Upstream River Erosion vis-a-vis Sediments Variability in Hugli Estuary, India: A Geospatial Approach
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Study Area
3.2. Satellite Data
3.3. In-Situ Data
3.4. Methods
3.4.1. Remote Sensing Data Processing
- Atmospheric Correction
- Cross-band Adjustment
- Adjacency Correction
- De-glinting
- Land-Cloud-White-cap-Masking
3.4.2. Remote Sensing Reflectance
3.4.3. Regression Analysis
3.4.4. SSC Estimation
3.4.5. Bank Line Detection
- Normalized difference water index (NDWI)
- Modified normalized difference water index (MNDWI)
- Automated water extraction index (AWEI)
3.4.6. River Bank Erosion-Accretion Assessment
- Erosional Vulnerability Zonation
- Erosion Volume Estimation
- Depositional Area Assessment
4. Results and Discussion
4.1. Erosion Analysis
4.2. Sediment Concentration Analysis
4.2.1. SSC Concentration across Hugli Estuary
4.2.2. Sedimentation across Estuarine Islands
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Geomorphic Features of Hugli
Appendix B
Applied Equations
- TOA reflectance equation
- FLAASH Algorithm
- Sun Glint Index (SGI)
- Remote Sensing Reflectance ()
- Regression Equation
- Water Indices
- GLCM Texture Features
- 1.
- Contrast: It is used to calculate the degree of variance in the image (Equation (A9))
- 2.
- Mean: It is used to calculate the image’s cumulatively distributed grey level value (Equation (A10)).
- 3.
- Variance: It is used to calculate the degree to which the grey-level distribution is spread out (Equation (A11)).
- 4.
- Homogeneity: It is used to assess the homogeneity (smoothness) of grey-level distributions (Equation (A12)).
- 5.
- Entropy: It is used to assess the degree of disruption among pixels within an image (Equation (A13)).
- 6.
- Correlation: It is used to calculate the linear relationship between grey levels in adjacent pixels (Equation (A14)).
- 7.
- Angular Second Moment: It is used to evaluate the image’s grey level distribution’s homogeneity or energy (Equation (A15)).
Appendix C
Regression Evaluation
References
- Dey, S.; Basu, A.; Banerjee, S.N.; Jain, V. Discharge-driven rapid bank-erosion and its impact on sediment budgeting in the lower Gangetic plains. Epis. J. Int. Geosci. 2022, 1, 1–9. [Google Scholar] [CrossRef]
- Islam, S.N. Deltaic floodplains development and wetland ecosystems management in the Ganges–Brahmaputra–Meghna Rivers Delta in Bangladesh. Sustain. Water Resour. Manag. 2016, 2, 237–256. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Mei, Y. Lateral erosion/accretion area and shrinkage rate of the Linhe reach braided channel of the Yellow River between 1977 and 2014. J. Geogr. Sci. 2016, 26, 1579–1592. [Google Scholar] [CrossRef]
- Wang, M.; Bailey, S.W. Correction of Sun glint Contamination on the SeaWiFS Ocean and Atmosphere Products. Appl. Opt. 2001, 40, 4790–4798. [Google Scholar] [CrossRef] [PubMed]
- Arora, C.; Bhaskaran, P.K. Numerical Modeling of Suspended Sediment Concentration and Its Validation for the Hooghly Estuary, India. Coast. Eng. J. 2013, 55, 1350006-1–1350006-23. [Google Scholar] [CrossRef]
- Bhaskaran, P.K.; Mangalagiri, S.; Bonthu, S. Dredging Maintenance Plan for the Kolkata Port, India. Curr. Sci. 2014, 107, 1125–1136. [Google Scholar]
- Biswas, A.N. Geohydro-morphometry of the Hoghly estuary. J. Inst. Eng. India Civ. Eng. Div. 1985, 66, 61–73. [Google Scholar]
- Dahl, T.E. Status and Trends of Wetlands in the Conterminous United States 1998 to 2004; US Department of the Interior, US Fish and Wildlife Service: Sacramento, CA, USA, 2005. [Google Scholar]
- Sarkar, S.K.; Bhattacharya, A.; Giri, S.; Bhattacharya, B.; Sarkar, D.; Nayak, D.C.; Chattopadhaya, A.K. Spatiotemporal variation in benthic polychaetes (Annelida) and relationships with environmental variables in a tropical estuary. Wetl. Ecol. Manag. 2005, 13, 55–67. [Google Scholar] [CrossRef]
