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Abstract: The study ascertained the relationship between aquaculture production and greenhouse
gas (GHG) emissions in South Africa. The study used the Autoregressive Distributed Lag—Error
Correction Model (ARDL-VECM) with time series data between 1990 and 2020. The results showed
that the mean annual aquaculture production, GHG emissions, and Gross Domestic Product (GDP)
in the period were 5200 tonnes, 412 tonnes, and US$447 billion, respectively. There was a long-run
relationship between GHG emissions and GDP. In the short run, GHG emissions had a positive
relationship with GDP and a negative relationship with beef production. Furthermore, there was a
bi-directional relationship between aquaculture production and GHG emissions. In addition, beef
production and GDP had a bi-directional relationship. Beef production also had a positive relationship
with aquaculture production. The study concludes that aquaculture production is affected and tends
to affect GHG emissions. Aquaculture legislation should consider GHG emissions in South Africa
and promote sustainable production techniques.

Keywords: aquaculture; autoregressive distributed lag-error correction model (ARDL-ECM); beef;
greenhouse gas (GHG); gross domestic product (GDP); South Africa

1. Introduction

Aquaculture is an emerging farming method primarily aimed at meeting the growing
consumer demand for meat and animal products [1]. It is defined as the process of farming
aquatic organisms such as fish, crustaceans, molluscs, and aquatic plants [2]. At the
same time, it is a preservation method aimed at protecting various aquatic species from
endangerment due to rising poaching rates and seawater pollution. The farming process
involves stocking, feeding, and providing protection from predators. South Africa has
environmental conditions conducive to aquaculture development and opportunities for
commercial production [3], and contributions to local economic and human development,
food security, and livelihoods. It is the youngest farming sector in the country, and since
2013, aquaculture production has increased by 75% to 6000 tonnes, managing an R1 billion
total value of sales in 2018. However, others have reported a sector value of R8 billion
per year, generating more than R3.4 billion in total foreign exchange from sales [4]. The
South African aquaculture sector contributes less than 1% to the country’s GDP, 4% to the
country’s agricultural GDP, and 5% to Western Cape Province’s GDP [5,6]. A report by
WWF-SA [7] highlighted that 500,000 people participated in South Africa’s recreational
fishing, with a value of up to R3 billion in 2011.

In South Africa, the sector is dominated by abalone (70%), trout (10%) and mussel
(6%), acting as a supplement to the wild fishing sector [4]. In 2019, the country’s captured
fish and aquaculture production was at 452,900 tonnes consisting of 96% marine fish, 3%
molluscs and 0.4% crustaceans, respectively [2]. Figure 1 shows a gradual increase in the
trend of aquaculture production in South Africa from 2000 to 2019 [2,8].
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Figure 1. Aquaculture production in South Africa (1974–2020). Source: FAO [2] and World Bank [8]. 

The favourable environment in South Africa’s aquaculture industry includes good 
infrastructure, business institutions, supply chains, and a supportive aquaculture legisla-
tion framework. The country’s annual per capita fish consumption is 6–8 kg, with local 
consumption unable to absorb all production. This allowed international trade, which had 
a lot of entry barriers such as regulatory compliance, biosecurity guidelines and skills de-
velopment [4]. To align with national policies such as the National Development Plan 
(NDP), the Integrated Growth and Development Plan (IGDP) and the Industrial Policy 
Action Programme (IPAP), South Africa developed the National Aquaculture Strategic 
Framework (NASF) in 2012 to provide an enabling environment for the sector to grow [4]. 
Operation Phakisa (2014–2019) was launched to operationalise the NDP in growing the 
sector from R670 million to R3 billion, improving production to 20,000 tonnes and im-
proving jobs to 15,000 [9]. However, the sector has performed below its potential with 
minimal contribution to the fisheries’ products and GDP [3]. This has allowed South Af-
rica to account for less than 1% of global aquaculture production [4]. The slow growth in 
the sector after a period of sustained growth has been currently attributed to the COVID-
19 pandemic, lack of market diversification, and high operating costs, amongst others. 

Aquaculture production in the country has shown significant growth in the past two 
decades. South Africa has 1075 registered aquaculture producers, mostly located in West-
ern Cape (56%), Eastern Cape (17%), and Mpumalanga Provinces (10%) [6]. The aquacul-
ture sector contributes 3250 direct on-farm jobs in addition to the rest of the value chain. 
However, a report by Fish SA [10] indicated that the sector directly employs in excess of 
27,000 South Africans in the fishing industry, with 100,000 employed in associated indus-
tries. Western Cape Province employs the largest number of workers at 79%. Most aqua-
culture production in the country is situated in rural and semi-rural areas, contributing to 
economic development. 

