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Abstract: Valves are widely used in several areas, and their application in building installations is
common, e.g., as shower control valves. Rapid technological advances have resulted in improvements
to valve performance, reducing water and energy consumption. Removing parts external to the
masonry improves space use and ergonomics in valve operation. Front access to the internal parts of
a valve facilitates maintenance. The objective of this study is to present a new model of hydraulic
valve for building installations, designed to decrease head loss, increase controllability, and eliminate
parts outside the masonry. Three geometries were initially designed using SolidWorks, and a CFD
model was used to specify the pressures at the inlet and outlet of the analyzed sections. As a result,
the third valve geometry presented a pressure drop coefficient when 100% open that was roughly one
third of that typically seen in globe valves. The pumps and the reduction in head loss implied that
lower power was required, and therefore its energy consumption was low. Gains in controllability
were also observed, as it did not reach high flows for small openings. When used on a large scale,
these attributes would prevent the valves from wasting natural resources.

Keywords: hydraulic valve; head loss; energy savings; controllability; CFD; innovation

1. Introduction

Valves are widely used in several areas, from medical equipment and installations
in various industrial branches to domestic equipment. Their application in building
installations is common, e.g., as shower control valves.

The evolution of valves throughout history is neither regular nor systematic. Pearson [1]
reports that the first type of valve, the male-type valve, was recorded before the Christian
era. The second valve model, created around 1790, was the globe type. The third and fourth
valve types were developed in the 19th century: the gate valve in 1839 and the parallel
slide valve in 1884.

Even acknowledging that the study of hydraulic valves for building installations has
been consolidated, which can be confirmed by a literature review, further research and
development could still be useful in this area. Recent and rapid technological advances
have facilitated improvements in the performance of this type of equipment, typically re-
sulting in reduced water and energy consumption, which are increasingly essential features.
Mete and Xue [2] state that one of the main characteristics of ecological modernization is
technological innovation.

Lisowski and Rajda [3] state that energy consumption in hydraulic systems must be
reduced by minimizing head loss in their components, which include valves. Thus, the
objective of this study is to present a new type of control valve for showers.

Valves are necessary for the proper functioning of any fluid transport system. Building
installations mostly use gate valves and globe valves.
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Gate valves are designed to act as maintenance valves, i.e., operating fully open
or closed. The advantages of gate valves are as follows: they permit the completely
unobstructed passage of fluid when the valve is fully open, they provide good tightness
for any type of fluids, they can be constructed in a wide range of sizes, they can operate
under wide ranges of pressure and temperature, and they permit flow in both directions
of the valve. On the other hand, gate valves are not suitable for frequent operation, flow
regulation and throttling cannot be applied, and they are necessarily large because of the
translation movement of the plug. Figure 1 shows the fluid passage and the interior of a
gate valve.
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Figure 1. Gate valve [4].

Globe valves are designed to control flow rate and pressure, and they are widely used
in building and industrial installations. The advantages of globe valves include their ability
to partially control the flow rate, with faster opening and closing than gate valves. The
constructive characteristics of the seat-plug allow total sealing, and because the internal
components can be accessed without removing them from the hydraulic installation, main-
tenance is relatively easy. They can also function in a wide pressure/temperature range.
However, globe valves do not permit flow in both directions and head loss can be high due
to the change in flow direction and the turbulence of the water inside [5]. High head loss
must be avoided, as it indicates wasted energy during the flow. Figure 2 shows the fluid
passage and the interior of a globe valve.
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An essential operational characteristic of valves is the flow rate variation according to
the valve opening. This can be classified as quick-opening, linear, or equal percentage [7].
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In the case of globe valves, one factor affecting their behavior is the plug design, examples
of which are shown in Figure 3. The quick-opening globe type is usually used to regulate
water flow in shower stalls.
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Qian, J. et al. [8] also cite the high head loss of globe valves. The authors emphasize
that these devices are widely used in the process industry as they provide stability and
security to the system. Manufacturers seek alternative valve designs with low head loss
and constructive simplicity.

Head loss reduces the mechanical energy of the fluid when it flows through a valve,
which can lead to decreased pressure and flow rate or to increased electrical energy con-
sumption (when a pumping system is present). This problem, which is critical in the case
of the globe valves, can be prevented by increasing the diameter of the pipes, though this
can lead to increased installation costs and material waste. Saving resources is essential
for civil construction. The IEDI-FGV (Getúlio Vargas Foundation—Institute of Studies for
Industrial Development) [9] found that civil construction is responsible for consuming 30%
of all resources extracted from nature and that it causes about 30% of global GHG (green-
house gas) emissions. Thus, Mete and Xue [2] suggest that, regarding the environmental
sustainability of future housing, any reduction in the consumption of materials in civil
construction will also result in a reduction in GHG emissions. Improved valve design can
thus result in environmental benefits.

Another aspect we considered when researching new valves was the handwheel
(handle) design, located outside the wall in the shower stall area. Usable space in real
estate is decreasing worldwide. Data from EMBRAESP (Empresa Brasileira de Estudos de
Patrimônio Ltd., São Paulo, Brazil), published in [10], highlight the trend of new apartments
with smaller areas. In São Paulo, Brazil, there has been a 29% reduction in the areas of
properties in recent years. More recently, Mendonça and Villa [11] verified that the shrinking
of properties is a reality throughout Brazil. Thus, research is essential for designing
innovative equipment and products that favor living in smaller spaces. The valve parts
external to the masonry combined with these reduced spaces may lead to mechanical
shocks, especially in children and the elderly. Furthermore, because the opening and
closing of traditional valves are performed in a rotating manner, Campos [12] highlights
the importance of ergonomic studies on the design of sanitary metal handwheels.