- Shen, F.; Salama, M.S.; Zhou, Y.-X.; Li, J.-F.; Su, Z.; Kuang, D.-B. Remote-sensing reflectance characteristics of highly turbid estuarine waters—A comparative experiment of the Yangtze River and the Yellow River. Int. J. Remote Sens. 2010, 31, 2639–2654. [Google Scholar] [CrossRef]
- Kanga, S.; Meraj, G.; Das, B.; Farooq, M.; Chaudhuri, S.; Singh, S.K. Modeling the spatial pattern of sediment flow in lower Hugli estuary, West Bengal, India by quantifying suspended sediment concentration (SSC) and depth conditions using geoinformatics. Appl. Comput. Geosci. 2020, 8, 100043. [Google Scholar] [CrossRef]
- Guchhait, S.K.; Islam, A.; Ghosh, S.; Das, B.C.; Maji, N.K. Role of hydrological regime and floodplain sediments in channel instability of the Bhagirathi River, Ganga-Brahmaputra Delta, India. Phys. Geogr. 2016, 37, 476–510. [Google Scholar] [CrossRef]
- Banerjee, M. A report on the impact of Farakka Barrage on the human fabric, On behalf of South Asian network on dams, rivers and people. In Thematic Review: Flood Control Options in the Gangetic Basin; South Asia Network on Dams, Rivers and People (SANDRP): New Delhi, India, 1999; Available online: https://sandrp.files.wordpress.com/2018/03/impct_frka_wcd.pdf (accessed on 27 February 2023).
- Wu, J.-L.; Ho, C.-R.; Huang, C.-C.; Srivastav, A.L.; Tzeng, J.-H.; Lin, Y.-T. Hyperspectral Sensing for Turbid Water Quality Monitoring in Freshwater Rivers: Empirical Relationship between Reflectance and Turbidity and Total Solids. Sensors 2014, 14, 22670–22688. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ghosh, S.; Mukhopadhyay, A.; Ghosh, T. Application of remote sensing & GIS for the feasibility study of potential tourism in Nayachar Island, India. Int. J. Emerg. Technol. Comput. Appl. Sci. 2013, 5, 574–577. [Google Scholar]
- Lawler, D. The measurement of river bank erosion and lateral channel change: A review. Earth Surf. Process. Landf. 1993, 18, 777–821. [Google Scholar] [CrossRef]
- Wang, B.; Xu, Y.J. Dynamics of 30 large channel bars in the Lower Mississippi River in response to river engineering from 1985 to 2015. Geomorphology 2018, 300, 31–44. [Google Scholar] [CrossRef]
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. The Digital Shoreline Analysis System (DSAS) Version 4.0-an ArcGIS Extension for Calculating Shoreline Change; US Geological Survey: Reston, VA, USA, 2009.
- Jana, S. An automated approach in estimation and prediction of riverbank shifting for flood-prone middle-lower course of the Subarnarekha river, India. Int. J. River Basin Manag. 2019, 19, 359–377. [Google Scholar] [CrossRef]
- Acharyya, R.; Mukhopadhyay, A.; Habel, M. Coupling of SWAT and DSAS Models for Assessment of Retrospective and Prospective Transformations of River Deltaic Estuaries. Remote Sens. 2023, 15, 958. [Google Scholar] [CrossRef]
- Ryu, J.-H.; Won, J.-S.; Min, K.D. Waterline extraction from Landsat TM data in a tidal flat: A case study in Gomso Bay, Korea. Remote Sens. Environ. 2002, 83, 442–456. [Google Scholar] [CrossRef]
- Xu, H. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery. Int. J. Remote Sens. 2006, 27, 3025–3033. [Google Scholar] [CrossRef]
- Zhu, X.; Cao, J.; Dai, Y. A decision tree model for meteorological disasters grade evaluation of flood. In Proceedings of the 2011 Fourth International Joint Conference on Computational Sciences and Optimization, Kunming/Lijiang, China, 15–19 April 2011; pp. 916–919. [Google Scholar]
- Fisher, A.; Flood, N.; Danaher, T. Comparing Landsat water index methods for automated water classification in eastern Australia. Remote Sens. Environ. 2016, 175, 167–182. [Google Scholar] [CrossRef]