As the sector has gained momentum, numerous environmental and social concerns 
have been raised about rearing aquatic animals. Most of these concerns arise from feed 
production, water pollution and antimicrobial resistance [11,12]. The sector’s underper-
formance has also been due to challenges such as wide temperature variation, aridity com-
bined with macroeconomic factors such as dearth of skilled human resources, fish prices, 
access to land, poorly developed value chain, and complicated value chain authorisation 
processes and more recently the COVID-19 pandemic [3,4]. One of the key socio-
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Figure 1. Aquaculture production in South Africa (1974–2020). Source: FAO [2] and World Bank [8].

The favourable environment in South Africa’s aquaculture industry includes good
infrastructure, business institutions, supply chains, and a supportive aquaculture legisla-
tion framework. The country’s annual per capita fish consumption is 6–8 kg, with local
consumption unable to absorb all production. This allowed international trade, which
had a lot of entry barriers such as regulatory compliance, biosecurity guidelines and skills
development [4]. To align with national policies such as the National Development Plan
(NDP), the Integrated Growth and Development Plan (IGDP) and the Industrial Policy
Action Programme (IPAP), South Africa developed the National Aquaculture Strategic
Framework (NASF) in 2012 to provide an enabling environment for the sector to grow [4].
Operation Phakisa (2014–2019) was launched to operationalise the NDP in growing the
sector from R670 million to R3 billion, improving production to 20,000 tonnes and im-
proving jobs to 15,000 [9]. However, the sector has performed below its potential with
minimal contribution to the fisheries’ products and GDP [3]. This has allowed South Africa
to account for less than 1% of global aquaculture production [4]. The slow growth in the
sector after a period of sustained growth has been currently attributed to the COVID-19
pandemic, lack of market diversification, and high operating costs, amongst others.

Aquaculture production in the country has shown significant growth in the past
two decades. South Africa has 1075 registered aquaculture producers, mostly located
in Western Cape (56%), Eastern Cape (17%), and Mpumalanga Provinces (10%) [6]. The
aquaculture sector contributes 3250 direct on-farm jobs in addition to the rest of the value
chain. However, a report by Fish SA [10] indicated that the sector directly employs in
excess of 27,000 South Africans in the fishing industry, with 100,000 employed in associated
industries. Western Cape Province employs the largest number of workers at 79%. Most
aquaculture production in the country is situated in rural and semi-rural areas, contributing
to economic development.

As the sector has gained momentum, numerous environmental and social concerns
have been raised about rearing aquatic animals. Most of these concerns arise from feed
production, water pollution and antimicrobial resistance [11,12]. The sector’s underper-
formance has also been due to challenges such as wide temperature variation, aridity
combined with macroeconomic factors such as dearth of skilled human resources, fish
prices, access to land, poorly developed value chain, and complicated value chain au-
thorisation processes and more recently the COVID-19 pandemic [3,4]. One of the key
socio-environmental concerns arising from the food supply chain is climate change, more
specifically, the greenhouse gas (GHG) emission [13] contributing to global warming, floods,
drought, cyclones, ocean acidification, rainfall variation, salinity, and sea level rise [14].
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On the other hand, aquaculture production is also responsible for global warming
by emitting greenhouse gases [15] through power input, transport and feed production.
Despite the reported low GHG emissions of aquaculture compared to livestock [13], there is
a need to consider adaptation strategy measures to reduce GHG emissions. These include
integrated aquaculture, recirculating aquaculture systems (RAS), and the expansion of
seafood farming. These could increase aquaculture productivity, environmental sustain-
ability, and adaptability to climate change [14]. Subasinghe et al. [16] recommend aligning
adaptations in aquaculture to climate change with an ecosystem approach to provide a
good foundation for success and effectiveness.

Several scholars argue that though aquaculture contributes to GHG emissions through
power input, feed production, and transport [17–19], its contribution is relatively small
compared to other industries [19]. The literature suggests that economic growth contributes
mainly to environmental pollution [20], indirectly affecting aquaculture through GHG
emissions. Rapid economic growth and development have raised questions concerning
the relationship between aquaculture and GHG emissions [21]. GHG emission from
aquaculture has not been explicitly explored even though the industry is rapidly growing
and contributing to GDP. In Scotland, Hammer et al. [22] provided an extensive aquaculture
value chain depiction of GHG emissions, indicating that most emissions arise from diesel
fuel utilization and electricity in feed production, well boating, harvesting, processing
and distribution. However, the study did not quantify these findings using industry
player disclosures to assess GHG emissions. In China, Xu et al. [23] highlighted that
the expansion of aquaculture leads to increasing GHG emissions. Feed production was
highlighted as contributing significantly to GHG emissions. There was a relationship
between aquaculture production and GHG emissions established [23]. The study was,
however, unidirectional, neglecting the effect of GHG emissions on aquaculture production.
Kosten et al. [24] actually indicate that emissions could actually be more than actually
thought, with Rasenberg et al. [25] highlighting that fishing burns close to 1.2% of the
world’s fossil fuels. Over 40 million tonnes of fuel are utilized by the global fish fleet,
generating 130 million tonnes of CO2 [25].

