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Abstract: The precision of numerical overland flow models is limited by their computational cost.
A GPU-accelerated 2D shallow flow model is developed to overcome this challenge in this study.
The model employs a Godunov-type finite volume method (FVM) to solve shallow water equations
(SWEs) with unstructured grids, while also considering rainfall, infiltration, bottom slope, and friction
source terms. The numerical simulation demonstrates that this model has well-balanced and robust
properties. In an experiment of urban rain-runoff and flood, the accuracy and stability of the model
are further demonstrated. The model is programmed with CUDA, and each numerical computation
term is processed in parallel to adopt multi-thread GPU acceleration technology. With the GPU
computation framework, this model can achieve a speeding up ration around 75 to single-thread
CPU in the dam-break flow for a large-scale application.

Keywords: Godunov scheme; unstructured grids; GPU acceleration; shallow water equations

1. Introduction

With global warming and urbanization, floods have become one of the most serious
natural disasters [1]. Faster and more accurate numerical flood simulation is gaining
importance as an essential technical tool for flood prediction and early warning [2–4].

In the past several decades, considerable progress has been made in numerical simula-
tion [5]. In addition, numerous numerical schemes have been developed to solve different
real-word issues, which include dam breaks, urban rainfall-runoff, and flash floods in catch-
ment areas [6–9]. Among this method, the Godunov-type finite volume method has good
shock-capturing ability and a good conservation property and has been extensively used for
the numerical simulation of water flow. Therefore, the Godunov-type finite volume method
is employed in the present study. On the one hand, many numerical flux solver methods for
Godunov-type finite volume schemes have been put forward in past studies [10–13], such
as Roe’s approximate Riemann solver proposed by Brufau and Garcia-Navarro [14], the
Augmented Roe’s Riemann solver [15], the HLLC Riemann solver [16,17], and the HLLCS
Riemann solver [18,19]. In past studies, the Riemann solver has been developing constantly,
presenting more accurate and efficient methods for solving the Riemann problem. On the
other hand, well-balanced numerical schemes that can treat wet–dry front and static water
stability property have also advanced in past studies [20–22]. A hydrostatic reconstruction
method was introduced by Audusse et al. [23], and this method reconstructs Riemann states
on both sides of the interface to maintain the stability of the numerical model. Liang and
Marche [24] used water surface elevation as the flow variable to deduce a well-balanced
SWE. Xia et al. [25] improved the non-negative water depth reconstruction method using
second-order reconstructed topography.

With the increasing availability of high-resolution terrain data from satellite im-
agery [26,27], it is necessary to provide a detailed description of complex topographic
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features for the accurate reproduction of key hydrodynamic processes. Therefore, there
is a common problem in both large-scale watershed flood simulation and accurate urban
storm flood simulation. Huxley et al. [28] adopted five different sizes (0.5 m, 1 m, 2 m, 5 m,
10 m and 20 m) of grids to carry out numerical simulation in an urban area, and this study
indicated that accurate results depend on the number of grids, which must be made smaller
to achieve precision. In urban areas, a 2~5 m grid size has been recommended by several
previous studies [29]. Numerical simulation models are still rarely used, mainly because
of their large computational cost in large-scale districts. Therefore, the development of
an efficient and accurate hydrodynamic model poses a significant challenge for overland
flow simulation.

Simulation models must be particularly fast (in the order of minutes) to meet real-
time simulation requirements. Many high-performance computational methods have
been developed to accelerate hydrodynamic numerical simulation. Leandro et al. [30]
parallelized multiple CPUs to build a two-dimensional diffusive wave model called P-
DWave. Wu et al. [31] developed the CPU-OpenMP framework for solving SWEs using
the Smoothed Particle Hydrodynamics method. In addition, due to the low efficiency
of traditional CPU-based series or parallel computing methods, these methods cannot
be used for rapid and efficient hydrodynamic model solutions with a large number of
grids. In contrast, GPU acceleration is much more promising and has a higher speed-up.
Xia et al. [32] applied multi-threaded GPU acceleration on a structured grid model.