- Sarp, G.; Ozcelik, M. Water body extraction and change detection using time series: A case study of Lake Burdur, Turkey. J. Taibah Univ. Sci. 2017, 11, 381–391. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.R.; Yamaguchi, Y.; Ogawa, K. Suspended sediment in the Ganges and Brahmaputra Rivers in Bangladesh: Observa-tion from TM and AVHRR data. Hydrol. Process. 2001, 15, 493–509. [Google Scholar] [CrossRef]
- Heenkenda, M.K.; Joyce, K.E.; Maier, S.W.; Bartolo, R. Mangrove Species Identification: Comparing WorldView-2 with Aerial Photographs. Remote Sens. 2014, 6, 6064–6088. [Google Scholar] [CrossRef] [Green Version]
- Chalov, S.; Prokopeva, K.; Habel, M. North to South Variations in the Suspended Sediment Transport Budget within Large Siberian River Deltas Revealed by Remote Sensing Data. Remote Sens. 2021, 13, 4549. [Google Scholar] [CrossRef]
- Prior, E.M.; O’Donnell, F.C.; Brodbeck, C.; Donald, W.N.; Runion, G.B.; Shepherd, S.L. Measuring high levels of total sus-pended solids and turbidity using small unoccupied aerial systems (SUAS) multispectral imagery. Drones 2020, 4, 54. [Google Scholar] [CrossRef]
- Vélez-Nicolás, M.; García-López, S.; Barbero, L.; Ruiz-Ortiz, V.; Sánchez-Bellón, A. Applications of Unmanned Aerial Systems (UASs) in Hydrology: A Review. Remote Sens. 2021, 13, 1359. [Google Scholar] [CrossRef]
- Lippitt, C.D.; Zhang, S. The impact of small unmanned airborne platforms on passive optical remote sensing: A conceptual perspective. Int. J. Remote Sens. 2018, 39, 4852–4868. [Google Scholar] [CrossRef]
- Long, C.M.; Pavelsky, T.M. Remote sensing of suspended sediment concentration and hydrologic connectivity in a complex wetland environment. Remote Sens. Environ. 2013, 129, 197–209. [Google Scholar] [CrossRef] [Green Version]
- Cai, L.; Tang, D.; Li, C. An investigation of spatial variation of suspended sediment concentration induced by a bay bridge based on Landsat TM and OLI data. Adv. Space Res. 2015, 56, 293–303. [Google Scholar] [CrossRef]
- Islam, A.; Guchhait, S.K. Analysis of Social and Psychological Terrain of Bank Erosion Victims: A Study Along the Bhagirathi River, West Bengal, India. Chin. Geogr. Sci. 2018, 28, 1009–1026. [Google Scholar] [CrossRef] [Green Version]
- Das, B.; Mondae, M.; Das, A. Monitoring of bank line erosion of River Ganga, Maida District, and West Bengal: Using RS and GIS compiled with statistical techniques. Int. J. Geomat. Geosci. 2012, 3, 239–248. [Google Scholar]
- Das, V.K.; Roy, S.; Barman, K.; Chaudhuri, S.; Debnath, K. Cohesive river bank erosion mechanism under wave-current interaction: A flume study. J. Earth Syst. Sci. 2020, 129, 99. [Google Scholar] [CrossRef]
- Ashwini, K.; Pathan, S.A.; Singh, A. Understanding planform dynamics of the Ganga River in eastern part of India. Spat. Inf. Res. 2020, 29, 507–518. [Google Scholar] [CrossRef]
- Das, T.K.; Haldar, S.K.; DAS Gupta, I.; Sen, S. River Bank Erosion Induced Human Displacement and Its Consequences. Living Rev. Landsc. Res. 2014, 8, 1–35. [Google Scholar] [CrossRef] [Green Version]
- CRJC: River Dynamics and Erosion. Available online: https://www.crjc.org/erosion.htm (accessed on 10 March 2023).
- Ghosh, A.; Roy, M.B.; Roy, P.K. Estimation and prediction of the oscillation pattern of meandering geometry in a sub-catchment basin of Bhagirathi-Hooghly river, West Bengal, India. SN Appl. Sci. 2020, 2, 1497. [Google Scholar] [CrossRef]
- Couture, S. River Dynamics and Erosion, Presented to Great Bay Siltation Commission, 1 December 2008; Conference Paper. Available online: https://www.academia.edu/93125255/River_Bank_Erosion_Induced_Human_Displacement_and_Its_Consequences (accessed on 18 September 2022).