In countries such as South Africa, where there are high levels of energy poverty, defor-
estation highly contributes to GHG emissions [26], impacting aquaculture production [21].
However, limited information is available in the South African context concerning this rela-
tionship. The objective of the study was to ascertain the intertwined relationship between
aquaculture production and GHG emissions in South Africa. In South Africa, aquacul-
ture plays a significant role in the food security and social welfare of households [13],
yet the contribution of GHG emission to climate change tends to affect the abundance
and availability of aquatic resources, thereby affecting the resilience of both fisheries and
aquaculture [27]. Literature in the South African context is heavily dominated by studies
on GHG emissions and solar water [28], GHG emissions and solid waste [11], explicitly
excluding aquaculture production amid GHG emissions. Ortega-Cisneros et al. [29] con-
ducted a content analysis research of fisheries management documents that address climate
change and adaptation in South Africa. The study found that climate change impacts and
adaptation are rarely incorporated in management documents. The study was, however,
limited in that it was not empirical and could not establish and quantify any relationship
between aquaculture production and GHG emissions. At a more global scale, Barange
and Cochrane [17] conducted a review study to assess the impacts of climate change on
aquaculture production. The study revealed that climate change results in production
and infrastructural losses in the short term from extreme events, while in the long term,
there is reduced availability of wild seed and competition in the use of water. Utilising the
food-energy-water-carbon (FEWC) composite sustainability index, Jiang et al. [30] found
global aquaculture production emitting 261.3 million tons of CO2 equivalent GHGs. Thus,
as much as aquaculture is affected by GHG emissions, it also has a hand to play in the
emissions themselves. This paper argues that the relationship between aquaculture and
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GHG emissions is not apparent and needs to be explored. Such a proposition has not been
empirically explored in a country such as South Africa.

2. Material and Methods
2.1. Conceptual Framework

The study adopted the poverty and water ecosystem services conceptual framework
(Figure 2) as utilised by Mayers et al. [31]. The framework provides development path-
ways which are influenced by aquaculture ecosystems. Aquaculture ecosystems provide
direct and indirect benefits, including provisioning services in terms of food and climate
regulating services. This ecosystem is affected by climate change, economic growth, and
population growth, amongst others. The impact of the aquaculture ecosystem is affected
(and tends to affect) developmental pathways through economic indicators such as job
creation and GDP, as well as food provision, which has direct consequences on decision-
making. In the context of the current study, the climate change drivers are a direct effect
of GHG emissions. These tend to affect aquaculture production by affecting the water
ecosystems and the output that is envisaged. This will have a bi-directional effect on the
developmental pathways affecting food production, job creation, and GDP. Disequilibrium
in the GDP suggests the importance of decision-making concerning alternatives to aqua-
culture production, for example, concentrating on substitute beef production to provide a
protein source.
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2.2. Study Design

The study used a longitudinal time series design. The autoregressive distributed lag—
error correction model (ARDL-ECM), as utilised by Ngarava [32], was used to estimate
the relationship between aquaculture production (AQUAP) and greenhouse gas emissions
(GHG), as well as other variables such as gross domestic product (GDP) and a substitute,
beef production (BP) in South Africa. The theoretical model is shown below:

AQUAPt = f (GHGt, GDPt, BPt)

Coulibaly and Akia [33] assert that ARDL has the advantage of distinguishing explana-
tory and endogenous variables. In small samples, the long-term estimates of the ARDL
model are super-coherent and provide unbiased coefficients as well as valid results even
when the independent variables are endogenous. The model can also be applied regardless
of the order of variables, either simultaneously I(0) and I(1) or individually in both the
short and long-run parameters [34].

The ARDL model was specified as follows Kohler [35]:

Yt = τ0i + ∑v
i=1 ωiYt−i + ∑w

i=0 ϑ′i Xt−i + µit

where Y′i was a vector and the variables in (X′t)
′ were allowed to be purely cointegrated,

I(1) or I(0); ϑ and ω were coefficients; τ was the constant; i = 1, . . . , m; v, w were optimal
lag orders; µit was a vector of the error terms—unobservable zero mean white noise vector
process. This was reduced to the following form:

∆ ln AQUAPt = a01 + b11 ln AQUAPt−1 + b21 ln GHGt−1 + b31 ln GDP2t−1 + b41 ln BPt−1
+∑v

i=1 a1i∆ ln AQUAPt−1 + ∑w
i=1 a2i∆ ln GHGt−1 + ∑w

i=1 a3i∆ ln GDPt−1
+∑w

i=1 a4i∆ ln BPt−1 + ε1t

∆ ln GHGt = a02 + b12 ln AQUAPt−1 + b22 ln GHGt−1 + b32 ln GDP2t−1 + b42 ln BPt−1 + ∑v
i=1 a2i∆ ln GHGt−1