Hydrodynamic modeling methods and techniques have undergone great develop-
ments, but there are still significant challenges to the accuracy and efficiency of water
flow simulation. For large-scale river basins and complex urban areas under the sur-
face, traditional computing methods have high computing time costs when working with
high-resolution unstructured grids. With regard to this problem, a new unstructured,
two-dimensional hydrodynamic numerical model using GPU acceleration is proposed in
this work.

2. Governing Equations

The conservative two-dimensional shallow water equations with source terms are
denoted below:

∂U
∂t

+
∂F
∂x

+
∂G
∂y

= S (1)

where t represents the time; U contains the variables of the flow state; F and G are the
vectors of the numerical flux terms in x and y of Cartesian coordinates; and S is the vector
of source terms that include rainfall, infiltration, bed slope, and friction. In addition, the
vector terms are written as:

U =

 h
hu
hv

, F =

 hu
hu2 + 1

2 gh2

huv

, G =

 hv
huv

hv2 + 1
2 gh2



S = RI + Sb + S f =

 R + I
0
0

+

 0
−gh ∂z

∂x
−gh ∂z

∂y

+

 0
−C f u

√
u2 + v2

−C f v
√

u2 + v2


(2)

in which g indicates the gravity acceleration with a value of 9.81 m2/s; h refers to the water
depth; u and v represent depth-averaged velocity in x and y directions; R and I indicate
rainfall rate and infiltration rate, respectively; z refers to the bottom elevation; and Cf
represents the roughness coefficient evaluated based on

C f = gn2/h1/3 (3)

where n represents the Manning coefficient.
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3. Numerical Schemes
3.1. Finite Volume Method and Unstructured Grid Discretization

The integral form of Equation (2) is∫
Ω

∂U
∂t

dΩ +
∫

Ω

(
∂F
∂x

+
∂G
∂y

)
dΩ =

∫
Ω

SdΩ. (4)

using the Gauss theorem, Equation (4) can be expressed as (5):

∂

∂t

∫
Ω

UdΩ +
∫

Γ

(
Fnx + Gny

)
dΓ =

∫
Ω

(
RI + Sb + S f

)
dΩ (5)

where Ω and Γ are the control area and boundary of the cell in an unstructured mesh,
representing the control area and sides of cell i, respectively; nx and ny indicate the outward
unit normal vector to the cell i at the edges in the x and y directions.

A general unstructured grid is shown in Figure 1. ∆t is defined as the time step. The
explicit time-marching scheme of Equation (5) in cell i is

Un+1
i = Un

i −
∆t
Ωi

NE

∑
k=1

(
T−1F̂

)
i,k

li,k + ∆t
(

RIn
i + Sn

bi + Sn+1
f i

)
(6)

where k denotes the index of the edge and NE is the total edge; l indicates the length of the
edge; and T−1F̂ represents the numerical flux at the edge.
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Solving the flux of SWEs satisfies the rotational invariance property in every
edge, and

Fnx + Gny = T−1F(TU) (7)

where T indicates the rotation matrix and T−1 refers to the inverse matrix:

T =

1 0 0
0 nx ny
0 −ny nx

 T−1 =

1 0 0
0 nx −ny
0 ny nx

 (8)

The conserved variable Û after rotation transformation in the edges of the cell is
presented as

Û = TU (9)

and flux F̂ = F
(
Û
)
.
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Thus, the 2D SWEs can not only solve the 1D Riemann problem but can also avoid
solving F and G twice at all edges. The numerical fluxes of cell i and cell j adjacent to both
sides of the edge k are satisfied:

F̂−j,k = −F̂−i,k (10)

3.2. Water Depth Reconstruction

The numerical stability of the hydrodynamic model depends on the correct evaluation
of the numerical flux and the bottom slope source term. It is important to the wet–dry
front that one side of the interface has water and the others do not. Especially in the case
water flows from a wet grid to a dry grid over complex terrain, reasonable evaluation
of numerical flux is essential for numerical stability. The hydrostatic reconstruction (HR)
method presented by Audusse et al. [23] is an efficient and robust method. The flow
variables are reconstructed using the assessed water depth and bottom elevation at both
sides. The HR method reconstructs the flow variables in the following steps.