- Yao, Z.; Ta, W.; Jia, X.; Xiao, J. Bank erosion and accretion along the Ningxia–Inner Mongolia reaches of the Yellow River from 1958 to 2008. Geomorphology 2011, 127, 99–106. [Google Scholar] [CrossRef]
- Kondolf, G.M. PROFILE: Hungry Water: Effects of Dams and Gravel Mining on River Channels. Environ. Manag. 1997, 21, 533–551. [Google Scholar] [CrossRef]
- Sinha, R.; Ghosh, S. Understanding dynamics of large rivers aided by satellite remote sensing: A case study from Lower Ganga plains, India. Geocarto Int. 2012, 27, 207–219. [Google Scholar] [CrossRef]
- Raj, C.; Singh, V. Assessment of planform changes of the Ganga River from Bhagalpur to Farakka during 1973 to 2019 using Satellite Imagery. ISH J. Hydraul. Eng. 2020, 28, 87–97. [Google Scholar] [CrossRef]
- Rudra, K. Management of Rivers in the GBM Delta. In Rivers of the Ganga-Brahmaputra-Meghna Delta. A Fluvial Account of Bengal. Geography of the Physical Environment; Springer: Cham, Switzerland, 2018; pp. 137–162. ISBN 978-3-319-76544-0. [Google Scholar]
- Qasim, S.Z.; Gupta, R.S.; Kureishy, T.W. Pollution of the seas around India. Proc. Anim. Sci. 1988, 97, 117–131. [Google Scholar] [CrossRef]
- Laha, C. Oscillation of meandering Bhagirathi on the alluvial flood plain of Bengal Basin, India; as controlled by the Palaeo-geomorphic architecture. Int. J. Geomat. Geosci. 2015, 5, 564–572. Available online: https://www.indianjournals.com/ijor.aspx?target=ijor:ijggs&volume=5&issue=4&article=007 (accessed on 27 February 2023).
- Gayathri, R.; Bhaskaran, P.K.; Murty, P. River-tide-storm surge interaction characteristics for the Hooghly estuary, East coast of India. ISH J. Hydraul. Eng. 2019, 27, 483–495. [Google Scholar] [CrossRef]
- KMDA (Kolkata Metropolitan Development Authority). Available online: https://www.kmdaonline.org/home/ws_sector_info (accessed on 13 February 2023).
- Rudra, K. Dynamics of the Ganga in West Bengal, India (1764–2007): Implications for science–policy interaction. Quat. Int. 2010, 227, 161–169. [Google Scholar] [CrossRef]
- Chaulagain, S.; Stone, M.C.; Dombroski, D.; Gillihan, T.; Chen, L.; Zhang, S. An investigation into remote sensing techniques and field observations to model hydraulic roughness from riparian vegetation. River Res. Appl. 2022, 38, 1730–1745. [Google Scholar] [CrossRef]
- Roy, S.; Sengupta, S. Channel Shifting and Associated Sedimentological Characteristics of the Katwa-Mayapur Stretch of the Bhagirathi. Int. J. Curr. Res. 2019, 11, 3467–3473. [Google Scholar] [CrossRef]
- Mondal, R.; Mukherjee, A.; Biswas, S.; Kole, R.K. GC-MS/MS determination and ecological risk assessment of pesticides in aquatic system: A case study in Hooghly River basin in West Bengal, India. Chemosphere 2018, 206, 217–230. [Google Scholar] [CrossRef] [PubMed]
- Ghosh, S.; Guchhait, S.K. Laterites of the Bengal Basin: Characterization, Geochronology and Evolution; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Hossain, M.S.; Khan, M.S.H.; Chowdhury, K.R.; Abdullah, R. Synthesis of the Tectonic and Structural Elements of the Bengal Basin and Its Surroundings. In Tectonics and Structural Geology: Indian Context; Mukherjee, S., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 135–218. ISBN 978-3-319-99341-6. [Google Scholar] [CrossRef]
- Mongaldip, M.; Pintu, P.; Kumar, N.B. Bank Erosion and Migrationing Nature of the Hooghly River at Sundalpurchar and Gosainchar Mouza, Ranaghat-I Block, Nadia District, West Bengal, India. Eur. J. Acad. Essays 2015, 2, 83–86. [Google Scholar]
- Das, B.C.; Ghosh, S.; Islam, A.; Roy, S. An Appraisal to Anthropogeomorphology of the Bhagirathi-Hooghly River System: Concepts, Ideas and Issues. In Anthropogeomorphology of Bhagirathi-Hooghly River System in India; CRC Press: Boca Raton, FL, USA, 2020; pp. 1–40. [Google Scholar]
- Mallick, S. Identification of Fluvio-Geomorphological Changes and Bank Line Shifting of River Bhagirathi-Hugli Using Remote Sensing Technique in and around of Mayapur Nabadwip Area, West Bengal. Int. J. Sci. Res. 2016, 5, 1130–1134. Available online: https://www.academia.edu/76259410/Identification_of_Fluvio_Geomorphological_Changes_and_Bank_Line_Shifing_of_River_Bhagirathi_Hugli_Using_Remote_Sensing_Technique_in_and_Around_of_Mayapur_Nabadwip_Area_West_Bengal (accessed on 27 February 2023).