+∑w
i=1 a3i∆ ln AQUAPt−1 + ∑w

i=1 a4i∆ ln GDPt−1 + ∑w
i=1 a5i∆ ln BPt−1 + ε2t

∆ ln GDPt = a03 + b13 ln AQUAPt−1 + b23 ln GHGt−1 + b33 ln GDP2t−1 + b43 ln BPt−1 + ∑v
i=1 a2i∆ ln GDPt−1

+∑w
i=1 a3i∆ ln AQUAPt−1 + ∑w

i=1 a4i∆ ln GHGt−1 + ∑w
i=1 a5i∆ ln BPt−1 + ε3t

∆ ln BPt = a04 + b14 ln AQUAPt−1 + b24 ln GHGt−1 + b34 ln GDP2t−1 + b44 ln BPt−1 + ∑v
i=1 a2i∆ ln BPt−1

+∑w
i=1 a3i∆ ln AQUAPt−1 + ∑w

i=1 a4i∆ ln GHGt−1 + ∑w
i=1 a5i∆ ln GDPt−1 + ε4t

All the variables were taken into logarithmic form before estimating the models. The
data that were used was annual from 1990 to 2020. This was mainly because GHG emission
data were first recorded in the year 1990 in South Africa, which offered a limitation.
The GHG emission and GDP data used in the study were obtained from Our World
in Data [36], whereas the aquaculture production data were obtained from the Word
Development Indicators at the World Bank [37], and the beef data were obtained from
Quantec easydata [38]. Per capita measures of the variables were obtained by dividing them
with the population data that were obtained from Our World in Data [36]. These variables
were included in the model because they affect aquaculture production. Greenhouse gas
emission was expected to negatively affect aquaculture production because of the increase
in water toxicity levels. An increase in beef production, which is a substitute, will also
likely negatively affect aquaculture production as it offers an alternative. However, GDP
is expected to have an indifference effect. An increase in GDP can be expected to have a
positive relationship with aquaculture production if the product is a normal good, where
an increase in GDP can translate to an increase in disposable incomes However, a negative
relationship might exist if the aquaculture products are inferior goods.

To assess long-run relationships, the ARDL bounds model was performed based on
the Wald statistic (F statistic) for cointegration analysis [39]. Cointegration was confirmed
when the F statistic exceeded the critical bounds value, whilst it was not confirmed when
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the F statistic was lower than the lower F statistic or was found to be in between the lower
and upper F statistics, in which case it was inconclusive. The following ARDL model (v,
w1, w2, w3) was specified when no cointegration was detected:

∆ ln AQUAPt = a01 + ∑v
i=1 a1i∆ ln AQUAPt−1 + ∑w

i=1 a2i∆ ln GHGt−1 + ∑w
i=1 a3i∆ ln GDPt−1

+∑w
i=1 a4i∆ ln BPt−1 + ε1t

∆ ln GHGt = a02 +∑v
i=1 a2i∆ ln GHGt−1 + ∑w

i=1 a3i∆ ln AQUAPt−1 + ∑w
i=1 a4i∆ ln GDPt−1

+∑w
i=1 a5i∆ ln BPt−1 + ε2t

∆ ln GDPt = a03 +∑v
i=1 a2i∆ ln GDPt−1 + ∑w

i=1 a3i∆ ln AQUAPt−1 + ∑w
i=1 a4i∆ ln GHGt−1

+∑w
i=1 a5i∆ ln BPt−1 + ε3t

∆ ln BPt = a04+ ∑v
i=1 a2i∆ ln BPt−1 + ∑w

i=1 a3i∆ ln AQUAPt−1 + ∑w
i=1 a4i∆ ln GHGt−1 + ∑w

i=1 a5i∆ ln GDPt−1
+ε4t

The following error correction model was specified when cointegration was de-
tected [32]:

∆ ln AQUAPt = a01 + ∑v
i=1 a1i∆ ln AQUAPt−1 + ∑w

i=1 a2i∆ ln GHGt−1 + ∑w
i=1 a3i∆ ln GDPt−1

+∑w
i=1 a4i∆ ln BPt−1 + λECTt−1 + ε1t

∆ ln GHGt = a02 +∑v
i=1 a2i∆ ln GHGt−1 + ∑w

i=1 a3i∆ ln AQUAPt−1 + ∑w
i=1 a4i∆ ln GDPt−1

+∑w
i=1 a5i∆ ln BPt−1 + λECTt−1 + ε2t

∆ ln GDPt = a03 +∑v
i=1 a2i∆ ln GDPt−1 + ∑w

i=1 a3i∆ ln AQUAPt−1 + ∑w
i=1 a4i∆ ln GHGt−1

+∑w
i=1 a5i∆ ln BPt−1 + λECTt−1 + ε3t

∆ ln BPt = a04+ ∑v
i=1 a2i∆ ln BPt−1 + ∑w

i=1 a3i∆ ln AQUAPt−1 + ∑w
i=1 a4i∆ ln GHGt−1 + ∑w

i=1 a5i∆ ln GDPt−1
+λECTt−1 + ε4t

where the error correction term (ECTt−1) will be negative and statistically significant. Once
a long-run relationship was determined, the Granger causality test was performed. After
analysing both short-run and long-run relationships, post-estimation diagnostic tests were
performed. These included the Breush–Pagan Godfrey test of heteroscedasticity to deter-
mine the equality of variance spread; the Breush–Godfrey Serial Correlation LM test for
collinearity to examine the independence of the residuals; the Jarque–Bera test for normality
in the distribution of the model; and the CUSUM of squares test for structural stability.

3. Results
3.1. Descriptive Statistics

The mean aquaculture production output for the period 1990–2020 was 5200 tonnes,
with a maximum of 8094 tonnes in 2016 and a minimum of 2819 tonnes in 2000 (Table 1).
Table 1 also shows that the average beef production, GHG emissions and GDP were
757,000 tonnes, 412 tonnes and USD446.6 billion, respectively. A maximum of 1.09 million
tonnes of beef was produced in 2016, 520 tonnes of GHG emissions in 2014 and USD673
billion in 2018. The skewness of the variables lies between −0.5 and 0.5, indicating the data
are fairly symmetrical. The kurtosis of less than −1 indicates that the data are flat, except
for aquaculture production.
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Table 1. Descriptive statistics.

Variable Aquaculture Production
(Metric Tonnes)

Beef Production (000
Tonnes)

Greenhouse Gas
Emissions (Tonnes)

Gross Domestic Product
(USD) (Million)

Mean 5200.20 756.79 412.23 446,620
Minimum 2819.00 496.30 308.89 235,129
Maximum 8094.27 (2016) 1090.90 520.54 673,272
Std. Dev. 1432.10 196.98 74.86 160,424
Skewness 0.152 0.274 −0.040 0.116
Kurtosis −0.601 −1.275 −1.701 −1.607

Figure 3 shows the increasing trend of aquaculture production and GHG emissions
in South Africa. GHG emissions, on average, increased by 9.12 tonnes annually, while
aquaculture production increased by 131.83 tonnes annually.
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3.2. Empirical Results

Stationarity and order of integration were determined through a unit root test (Table 2).
The ARDL model was ideal because the variables were integrated into different orders.
The Augmented Dickey–Fuller (ADF) shows that aquaculture production was stationary at
levels, while greenhouse gas emissions, gross domestic product and beef production were
stationary at first difference.

Table 2. Unit root test.

Augmented Dickey Fuller (ADF) Test Phillips–Perron (PP) Test

I(0) I(1) I(0) I(1)

In AQUAP −3.049 ** −2.360 −5.240 ***
In GHG −1.204 −4.504 *** −1.204 −4.489 ***
In GDP −1.451 −4.695 *** −0.347 −5.380 ***
In BP −1.262 −4.871 *** −1.351 −4.871 ***

Note: Sig at *** 1%, ** 5%.

The ARDL Bounds test, as shown in Table 3, shows that there was long-run equilibrium
cointegration in the gross domestic product model as the F-statistic in the bounds test was
larger than the I(1) at the 5% level. The aquaculture production model was inconclusive
as the F-statistic was between the I(0) and I(1), while there was no long-run equilibrium
cointegration in the greenhouse gas emission and beef production models, respectively, as
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the F-statistics were below the I(0) at the 5% level. The ECM was, therefore, necessary to
specify the long-run model in the GDP model, while the ARDL sufficed for the other models.

Table 3. ARDL Bounds test.

In AQUAP In GHG In GDP In BP

In AQUAP 0.070 * −0.039 0.130
In
AQUAPt−1

0.392 * −0.059

In GHG 1.922 ** 0.269 ** −0.967 *
In GHGt−1 0.638 *** 0.828
In GDP −2.607 0.831 ** 0.169
In GDPt−1 2.277 −0.734 ** 0.953 ***
In BP 0.133 −0.123 0.015
In BPt−1 0.144 * −0.080 * 0.717 ***
Constant 9.272 * −2.077 * 1.087 −2.215

Model summary

Adjusted R-squared 0.442 0.854 0.994 0.784
Durbin–Watson statistic 1.411 2.099 1.338 2.090
F-statistic 4.959 21.955 771.954 19.120
Prob (F-statistic) 0.004 0.000 0.000 0.000

Bounds test

Sig. I(0) I(1)
F-statistic 10% 2.72 3.77 3.663 1.206 4.469 2.422

5% 3.23 4.35
2.5% 3.69 4.89
1% 4.29 5.61

Note: ***, ** and * indicate significance at 1%, 5%, and 10%, respectively.