At first, the maximum bottom elevation at both sides of the interface is defined as that
in Audusse et al. [23]:

zM = max(zL, zR). (11)

Secondly, the reconstructed water depths at both sides are presented as:

hc
L = max(0, hL + zL − zM)

hc
R = max(0, hR + zR − zM)

. (12)

Then, the velocities at both sides are in turn reconstructed as:

uc
d =

{
ud, if hd > hε

0, if hd ≤ hε
vc

d =

{
vd, if hd > hε

0, if hd ≤ hε
. (13)

Without losing generality, Figure 2 indicates three cases where two cells share a
common edge at the discrete level. The water depths of the two cells are reconstructed
above the maximum bottom elevation. Peculiarly, if the water level of a cell is less than the
bottom elevation of another cell, then its water depth is reconstructed as zero, as illustrated
in Figure 2c.
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      

F F  (15)

with the HLL fluxes calculated by 

Figure 2. Cont.



Water 2023, 15, 1300 5 of 20

Water 2023, 15, x FOR PEER REVIEW 5 of 21 
 

 

 
(a) 

 
(b) 

 
(c) 

Figure 2. Illustration of hydrostatic reconstruction at: (a) hL + zL > hR + zR; (b) hL + zL < hR + zR; and (c) 
hL + zL < zR. 

3.3. Interface Numerical Flux and Slope Source Term Discretization 
The SWEs are solved using a Godunov-type finite volume scheme in this model. The 

interfaces flux is calculated by solve Riemann problem. However, it is difficult to calculate 
the analytical solution to the Riemann problem quickly due to the large amount of com-
putation cost. In the current work, the HLLC approximate Riemann solver [17] is used to 
calculate the numerical flux at the interface. The Riemann problem only requires solving 
once at each edge to detect the numerical flux at the cell interface using Equation (7)−(10). 
The interface flux is calculated using the reconstructed variables in Section 3.2, and the 
flux is given by the HLLC approximate Riemann solver as: 

*

*

if 0
if 0
if 0
if 0

L L

L

R

L

RM

M

R

R

S
S

SS
S

S

 >

= 




≤ ≤

≤ ≤

≤

F
F

F
F
F

 (14)

where ( )L L=F F U  and ( )R R=F F U  represent the calculated Riemann states from the left 
and right; SL, SR, and SM refer to characteristic wave speeds; and *

LF  and *
RF  indicate the 

numerical fluxes in the left and right middle regions of the HLLC approximate Riemann-
ian solver in the solution structure, given by 

* *
1 1

* * * *

* *
2

1

2

1

, R

R

L

L

F F
F F
v F v F

   
   = =   
      

F F  (15)

with the HLL fluxes calculated by 

Figure 2. Illustration of hydrostatic reconstruction at: (a) hL + zL > hR + zR; (b) hL + zL < hR + zR; and
(c) hL + zL < zR.

3.3. Interface Numerical Flux and Slope Source Term Discretization

The SWEs are solved using a Godunov-type finite volume scheme in this model.
The interfaces flux is calculated by solve Riemann problem. However, it is difficult to
calculate the analytical solution to the Riemann problem quickly due to the large amount of
computation cost. In the current work, the HLLC approximate Riemann solver [17] is used
to calculate the numerical flux at the interface. The Riemann problem only requires solving
once at each edge to detect the numerical flux at the cell interface using Equation (7)–(10).
The interface flux is calculated using the reconstructed variables in Section 3.2, and the flux
is given by the HLLC approximate Riemann solver as:

F =


FL if SL > 0
F∗L if SL ≤ 0 ≤ SM

F∗R if SM ≤ 0 ≤ SR

FR if SR ≤ 0

(14)

where FL = F(UL) and FR = F(UR) represent the calculated Riemann states from the left
and right; SL, SR, and SM refer to characteristic wave speeds; and F∗L and F∗R indicate the
numerical fluxes in the left and right middle regions of the HLLC approximate Riemannian
solver in the solution structure, given by

F∗L =

 F∗1
F∗2

vLF∗1

, F∗R =

 F∗1
F∗2

vRF∗1

 (15)

with the HLL fluxes calculated by

F∗ =
SRFL − SLFR + SLSR(UR −UL)