- Ranjan, P.; Ramanathan, A. Hooghly river. In The Indian Rivers; Springer: Berlin/Heidelberg, Germany, 2018; pp. 251–257. [Google Scholar]
- Qasim, S.Z. Indian Estuaries; Allied Publishers: Kolkata, India, 2003. [Google Scholar]
- Pitchaikani, J.S.; Ramakrishnan, R.; Bhaskaran, P.K.; Ilangovan, D.; Rajawat, A.S. Development of Regional Algorithm to Estimate Suspended Sediment Concentration (SSC) Based on the Remotely Sensed Reflectance and Field Observations for the Hooghly Estuary and West Bengal Coastal Waters. J. Indian Soc. Remote Sens. 2018, 47, 177–183. [Google Scholar] [CrossRef]
- Peterson, K.T.; Sagan, V.; Sidike, P.; Cox, A.L.; Martinez, M. Suspended Sediment Concentration Estimation from Landsat Imagery along the Lower Missouri and Middle Mississippi Rivers Using an Extreme Learning Machine. Remote Sens. 2018, 10, 1503. [Google Scholar] [CrossRef] [Green Version]
- Larnicol, M.; Launeau, P.; Gernez, P. Using High-Resolution Airborne Data to Evaluate MERIS Atmospheric Correction and Intra-Pixel Variability in Nearshore Turbid Waters. Remote Sens. 2018, 10, 274. [Google Scholar] [CrossRef] [Green Version]
- Matthew, M.W.; Adler-Golden, S.M.; Berk, A.; Felde, G.; Anderson, G.P.; Gorodetzky, D.; Paswaters, S.; Shippert, M. At-mospheric correction of spectral imagery: Evaluation of the FLAASH algorithm with AVIRIS data. In Proceedings of the Applied Imagery Pattern Recognition Workshop, Proceedings, Washington, DC, USA, 16–18 October 2002; pp. 157–163. [Google Scholar]
- Clark, R.N.; Swayze, G.A.; Livo, K.E.; Kokaly, R.F.; King, T.V.; Dalton, J.B.; Vance, J.S.; Rockwell, B.W.; Hoefen, T.; McDougal, R.R. Surface reflectance calibration of terrestrial imaging spectroscopy data: A tutorial using AVIRIS. In Proceedings of the 10th Airborne Earth Science Workshop; Jet Propulsion Laboratory: Pasadena, CA, USA, 2002. Available online: https://popo.jpl.nasa.gov/pub/docs/workshops/02_docs/2002_Clark_web.pdf (accessed on 27 February 2023).