In the short run, AQUAPt−1 and GHG had a positive significant relationship with
AQUAP at the 10% level (Table 3). Table 3 also shows that, in the short run, AQUAP,
GHGt−1, GDP and BPt−1 had a positive significant relationship with GHG at the 10%,
1%, 5%, and 10% levels, respectively. GDPt−1 had a negative significant relationship with
GHG. GHG and GDPt−1 had a positive significant relationship with GDP at the 5% and
1% levels, respectively, while BPt−1 had a negative significant relationship at the 10% level.
GHG also had negative significant relationship with BP at the 10% level, while BPt−1 had
a positive relationship at the 1% level.

In the long run, GHG had a positive significant causal relationship with GDP at the
5% level (Table 4). At a 1% increase GHG increases GDP by 5.75%. The error correction
term shows that there was a long-run causal relationship in the model. The reversion to
equilibrium was at an adjustment speed of 4.7%, and it will take 21.28 years

(
1

4.7%

)
to

achieve equilibrium.
Table 5 shows that there was bi-directional causality between BP and GDP. The table

also shows that GHG Granger caused AQUAP and BP, while AQUAP caused BP.
The diagnostic tests in Table 6 show that there was no heteroscedasticity in all models,

as indicated by the Breusch–Pagan Godfrey tests which were all insignificant at the 5%
level. This shows that there was no constant variance, and the models were homoscedastic.
The Breusch–Pagan Godfrey Serial Correlation LM tests were also insignificant, indicating
that the error terms were independent in all models and thus did not rely on the previous
period’s value. The Jarque–Bera normality test shows that the error terms were normally
distributed in all models. All the models were structurally stable, as shown by the CUSUM
of squares test, and thus suitable for long-run decisions.
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Table 4. Long-run relationship and error correction model regression for GDP model.

Dependent Variable

In GDP

Independent variable Coefficient Std. Error t-Statistic Prob

In AQUAP −0.834 0.687 −1.215 0.239
In GHG 5.747 2.667 2.155 0.044
In BP −1.379 1.399 −0.986 0.336

EC = In GDP-(5.747 In GHG − 0.834 In AQUAP − 1.379 In BP

ECM Regression

Variable Coefficient Std. Error t-Statistic Prob

D(In B) 0.015 0.040 0.391 0.700
CoinEq(−1) * −0.047 0.010 −4.534 0.000
Constant 1.087 0.237 4.576 0.000

Model summary

Adjusted R-squared 0.429
Durbin–Watson statistic 1.338
F-statistic 10.403
Prob (F-statistic) 0.000

Table 5. Pairwise Granger causality test.

Null Hypothesis F-Statistic

In GHG does not Granger cause In GDP 0.005
In GDP does not Granger cause In GHG 2.893

In AQUAP does not Granger cause In GDP 0.613
In GDP does not Granger cause In AQUAP 1.886

In BP does not Granger cause In GDP 8.660 ***
In GDP does not Granger cause In BP 4.359 **

In AQUAP does not Granger cause In GHG 2.537
In GHG does not Granger cause In AQUAP 4.248 *

In BP does not Granger cause In GHG 0.135
In GHG does not Granger cause In BP 6.151 **

In BP does not Granger cause In AQUAP 0.995
In AQUAP does not Granger cause In BP 3.598 *

Note: ***, ** and * indicate significance at 1%, 5% and 10%, respectively.

Table 6. Diagnostic tests.

In AQUAP In GHG In GDP In BP

Heteroscedasticity test
Breusch–Pagan

Godfrey test
0.801

(0.562)
2.325

(0.081)
0.495

(0.776)
0.735

(0.646)
Multi-collinearity test

Breusch–Pagan
Godfrey Serial

Correlation LM test

4.202
(0.054)

0.133
(0.719)

2.297
(0.138)

0.117
(0.737)

Normality test

Jarque–Bera 0.223
(0.895)

0.680
(0.712)

0.662
(0.718)

1.989
(0.370)

Stability test

CUSUM of
squares test
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4. Discussion