SR − SL
. (16)

The left and right characteristic waves are defined as:

SL =

{
uR − 2

√
ghR, if hL = 0

min
(
uL −

√
ghL, u∗ −

√
gh∗
)
, if hL > 0

SR =

{
uL + 2

√
ghL, if hR = 0

max
(
uR +

√
ghR, u∗ +

√
gh∗
)
, if hR > 0

(17)

with
u∗ = 1

2 (uL + uR) +
√

ghL −
√

ghR

h∗ = 1
g

[
1
2
(√

ghL +
√

ghR
)
+ 1

4 (uL − uR)
]2 (18)
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Then, the middle characteristic wave speed is calculated:

SM =
SLhR(uR − SR)− SRhL(uL − SL)

hR(uR − SR)− hL(uL − SL)
(19)

Following the recommendation by Audusse et al. [23], the bottom slope source term
at the cell interface can be solved as:

SbL =
1
2

g
(

hc2
L − h2

L

)
(20)

and the bottom slope source term of the cell is given by

Sbi =
1

Ωi

NE

∑
k=1

Sbk,ilk,i

 0
nxk
nyk


i

(21)

3.4. Friction Source Term

A splitting point-implicit method [9,24,33] is adopted to evaluate the friction source
term in the present study. This method is equivalent to addressing the following ordinary
differential equations

dU
dt

= S f , (22)

where S f =
[
0 S f x S f y

]T , and

S f x = −C f u
√

u2 + v2

S f y = −C f v
√

u2 + v2 . (23)

Taking the x-direction as an instance in Equation (22), S f x can be expanded using a
Taylor series as:

Sn+1
f x = Sn

f x +

(
∂S f x

∂Ux

)
∆Ux + o

(
∆U2

x

)
, (24)

in which ∆Ux = Un+1
x −Un

x . Ignoring the higher-order terms, together with Equation (24),
Equation (22) is rewritten as:

Un+1
x = Un

x + ∆t
(S f x

Dx

)n

= Un
x + ∆tS f x (25)

where Dx is implicit coefficient defined as:

Dx = 1 + ∆t
(

∂S f x

∂Ux

)n

(26)

and S f x refers to the implicit friction source term. The greatest effect of friction on the flow
is to reduce the flow velocity to 0. To avoid an unphysical velocity, S f x is limited as follows:

S f x

{
≥ qn

x/∆t if qn
x ≥ 0

≤ −qn
x/∆t if qn

x ≤ 0
(27)

Due to this limitation, friction can no longer change flow direction.

3.5. Rainfall and Infiltration Source Term

The rain and infiltration source terms are simply calculated by

hn+1
i = hn

i + Ri + Ii (28)
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where Ri is the rainfall rate in cell i and Ii is the infiltration rate calculated by the Horton
method as:

f = fc + ( f0 − fc)e−βt (29)

in which f0 and fc are the maximum and stable infiltration rates, respectively; β is the
recession coefficient; and t represents the infiltration duration.

3.6. Stability Criteria

The stability of explicit numerical scheme can be governed by the Courant–Friedrichs–
Lewy (CFL) criterion. In terms of all edges, the time step may be presented as:

∆t = CFL ·min
k

[
min(dL, dR)

max
(
uL +

√
ghL, uR +

√
ghR

)]
k

(30)

where CFL is a value between 0 and 1 and d suggests the distance from a cell’s center to
its edge.

3.7. GPU-Accelerated Procedure

Graphics processing units (GPUs) have become a popular choice for scientific
computations, artificial intelligence, and other high-performance computing applications
due to their remarkable parallel processing capabilities. Furthermore, the use of GPUs
has also led to notable advancements in the field of hydrodynamic numerical simula-
tions, which are computationally expensive. Among the prominent GPU programming
languages, including CUDA, OpenCL, and OpenAcc, CUDA is adopted in this work due
to its high computational efficiency. We have employed a C-style CUDA programming
language, utilizing standard I/O and mathematical libraries for the I/O file and numerical
calculations, respectively. The model’s workflow involves the CPU controlling the I/O and
computation process while the GPU performs the numerical simulation calculations.