- Storey, J.; Roy, D.P.; Masek, J.; Gascon, F.; Dwyer, J.; Choate, M. A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery. Remote Sens. Environ. 2016, 186, 121–122. [Google Scholar] [CrossRef] [Green Version]
- Mishra, D.R.; Ogashawara, I.; Gitelson, A.A. Bio-Optical Modeling and Remote Sensing of Inland Waters; Elsevier: Amsterdam, The Netherlands, 2017. [Google Scholar]
- Zheng, X.; Li, Z.-L.; Zhang, X.; Shang, G. Quantification of the Adjacency Effect on Measurements in the Thermal Infrared Region. IEEE Trans. Geosci. Remote Sens. 2019, 57, 9674–9687. [Google Scholar] [CrossRef]
- Kutser, T.; Pierson, D.C.; Tranvik, L.J.; Reinart, A.; Sobek, S.; Kallio, K. Using Satellite Remote Sensing to Estimate the Colored Dissolved Organic Matter Absorption Coefficient in Lakes. Ecosystems 2005, 8, 709–720. [Google Scholar] [CrossRef]
- Chamberland, J.; Bennett, J.; Yue, B. Water Surface Temperature and Suspended Sediment Concentration (SSC) Retrieval from Landsat Imagery, Northwest Territories, Canada. Can. J. Remote Sens. 2019, 45, 443–456. [Google Scholar] [CrossRef]
- Kay, S.; Hedley, J.D.; Lavender, S. Sun Glint Correction of High and Low Spatial Resolution Images of Aquatic Scenes: A Review of Methods for Visible and Near-Infrared Wavelengths. Remote Sens. 2009, 1, 697–730. [Google Scholar] [CrossRef] [Green Version]
- Qu, L. Remote sensing suspended sediment concentration in the Yellow River. Doctoral Dissertation, University of Connecticut, Stamford, CT, USA, 2014; pp. 1–130. Available online: https://opencommons.uconn.edu/dissertations/383 (accessed on 27 February 2023).
- Zhang, C.; Liu, Y.; Chen, X.; Gao, Y. Estimation of Suspended Sediment Concentration in the Yangtze Main Stream Based on Sentinel-2 MSI Data. Remote Sens. 2022, 14, 4446. [Google Scholar] [CrossRef]
- Kaczmarek, S.E.; Hicks, M.K.; Fullmer, S.M.; Steffen, K.L.; Bachtel, S.L. Mapping facies distributions on modern carbonate platforms through integration of multispectral Landsat data, statistics-based unsupervised classifications, and surface sediment data. Am. Assoc. Pet. Geol Bull. 2010, 94, 1581–1606. [Google Scholar] [CrossRef]
- Matamin, A.R.; Ahmad, F.; Mamat, M.; Abdullah, K.; Harun, S. Remote Sensing of Suspended Sediment Over Gulf of Martaban. Ekologia 2015, 34, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Yepez, S.; Laraque, A.; Martinez, J.-M.; De Sa, J.; Carrera, J.M.; Castellanos, B.; Gallay, M.; Lopez, J.L. Retrieval of suspended sediment concentrations using Landsat-8 OLI satellite images in the Orinoco River (Venezuela). Comptes Rendus Geosci. 2018, 350, 20–30. [Google Scholar] [CrossRef]
- Collins, A.L.; Walling, D.E. Documenting catchment suspended sediment sources: Problems, approaches and prospects. Prog. Phys. Geogr. 2004, 28, 159–196. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A normalized difference water index for remote sensing of vegetation liquid water from space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
- Feyisa, G.L.; Meilby, H.; Fensholt, R.; Proud, S.R. Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery. Remote Sens. Environ. 2014, 140, 23–35. [Google Scholar] [CrossRef]
- Tha, T.; Piman, T.; Bhatpuria, D.; Ruangrassamee, P. Assessment of Riverbank Erosion Hotspots along the Mekong River in Cambodia Using Remote Sensing and Hazard Exposure Mapping. Water 2022, 14, 1981. [Google Scholar] [CrossRef]
- Cavalli, M.; Goldin, B.; Comiti, F.; Brardinoni, F.; Marchi, L. Assessment of erosion and deposition in steep mountain basins by differencing sequential digital terrain models. Geomorphology 2017, 291, 4–16. [Google Scholar] [CrossRef]
- Huang, X.; Liu, X.; Zhang, L. A multichannel gray level co-occurrence matrix for multi/hyperspectral image texture repre-sentation. Remote Sens. 2014, 6, 8424–8445. [Google Scholar] [CrossRef] [Green Version]
- Haralick, R.M.; Shanmugam, K.; Dinstein, I.H. Textural Features for Image Classification. IEEE Trans. Syst. Man Cybern. 1973, SMC-3, 610–621. [Google Scholar] [CrossRef] [Green Version]