The results show that aquaculture production ranged between 2819 tonnes and
8094 tonnes for the period between 1990 and 2020. Aquaculture production had an increas-
ing trend, with an average annual increase of 131.83 tonnes. There was peak aquaculture
output in 1991, 1998, 2003, and 2016. Low aquaculture production levels were observed
in 1996, 2000–2001, 2009, and 2017. Adeleke et al. [3], DAFF [40], as well as Britz and
Venter [41] concur that South African aquaculture has exhibited an increase, driven by a
well-established high-value abalone subsector. A study by Mahlalela [42] found that, for
the periods 1996, 2000, 2009, and 2017, increases corresponded to high rainfall anomalies
in some parts of South Africa. Interestingly, these periods corresponded to periods of de-
pressions in temperature [43]. Periods such as 1998, 2003, and 2016 had little to no rainfall
and temperature anomalies [42,43] and were characterised by peak aquaculture output.
In addition to climatic variables, a study by Britz [44] indicated that the growth in South
Africa’s aquaculture sector is dependent on the extent and nature of public sector support.
This is augmented through infrastructural capacity and institutional support for the growth
of the sector. Furthermore, there exists a small but highly skilled manpower within public
and private sectors, large endowments of research capacity in developing aquaculture tech-
nology and research funding facilities [44]. However, the sector has not been representative
of the race/ethnic distribution or the lack of a comprehensive sector-level R&D strategy,
awareness, and experience in aquaculture development.

GHG emissions averaged 412.23 tonnes, with peaks in 2004 and 2008 and a dip in 1999.
A report by USAID [45] showed that between 1990 and 2014, GHG emissions in South Africa
grew by 44%, with industrial processes contributing the largest change, followed by energy,
land use change, forestry, and agriculture, respectively. A report by DEA [46] showed that
between 1990 and 2000, GHG emissions had doubled for industrial processes and product
use, increased for energy, and reduced for agriculture and waste. DEA [47] indicated that
between 2000 and 2015, GHG emissions had increased by 23.1%, while Smith [48] noted
that between 2000 and 2017, there was a 10.4% increase. The period between 2004 and 2008
corresponds to a peak in GDP growth in South Africa [49]. However, DEFFE [50] indicated
that after 2009, GHG emissions stabilized and declined with an average annual decline of
1%. The increase in GHG emissions could be explained by the increase in electrification in
South Africa since Eskom is the country’s biggest emitter [51]. The South African economy
relies on a sustained coal-based energy supply, which leads to high GHG emissions. The
period of 1999 also coincided with a depressed economic growth rate in the previous year.

The results showed a long-run relationship in the GDP model. In the long run, GHG
emissions had a positive causal relationship with GDP. GHG emissions increased GDP
by 7.75%. Reversion to equilibrium was at a speed of 4.7%, taking 21 to 28 years to
achieve equilibrium. In the short run, GHG emissions and the previous period’s GDP
had a significant positive relationship with GDP, while beef production had a negative
relationship. Similar results were obtained from Khobai and Le Roux [52], who identified
CO2 emissions as having a causal relationship with economic growth in South Africa.
Adebayo and Odugbesan [53] also found that there was positive interaction between
economic growth and CO2 emissions in South Africa. The study identified that energy
use was the biggest emitter of GHG emissions. Adebayo and Odugbesan [53] explained
this relationship through the Environmental Kuznets Curve (EKC), which was, however,
not exhibited in the current study because, in the long run, GHG emissions had a positive
relationship with GDP, whilst it was negative in the short run. This shows that South Africa
is still in the developing stage of the EKC and is highly reliant on GHG-emitting energy
to achieve economic growth in the long term. A sector-specific study in South Africa was
conducted by Ngarava et al. [54] and highlighted that sector expansion did not necessarily
lead to sustainable GHG emissions. Khobai and Le Roux [52] indicated that any GHG
emission reduction strategy in South Africa would slow economic growth. According to
Hughes and Herian [55], the growth of many economies was closely correlated with an
increase in greenhouse gas emissions for the most prolonged time. Many economies use
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large quantities of energy in their production systems, releasing GHG. Similar findings
were observed by Cederborg and Snöbohm [56], who stated that the growing per capita
GDP motivates an increase in GHG emissions. Furthermore, increased GDP suggests high
production levels, which contribute to the betterment of an economy [56].