Upon reading the grid topology information and parameters, the CPU transfers all
the relevant data from the CPU memory to the GPU memory. All topology information
and parameters are stored in the GPU’s global memory, which can be accessed by all
threads. During the numerical computation in the GPU, appropriate threads are allocated
to meet the model’s calculation requirements. The thread allocation parameters in CUDA
are composed of two components, a grid and block. Variables of all threads in a block can
access each other, and they are computed in a group of at least 32 threads. In this study,
we have used the thread parameters of grid 128 and block 256. In each computed term,
variables are copied from global memory to the thread’s local memory. These variables are
utilized to evaluate the current item. As an illustration, for the calculation of water depth
reconstruction, we compute the water depth and velocity of reconstruction on both sides
of the edge. To achieve this, the grid parameters of the current edge of the modification
thread are first copied to the local memory. These parameters include the index of the units
on both sides of the edge, the water flow parameters of the units, and the bottom slope
elevation. Then, the reconstructed flow variables are calculated by Equations (11)–(13).
Finally, the results are copied to the global memory used for storing the reconstructed flow
variables, which will be used for the subsequent interface flux calculation.

Figure 3 presents the procedure of implementing the proposed multi-threading ap-
proach for GPU parallel computing. At each time step, the model first evaluates the wet
and dry states to determine the wet grid and the dry–wet fronts for subsequent calculations.
Next, the water depth variables on both sides of the edges are updated to calculate the
local time step. The current updated time step is determined by taking the minimum value
of the local time steps calculated by Equation (30). The flux of the edge is then calculated
and updated into the cells. Finally, the rainfall, infiltration, and friction source terms are
updated. The aforementioned procedures are repeated in each time step until the set
maximum simulation time is reached. In addition, at the end of the simulation, the data
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will be copied from the GPU memory to the CPU memory for writing and post-processing,
if necessary, at any moment during the simulation.
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4. Model Validation and Results
4.1. Still Water Test in an Uneven Bed

Well-balanced and conservative properties are essential for hydrodynamic models
for it to be able to maintain the static state of the water level in the study area and not
generate spurious flow velocities in still water conditions. With the purpose of validating
the present 2D overland flow model, a still, steady flow over uneven terrain with a wet–dry
interface is considered [33]. There are two overlapping bumps in the terrain, which are
as set by d(x, y) = max(0, D1, D2), where D1 = 2000− 0.0032[(X− 3000)2 + (Y− 5000)2]

and D2 = 900− 0.000144[(X− 5000)2 + (Y− 3000)2]. The domain of 8000 m × 8000 m is
divided into 58,672 cells. In addition, this domain is set as the initial water level of 1000 m.
The simulation result at T = 5000 s is shown in Figure 4, the water level remains the same as
the initial water level with no velocity, clearly revealing that the lake at rest can be recreated
in an exact way. The results show that the model strictly maintains the C-property for the
still water case with the presence of wet–dry fronts.

4.2. Dam-Break Flow in a 90◦ Curved Channel

A good shock-capturing capability is important to numerical simulation. A dam-break
flow in a 90◦ curved channel is considered to validate the present model’s shock-capturing
capability [34]. Concerning this test case, the domain is displayed as in Figure 5 [35], and
it forms a square reservoir feeding an L-shaped channel. The domain is composed of a
2.4 × 2.4 m square water reservoir and an L-shaped, 90◦ curved river channel, which is
divided into 113,796 cells. The numbering names of the six measured points and their
location divisions are at points as shown in Figure 5 and Table 1, respectively. A uniform
Manning coefficient is used for this domain, which is set as 0.0095 s·m−1/3. In addition, the
zero bottom elevation was applied in this domain. The initial conditions include zero flow
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and 0.2 m depth in the reservoir and 0.0 m in the channel. Meanwhile, the whole domain is
closed, except the outlet, which is regarded to be open.
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Table 1. Dam-break flow in a 90◦ curved channel: location of six measured points.