- Hall-Beyer, M. Practical guidelines for choosing GLCM textures to use in landscape classification tasks over a range of moderate spatial scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Mountrakis, G.; Im, J.; Ogole, C. Support vector machines in remote sensing: A review. ISPRS J. Photogramm. Remote Sens. 2011, 66, 247–259. [Google Scholar] [CrossRef]
- Wang, Y.; Li, Z.; Zeng, C.; Xia, G.; Shen, H. Extracting urban water by combining deep learning and google earth engine. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 13, 769–782. [Google Scholar] [CrossRef]
- Das, M.; Saha, S. Spatiotemporal Detection and Delineation of Bhagirathi-Hooghly River Bank Erosion Using GIS Analytics, West Bengal, India. In Geospatial Technology for Environmental Hazards; Kumar, S.P., Pourghasemi, H.R., Das, P., Bhunia, G.S., Narsimha, A., Eds.; Springer International Publishing: Cham, Switzerland, 2022; pp. 513–533. ISBN 978-3-030-75197-5. [Google Scholar] [CrossRef]
- Islam, A.; Guchhait, S.K. Characterizing cross-sectional morphology and channel inefficiency of lower Bhagirathi River, India, in post-Farakka barrage condition. Nat. Hazards 2020, 103, 3803–3836. [Google Scholar] [CrossRef]
- Kienberger, S.; Amoako Johnson, F.; Zeil, P.; Hutton, C.; Lang, S.; Clark, M. Modelling Socio-Economic Vulnerability to Floods: Comparison of Methods Developed for European and Asian Case Studies. In Sustainable Development—A Challenge for European Research; PLUS Research: Brussels, Belgium, 2014. [Google Scholar]
- KoPT. Annual Report on River Bhagirathi; HSD, Kolkata Port Trust: Berhampore, India, 2010. [Google Scholar]
- Rudra, K. Changing river courses in the western part of the Ganga–Brahmaputra delta. Geomorphology 2014, 227, 87–100. [Google Scholar] [CrossRef]
- Rudra, K. Shifting of the Ganga and Land Erosion in West Bengal A Socio-Ecological Viewpoint; Centre for Development and Environment Policy, Indian Institute of Management Calcutta: Kolkata, India, 2006. [Google Scholar]
- Down to Earth: Silt Has Left the Hooghly Shallow. Haldia Port Faces Closure. Available online: https://www.downtoearth.org.in/news/port-end-2819 (accessed on 16 February 2023).
- Saichenthur, N.; Murali, K.; Sundar, V. Study on stability of eden navigational channel in hooghly river estuary. In Lecture Notes in Civil Engineering; Springer: Berlin/Heidelberg, Germany, 2019; pp. 337–352. [Google Scholar]
- Chaudhuri, B.; Ghosh, A.; Yadav, B.; Dubey, R.P.; Samadder, P.; Ghosh, A.; Das, A.; Majumder, S.; Bhandari, S.; Singh, N.; et al. Evaluation of dredging efficiency indices of TSHDs deployed in a navigational channel leading to Haldia Dock Complex. ISH J. Hydraul. Eng. 2022, 28, 471–479. [Google Scholar] [CrossRef]
- Saichenthur, N.; Murali, K.; Sundar, V. Studies on Locating Sediment Trap for Reducing Dredging in Jellingham Navigational Fairway, Kolkata. In Lecture Notes in Civil Engineering, Proceedings of the Fifth International Conference in Ocean Engineering (ICOE2019); Springer: Singapore, 2021; pp. 185–199. [Google Scholar] [CrossRef]
- Szupiany, R.N.; Amsler, M.L.; Hernandez, J.; Parsons, D.; Best, J.L.; Fornari, E.; Trento, A. Flow fields, bed shear stresses, and suspended bed sediment dynamics in bifurcations of a large river. Water Resour. Res. 2012, 48, 1–15. [Google Scholar] [CrossRef]
- Adarsa, J.; Shamina, S.; Arkoprovo, B. Morphological Change Study of Ghoramara Island, Eastern India Using Multi Temporal Satellite Data. Res. J. Recent Sci. 2012, 1, 72–81. Available online: http://www.isca.me/rjrs/archive/v1/i10/13.ISCA-RJRS-2012-319.pdf (accessed on 27 February 2023).
- Raha, A.K.; Bhattacharya, S.; Pramanick, P. Sea Level Rise and Submergence of Sundarban Islands: A Time Series Study of Estuarine Dynamics. J. Ecol. Env. Sci. 2014, 5, 114–123, ISSN 0976-9900. Available online: http://www.bioinfopublication.org/jouarchive.php?opt=&jouid=BPJ0000261 (accessed on 27 February 2023).