In the short run, current aquaculture production had a significant positive relationship
with the previous period’s aquaculture production and current GHG emissions. GHG
emissions had a significant positive relationship with current aquaculture production, GDP,
the previous period’s GHG emissions, and beef production, respectively. GHG emission
Granger caused aquaculture production and beef production, while aquaculture produc-
tion Granger caused beef production. According to Kurniawan et al. [57], environmental
concerns, such as GHG emissions from aquaculture production, raise sustainability con-
cerns. Aquaculture production tends to increase GHG emissions through fish faecal matter
and feeding residues as well as protein-rich residual feed and excretory products. However,
climate stressors induced by GHG emissions, such as ocean acidification, decrease in rain-
fall, increase in temperature, and increase in rainfall variability, have affected aquaculture
production. This has been through reducing fish abundance, productivity and size as well
as redistributing catch potential [58,59]. Ortega-Cisneros et al. [29] and van der Lingen [60]
indicated that in South Africa, GHG emission-induced climate change could have varied
environmental, ecological, and social effects on aquaculture production. Environmentally
it increases ocean acidification, circulation patterns, extreme events, sea level rise as well
as temperature increase. Ecologically, it can lead to the extinction of some fish species
and changes in production and food availability, among other problems. Socially, poverty
levels are increased, as well as changes in food security and increases in unemployment,
amongst others. In South Africa, sea level temperature also increases, resulting in a shift of
some marine species, community changes in resource structure, and competition which has
economic bearing especially on value chain costs as well as the availability of aquaculture
products, impacting livelihoods for aquaculture dependent communities [61–63]. The
sector does, however, have a low GHG emission footprint [64], signifying how the wider
circular economy has disproportionally affected aquaculture production.

The positive relationship between GHG emissions and beef production supports
findings by Simdi and Seker [65]. According to Grossi et al. [66], the livestock sector
requires significant natural resources and is responsible for close to a fifth of GHG emissions.
About 45% of GHG emissions in livestock production are within feed production, while
39% is from enteric fermentation, 10% from manure storage, and 6% from processing
and transportation. Furthermore, for enteric fermentation and manure storage in beef
production, 91% of GHG emissions were from enteric fermentation, 6% from manure
storage nitrous oxide, and 3% from manure storage methane [12,66]. Authors such as
Rojas-Downing et al. [67] indicated that GHG emission-induced climate change tends to
affect livestock production by impacting the quality of feed crop and forage, biodiversity,
animal reproduction, livestock diseases, animal and meat production, as well as water
availability, which tend to affect beef production.

The causality of aquaculture production and beef production can be explained by
the complementarities of the food systems in terms of feed production. There is high
dependence on manufactured feed and on meat and bone meal for aquaculture feed,
whereupon livestock feed was also dependent upon fish meal [68,69].

In the short run, the current beef production had a significant positive relationship
with the previous period’s beef production, while current GHG emissions had a signif-
icant negative relationship. The results further showed that beef production and GDP
bi-directionally caused each other. Even though the agricultural sector in South Africa
contributes less than 10% to the country’s GDP, livestock production constitutes between
42% and 46.7% of the agricultural GDP, with the country having 6% of the African conti-
nent’s cattle [70]. An increase in beef production will have an effect on the GDP, which will,
in turn, increase disposable incomes, urbanisation and changes in tastes and preferences,
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and coupled with population growth, will induce growth in the livestock sector due to
increased demand [71,72].

5. Conclusions

Aquaculture production in South Africa is still in its infancy; however, it carries a
huge potential for food security and improved livelihoods as well as human and economic
development. This is augmented by the good infrastructure, business institutions, supply
chains, and supportive aquaculture legislation in place. However, this huge potential is
offset by social and environmental concerns resulting from feed production, water pollution,
and antimicrobial resistance. This is combined with factors such as climate change-induced
extremes such as droughts, floods, global warming, ocean acidification, rainfall variation,
salinity, and sea level rise, which are a result of GHG emissions. However, aquaculture
production has also been responsible for GHG emissions through power utilisation, feed
production, and logistics. The objective of the study was to ascertain the relationship
between aquaculture production and GHG emissions in South Africa. The study used the
autoregressive distributed lag—error correction model (ARDL-ECM) with time series data
between 1990 and 2020.

The results showed that the mean aquaculture production in the period was 5200 tonnes
annually and was explained by climatic variations such as temperature and rainfall anoma-
lies. GHG gas emissions and GDP had peaks of 520 tonnes and US$673 trillion, respectively.
Aquaculture production was increasing at an annual rate of 132 tonnes, while GHG emis-
sions were increasing at 9.12 tonnes. The results in the GDP model exhibited a long-run
relationship, with GHG emissions having a positive relationship with GDP. In the short
run, GHG emissions had a positive relationship with GDP, while beef production had a
negative relationship. Furthermore, there was bi-directional relationship between aqua-
culture production and GHG emissions in the short run. In addition, beef production
and GDP had a bi-directional relationship in the short run. Beef production also had a
positive relationship with aquaculture production in the short run. The study concludes
that aquaculture production corresponds to climatic variations, which are induced by GHG
emissions. However, GHG emissions did not have a long-run relationship with aquaculture
production, but they did have one with GDP. In the short run, both aquaculture production
and GHG emissions positively affect each other. In addition, aquaculture production and
beef production function as complementarities, especially in feed production. The study
recommends that aquaculture legislation in South Africa should consider GHG emissions
which tend to affect and are affected by the sector. There is a need to promote sustainable
production techniques in South Africa’s aquaculture industry, embracing renewable energy.
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