Point X (m) Y (m)

P1 1.20 1.20
P2 2.75 0.70
P3 4.25 0.70
P4 5.75 0.70
P5 6.55 1.50
P6 6.55 3.00

The contour plot of the depth at t = 1 s, 3 s, 5 s, and 10 s is displayed in Figure 6a–d,
respectively. The contour plot results can directly reflect the water resistance at the straight
corner of the river channel. In this case, the dam breaks at the beginning of the simulation,
and an overland flow model simulates the water flow processes within 40s. Meanwhile,
the calculated water depth with six measured points is compared with the experimental
data, as shown in Figure 7. The simulated water depths have good consistency with the
measured water depth at the six measured points. In particular, the model accurately
predicts the flood water arrival time of each measured point downstream. In addition, the
simulation results of this model were compared with the results by Gottardi et al. [34], and
our results have better agreement with the measured results than Gottardi’s results.
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Figure 6. Dam-break flow in a 90◦ curved channel: simulated water depth at t = 1, 3, 5, 10 s, as shown
in (a–d).

At the same time, as shown in Figure 7, the water level rose rapidly twice at three
measured points, which are P2, P3, and P4. These measured points are all located in the
river between the dam and the 90◦ bend of the channel. For these points, the direct cause of
the first rapid rise in water level was due to the sudden downward discharge of the water
body after the dam breaks. Meanwhile, the second rapid rise in the water level was due to
water being blocked at the turn of the straight angle of the river channel. On the other side,
the water level just rose rapidly once for two points, which are P5 and P6. This is caused by
these two points not being directly affected by the water blocking occurring at the straight
corner bend of the channel. Thus, these two points rose rapidly once, and the water depth
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became low as the water flowed out of the calculation domain. The simulation results show
that the model can capture shocks in flows following dam breaks well.

Water 2023, 15, x FOR PEER REVIEW 11 of 22 
 

 

 
Figure 6. Dam-break flow in a 90° curved channel: simulated water depth at t = 1, 3, 5, 10 s, as shown 
in (a–d). 

 
Figure 7. Dam-break flow in a 90° curved channel: calculated and measured water depth. 

Figure 7. Dam-break flow in a 90◦ curved channel: simulated and measured water depth [34].

4.3. Urban Rainfall Runoff Experiment

Urban rainfall-runoff-induced overland flows are difficult to simulate two-
dimensionally in urban areas, for example, due to their unsteady wet–dry interface and
low water depth. To validate the current 2D overland model of rainfall-runoff-induced
flow in an urban area, experiments on the rainfall runoff in an experimental urban area
performed by Cea et al. [36,37] can be adopted. The catchment topography in shown in
Figure 8, which gradually decreases from the outside region into inside region. Meanwhile,
the domain mesh has a random placement, as shown in Figure 9. In addition, buildings
are shown by wood blocks of 20 cm × 30 cm and 20 cm in height. Moreover, three rainfall
events, set as R1, R2, and R3, applied a uniform rainfall supply rate of 25 L/min over 20, 40,
and 60 s, respectively, to yield a rainfall intensity of 300 mm/h (Table 2). The whole area
was discretized with unstructured grids and divided into 113,796 cells. A uniform Manning
coefficient is used for this domain, which is set as 0.013 s·m−1/3. The calculated outlet dis-
charges in three rainfall events are compared based on the experimental data [5], as shown
in Figure 10. The simulated and measured outlet discharges exhibit good consistency. In
addition, the present results are compared with the simulation results by Cea et al. [36],
and the present model has almost the same results as their study. This case study shows
that the present model has a good accuracy in the simulation of the rainfall-runoff process
in urban areas.

Table 2. Urban rainfall-runoff experiment: rainfall schemes.

Rainfall Events Rainfall Intensity
(mm/h)

Rainfall Duration
(s)

R1 300 20
R2 300 40
R3 300 60
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Figure 10. Urban rainfall-runoff experiment: simulated and measured outlet discharges [36].

Clearly, the simulated water depth and flow patterns at 20, 40, and 60 s in three rainfall
events are displayed in Figure 11. It is clear that domain terrain plays a key role in
the rainfall-runoff process and the consequent flow patterns. Rainwater flows from the
buildings’ sloping roofs to the ground, where it is directed to the valley in the basin’s
center and travels to the bottom outlet. In addition, this case study reveals that the present
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overland flow can simulate the rainfall-induced overland flow in the urban area well,
taking into account the blocking effect of urban buildings. All in all, the present model
can deal well with unsteady wet–dry interfaces and low water depths in the numerical
simulation of urban areas.
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Figure 11. Urban rainfall-runoff experiment: simulated water depths and flow patterns at the last
moment of three rainfall events.