- Ghosh, T.; Hajra, R.; Mukhopadhyay, A. Island erosion and afflicted population: Crisis and policies to handle climate change. In International Perspectives on Climate Change: Latin America and Beyond; Springer International Publishing: Cham, Switzerland, 2014; pp. 217–225. [Google Scholar] [CrossRef]
- Mukherjee, D. Environmental Appraisal of an Eroded Island, the Ghoramara: Hugli Estuary, West Bengal. IOSR J. Humanit. Soc. Sci. 2019, 24, 58–65. [Google Scholar]
- Kapoor, A. Inching Closer: Life on the Sinking Island of Ghoramara. Doctoral Dissertation, City University of New York (CUNY), New York, NY, USA, 2018. Available online: https://academicworks.cuny.edu/cgi/viewcontent.cgi?article=3721&context=gc_etds (accessed on 27 February 2023).
Satellite/Sensor | Spatial Resolution (m) | Time Frame | Source |
---|---|---|---|
Landsat 5-TM | 30 m | 1990–2020 | http://earthexplorer.usgs.gov (accessed on 10 February 2023) |
Landsat 8-OLI | |||
Sentinel 2A-MSI | 10 m | 2014 | https://scihub.copernicus.eu/dhus (accessed on 15 March 2023) |
SRTM DEM | 30 m | 2013 | https://www2.jpl.nasa.gov/srtm/ (accessed on 10 February 2023) |
ASTER DEM | 2015 | https://www.earthdata.nasa.gov/news/new-aster-gdem (accessed on 27 February 2023) |
Date of Collection | Station Name | SSC (mg/L) |
---|---|---|
1 February 2014 | 1 | 50 |
2 | 58 | |
3 | 36 | |
4 | 42 | |
5 | 60 | |
6 | 35 | |
7 | 68 | |
27 March 2014 | 8 | 85 |
9 | 54 | |
10 | 46 | |
11 | 63 | |
12 | 38 | |
13 | 48 | |
14 | 45 | |
15 | 172 | |
16 | 186 | |
17 | 255 | |
18 | 110 | |
19 | 252 | |
20 | 240 | |
21 | 236 |
Sl. No. | Landsat 5 TM | Landsat 8 OLI | ||
---|---|---|---|---|
Band No | Band Name | Band No | Band Name | |
1 | B1 | Blue | B2 | Blue |
2 | B2 | Green | B3 | Green |
3 | B3 | Red | B4 | Red |
4 | B4 | NIR | B5 | NIR |
5 | B6 | SWIR 1 | B6 | SWIR 1 |
6 | - | - | B7 | SWIR 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mukhopadhyay, A.; Acharyya, R.; Habel, M.; Pal, I.; Pramanick, N.; Hati, J.P.; Sanyal, M.K.; Ghosh, T. Upstream River Erosion vis-a-vis Sediments Variability in Hugli Estuary, India: A Geospatial Approach. Water 2023, 15, 1285. https://doi.org/10.3390/w15071285
Mukhopadhyay A, Acharyya R, Habel M, Pal I, Pramanick N, Hati JP, Sanyal MK, Ghosh T. Upstream River Erosion vis-a-vis Sediments Variability in Hugli Estuary, India: A Geospatial Approach. Water. 2023; 15(7):1285. https://doi.org/10.3390/w15071285
Chicago/Turabian StyleMukhopadhyay, Anirban, Rituparna Acharyya, Michał Habel, Indrajit Pal, Niloy Pramanick, Jyoti Prakash Hati, Manas Kumar Sanyal, and Tuhin Ghosh. 2023. "Upstream River Erosion vis-a-vis Sediments Variability in Hugli Estuary, India: A Geospatial Approach" Water 15, no. 7: 1285. https://doi.org/10.3390/w15071285
APA StyleMukhopadhyay, A., Acharyya, R., Habel, M., Pal, I., Pramanick, N., Hati, J. P., Sanyal, M. K., & Ghosh, T. (2023). Upstream River Erosion vis-a-vis Sediments Variability in Hugli Estuary, India: A Geospatial Approach. Water, 15(7), 1285. https://doi.org/10.3390/w15071285