Springer: Berlin, Germany, 2010. [Google Scholar]
- Silva, A.T.; Santos, J.M.; Ferreira, M.T.; Pinheiro, A.N.; Katopodis, C. Effects of water velocity and turbulence on the behaviour of Iberian barbell (Luciobarbus bocagei, Steindachner 1864) in an experimental pool-type fishway. River Res. Appl. 2011, 27, 360–373. [Google Scholar] [CrossRef]
- Enders, E.C.; Castro-Santos, T.; Lacey, R.W.J. The effects of horizontally and vertically oriented baffles on flow structure and ascent performance of upstream-migrating fish. J. Ecohydraulics 2017, 2, 38–52. [Google Scholar] [CrossRef] [Green Version]
- Heimerl, S.; Hagmeyer, M.; Echteler, C. Numerical flow simulation of pool-type fishways: New ways with well-known tools. Hydrobiologia 2008, 609, 189–196. [Google Scholar] [CrossRef]
- Beck, C.; Albayrak, I.; Meister, J.; Boes, R.M. Hydraulic performance of fish guidance structures with curved bars: Part 1: Head loss assessment. J. Hydraul. Res. 2020, 58, 807–818. [Google Scholar] [CrossRef]
- Albayrak, I.; Boes, R.M. Fish Guidance Structure with Wide Bar Spacing: Mechanical Behavioural Barrier. In Novel Developments for Sustainable Hydropower; Rutschmann, P., Kampa, E., Wolter, C., Albayrak, I., David, L., Stoltz, U., Schletterer, M., Eds.; Springer: Cham, Switzerland, 2022; pp. 99–104. [Google Scholar] [CrossRef]
- Haro, A.; Odeh, M.; Noreika, J.; Castro-Santos, T. Effect of water acceleration on downstream migratory behavior and passage of Atlantic salmon smolts and juvenile American shad at surface bypasses. Trans. Am. Fish. Soc. 1998, 127, 118–127. [Google Scholar] [CrossRef]
- Enders, E.C.; Gessel, M.H.; Anderson, J.J.; Williams, J.G. Effects of decelarating and accelerating flows on juvenile salmonid behavior. Trans. Am. Fish. Soc. 2012, 141, 357–364. [Google Scholar] [CrossRef]
- Kucukali, S. An experimental investigation of flow resistance and turbulent flow in brush fish pass. PI Civ. Eng.-Water Manag. 2019, 172, 241–256. [Google Scholar] [CrossRef]
- Kucukali, S.; Hassinger, R. Hydraulic model test results of baffle–brush fish pass. PI Civ. Eng.-Water Manag. 2015, 168, 189–194. [Google Scholar] [CrossRef]
- Kucukali, S.; Verep, B.; Alp, A.; Turan, D.; Mutlu, T.; Kaya, C.; Yildirim, Y.; Toreyin, B.U.; Ozelçi, D. Flow structure and fish passage performance of a brush-type fish way: A field study in the Iyidere River, Turkey. Mar. Freshw. Res. 2019, 70, 1619–1632. [Google Scholar] [CrossRef]
- Kucukali, S.; Verep, B.; Albayrak, I. Hydrodynamic Characteristics of Diagonal Brush Fish Pass: Prototype Measurements. Water 2023, 15, 88. [Google Scholar] [CrossRef]
- Kedrovic, M.; Krdrovic, J. Upgrading the fish pass at the Nitra scheme, Slovakia. Int. J. Hydropower Dams 2019, 5, 97–99. [Google Scholar]
- Kucukali, S.; Alp, A.; Akyuz, A. Enhancing the Performance of Vertical Slot Fish Pass by Using Brush Elements: A Pilot Project for Çataloluk SHP. TUBITAK Project Final Report; Projet No: 117M151; Ankara, Turkey, Unpublished Work 2019. Available online: https://search.trdizin.gov.tr/tr/proje/ara (accessed on 14 March 2023). (In Turkish)
dp (m) | 0.59 | 0.73 | 0.97 | 1.19 |
Q (m3/s) | 0.145 | 0.183 | 0.261 | 0.329 |
Rej | 6.6 × 105 | 8.3 × 105 | 1.2 × 106 | 1.5 × 106 |
Frj | 0.46 | 0.43 | 0.40 | 0.37 |
<Vres> (m/s) | 0.40 | 0.45 | 0.48 | 0.49 |
<TKE> (m2/s2) | 0.04 | 0.05 | 0.05 | 0.06 |
(Vres)max (m/s) | 1.40 | 1.53 | 1.76 | 1.57 |
(TKE)max (m2/s2) | 0.14 | 0.22 | 0.33 | 0.24 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kucukali, S.; Alp, A.; Albayrak, I. Retrofitting Vertical Slot Fish Pass with Brush Blocks: Hydraulics Performance. Water 2023, 15, 1155. https://doi.org/10.3390/w15061155
Kucukali S, Alp A, Albayrak I. Retrofitting Vertical Slot Fish Pass with Brush Blocks: Hydraulics Performance. Water. 2023; 15(6):1155. https://doi.org/10.3390/w15061155
Chicago/Turabian StyleKucukali, Serhat, Ahmet Alp, and Ismail Albayrak. 2023. "Retrofitting Vertical Slot Fish Pass with Brush Blocks: Hydraulics Performance" Water 15, no. 6: 1155. https://doi.org/10.3390/w15061155
APA StyleKucukali, S., Alp, A., & Albayrak, I. (2023). Retrofitting Vertical Slot Fish Pass with Brush Blocks: Hydraulics Performance. Water, 15(6), 1155. https://doi.org/10.3390/w15061155