4.4. Experiment of a Flash Flood over Urban Topography

In urban areas, there are a large number of buildings, which affects surface flow. A lot
of physical experiments have been conducted to investigate the propagation characteristics
of flood waves flowing into the urban area in Toce Valley. To validate the performance
of current the 2D model in an urban area, a flash flood in Toce river can be adopted [38].
Numerous physical experiments are conducted with two topography configurations, two
types of block arrangements (aligned and random), and three different inflow hydrographs.
In this study, we select buildings in the aligned layout, as shown in Figure 12a. The
buildings are shown by 15 cm concrete cubes. Ten gauges (P1–P10) have been placed
at crucial locations to measure the water depth. The whole area was discretized with
unstructured grids and divided into 30,319 cells. A uniform Manning coefficient is used
for this domain, which is set as 0.0162 s·m−1/3. In addition, the low inflow hydrograph
has been applied to this configuration, which was controlled by a pump located at the
upstream of the valley, as shown in Figure 12b. The initial conditions include zero water
depth in the whole domain and the downstream of the valley set as an open boundary.
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The water depths and water velocities predicted by the model at different times are
shown in Figure 13. The results shown in this figure clearly demonstrate the model’s ability
to capture the instantaneous flow of the flash flood and reflect the water blocking effect of
buildings. Before the flow arrives at the buildings, the flood front is moving at a fast speed.
However, the water flow was delayed by buildings, which causes water deflection and flow
alteration. In the meantime, a large part of the flood flows down the two edges of the valley
and avoids the building area. The water depths decrease after the flood peak reduces.
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The calculated water depths at nine gauges are shown in Figure 14. The simulated
results have good consistency with the measured results. Meanwhile, the simulation results
can almost accurately predict the arrival time of the peak and maximum water depths.
Comparison of the calculated and measured water depths at P5 showed a slight difference.
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This result might due to the SWEs being unable to account for the three-dimensional
transient and turbulent water flow. All in all, this case study reveals that the present
overland model can simulate the inflow-induced overland flow of water in an urban area
well, accounting for the blocking effect of urban buildings.
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4.5. Malpasset Dam Break

The Malpasset dam, which was built in the southern French river valley of the Reyran,
gave way in 1959 as a result of heavy rain. Due to its more detailed measured, exper-
imental, and topographic data, this study area is widely used to test the accuracy and
stability of two-dimensional mathematical models and their ability to deal with real
terrain [39–41]. Here, a dam-break flow in Malpasset is considered to validate the present
model’s performance in a large-scale and real case. The terrain data and the measured
data were provided as shown in Figure 15. There are 17 measurement points of actual
investigation (P1~P17), 9 measured points (G6~G14) in the physical experiment, and
3 transformers (A, B, and C) located downstream of the dam. The whole area was dis-
cretized with unstructured grids and divided into 275,476 cells. A uniform Manning
coefficient is used for this domain, which is set as 0. 033 s·m−1/3. In addition, the initial
conditions include a 100 m water level upstream of the dam and zero water level in the
studied area.

The contour plot of water depth at t = 2000 s is displayed in Figure 16 when the
wave front had already reached the downstream floodplain. In other words, the contour
plot results can directly reflect the water from the dam break reaching the downstream
area of the floodplain. A comparison of the calculated and measured results is shown in
Figure 17a–c, which includes the survey and the experimental observations in terms of
maximum water levels and wave arrival times. Meanwhile, the estimated model results
and the measured and experimental values exhibit good consistency. The uncertainty of the
survey and experimental data may lead to some differences in some measurement points.
These discrepancies may be attributed to the 2D model’s limitations in the simulation of a
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3D flow, some measurement uncertainties in the survey and experiment, changes in the
topography after the initial event, as well as scale effects in the experiment, particularly
for the roughness. However, the present results are compared with the simulation results
by Hou et al. [33] and Nikolos et al. [42], and the present model has almost the same
results as their simulation results. This case study shows that the present model has a good
accuracy in the simulation of the dam break. All in all, the present overland model can
deal with unsteady wet–dry interfaces and uneven bed numerical simulation problems
well in a real dam-break case and can thus accurately predict the dam-break flow for
large-scale applications.
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Figure 17. Malpasset dam break: comparison of numerical simulation results with observed and
experimental results: (a) Maximum water level (survey points); (b) Maximum water level (scale
model measurements); and (c) Wave arrival time (scale model measurements) [33,42].

This case aims to evaluate the efficiency of the present model using different hardware
configurations. The statistics of computational cost with different hardware configurations
are shown in Table 3. These statistics show that a multi-core GPU is more efficient than
other hardware configurations. Specially, the efficiencies of the GPU and CPU devices
are compared in this table. This model can achieve a speeding up ratio of around 4 using
10-core CPUs compared to a single-thread CPU. With the GPU computation framework,
this model can achieve around a 75 speeding up ratio compared to a single thread CPU in
the dam-break flow for a large-scale application. Here, the computational efficiency of a
GPU with multiple CUDA cores is appreciably higher than that of a multi-core CPU.

Table 3. Hardware configurations and computational cost for the Malpasset dam break.

Hardware Hardware Setup Hardware
Cores Computational Cost (s) Speeding Up Ratio

CPU INTER i9-10900 1

1 1034.235 1.00
2 699.198 1.48
4 448.042 2.31
6 315.580 3.28
8 297.681 3.47
10 275.372 3.76

GPU

NVIDIA Geforce GTX 1660Ti 2 1536 77.210 13.40
NVIDIA Geforce RTX 3070 Laptop 2 5120 50.283 20.57

NVIDIA RTX A4000 2 6144 47.012 22.00
NVIDIA Geforce RTX 3080Ti 2 10,240 39.612 26.11
NVIDIA Geforce RTX 3090 2 10,496 35.718 28.96
NVIDIA Geforce RTX 4090 2 16,384 13.888 74.47

1 Intel Corporation, Santa Clara, USA; 2 NVIDIA Corporation, Santa Clara, USA.
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5. Conclusions

A new 2D, unstructured, grid-based hydrodynamic model with conservation and
balance properties is presented in this paper. This model is constructed using a Godunov-
type finite volume scheme, which is able to deal with complex flows such as unsteady
wet–dry interfaces, low water depths and uneven beds. More importantly, this new model
is able to adopt GPUs to achieve numerical simulation of large-scale applications.

Five test cases have been adopted to validate the present model’s performance. The
well-balanced and conservative properties have been proven by means of the still water
test in an uneven bed. The model’s good shock-capturing capability has been validated by
simulating a dam break in a 90◦ curved channel, which showed better agreement with the
measured results than Gottardi’s results. This urban rainfall runoff experiment case shows
that the present model has a good accuracy in the simulation of rainfall-runoff processes
in urban area, which has almost the same results as Cea’s study and measured values. A
case study of a flash flood over an urban topography revealed that the present overland
model can simulate the inflow-induced overland flow in an urban area well, in which the
blocking effect of urban buildings is taken into account. Finally, the Malpasset dam break
case showed that the present model can deal with the numerical simulation of an unsteady
wet–dry interface and an uneven bed in a real dam break case. The simulation results show
that the numerical methods used are reliable and effective. The model has considerable
predictive potential for complex flows in rainfall runoff, river hydraulics and inundation,
dam breaks, and other flood processes.

The numerical simulation of the Malpasset dam break further demonstrated the
efficiency of the present model using different hardware configurations. The use of a GPU
is much more efficient than a multi-core CPU. Particularly, the ratio of a 10-core CPU
is 3.76, while the ratio of a CPU with multiple CUDA cores can be as high as 74.47. The
hydrodynamic model on the basis of the GPU framework shows a powerful computing
advantage in processing a large number of grids with high resolution. The model adopts a
method which is easier to implement and more robust in the calculation of some terms and
that can be flexibly implemented to improve each term under the current GPU framework.
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