Improving the controllability of hydraulic parts reduces water waste, a problem that
affects many countries worldwide. In Brazil, despite offering 19 times what is established
by the United Nations annually per inhabitant [13], the country wastes approximately 40%
of its total treated water during distribution. The increase in controllability provided by
better equipment could significantly reduce water consumption in buildings [14,15].

In addition to environmental gains and energy savings, the new valve provides even
greater comfort to users due to the elimination of parts external to the masonry. Additional
benefits include gaining internal space in the shower stall and improved ergonomics in
valve operation. The front access to the internal parts of the designed valve facilitates
maintenance, reducing maintenance time and, consequently, saving water since leaks can
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be quickly corrected [16]. Front access to parts for maintenance eliminates the need to break
masonry and coatings, avoiding the generation of demolition waste, which is responsible
for approximately 25–30% of the total waste in the European Union, and reducing the
environmental impact [17].

The objective of this study is to present a new model of hydraulic valve for building
installations. This new valve is designed to decrease head loss, increase controllability, and
eliminate parts external to the masonry or other type of seal.

The paper is arranged as follows: following a brief concept review of computational
fluid dynamics, the Materials and Methods section will discuss the development of the
appropriate geometry for the proposed valve model. The Results and Analysis section will
show the best geometry that demonstrates desirable hydraulic characteristics for a building
valve, and this will be followed by the Conclusions section.

Computational Fluid Dynamics—CFD

The research process for the new valve involved evaluating different alternatives until
reaching a satisfactory solution. The evaluations of the head loss and the general aspect of
the flow of each alternative design were performed using CFD software, an acronym for
computational fluid dynamics. Versteeg and Malalasekera [18] show that the use of CFD
programs contributes to the analysis of complex flow phenomena in various fields of appli-
cation. This tool is very suitable for predicting flow behavior, allowing the visualization
of three-dimensional flows and providing detailed information concerning velocities and
pressures. CFD has been successfully used in more complex hydraulic applications than the
one treated here, such as two-phase flows [19,20]. CFD has been widely used in the design
of valves [3,8,21–28], with many works predicting head loss with good accuracy compared
with experimental data [3,21–24] (the other works, [8,25–28], made no comparisons). CFD
software allows the testing of several design options, sometimes without the need to build
physical models [29], thus enabling considerable savings in product development.

The present study used SolidWorks, a CAD program with an optional CFD module
called Flow Simulation. Parts assembly, adjustments, and flow simulation can be performed,
providing data on the inherent characteristics of the valve, i.e., the characteristics of the
isolated valve, without it being inserted in any hydraulic system.

CFD programs solve Navier–Stokes equations using numerical methods. These equa-
tions apply Newton’s second law to fluid flow and are valid for both laminar and tur-
bulent flows. However, turbulent flows present an additional difficulty. They require
very refined meshes to resolve all flow scales up to the smallest vortexes, and the flow
simulation thus becomes unfeasible in most practical cases, even using currently available
supercomputers [18]. Despite this, such flow simulations have been used for scientific
research, and they are known as direct numerical simulations (DNS). CFD programs use
so-called turbulence models to address this problem. These models can be classified into
two broader classes: LES models and RANS models.

Large eddy simulation (LES) models are similar to DNS, but they allow for the use
of meshes larger than the finest vortexes (eddies). The effect of the smaller vortexes is
included through so-called subgrid models. RANS models, on the other hand, solve only
the time average of the flow, leaving the turbulent fluctuations. Therefore, LES models tend
to be less computationally demanding than DNS (by orders of magnitude), but tend to be
more demanding than RANS simulations (by orders of magnitude).

RANS originates from the use of the Reynolds average of the Navier–Stokes equations.
The main types of RANS-based turbulence models currently used are the turbulent viscosity
models. These models additionally apply the Boussinesq hypothesis, which involves the
use of turbulent viscosity [18]. The Flow Simulation program from SolidWorks also uses
this type of turbulence modeling, and the resulting equations for incompressible flow
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include the continuity equation (Equation (1)) and the equations of motion in the x, y, and z
directions, represented by Equations (2)–(4), respectively.
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In Equations (1)–(4), Vx, Vy, and Vz are the velocities in the x, y, and z directions,
respectively, µeff is the effective viscosity of the fluid, p is pressure, and ρ is the specific
mass of the fluid.

Additional equations are required to complete the mathematical formulation to cal-
culate the effective viscosity µeff, the sum of the actual fluid viscosity, and the turbulent
viscosity, as indicated in Equation (5).

µe f f = µ + µt (5)

For this purpose, Flow Simulation uses the k–ε turbulence model, where k is the kinetic
energy of turbulent fluctuations and ε its dissipation rate. In this model, the turbulent
viscosity is given by Equation (6). There is a marked variation in the turbulent flow
properties in the region near the solid surfaces. Wall functions are used to consider this
effect without significantly reducing the cell size. More details about the turbulence model
and the equations for k and ε can be obtained in [30].

µt = ρcµ
k2

ε
(6)

where: cµ = 0.09.
The numerical method used by Flow Simulation is based on the finite volume method [18].

All simulations were performed using the standard numerical options available in the software [30].
SolidWorks [30] automatically generates the mesh, using parallelepiped-shaped cells.

Its faces are arranged orthogonally to the specified axes of the Cartesian coordinate system.
Cells located close to the boundary of the part geometry or the contact between the fluid and
the geometry are cut by these boundaries, becoming a part of the previously parallelepiped-
shaped cell. Thus, they become polyhedra. Figure 4 presents a visualization of the shape of
the cells located close to the contact points between the fluid and the part geometry. The
mesh used is three-dimensional, but the cells in the figure are represented as flat figures
to facilitate visualization. The white cells are the fluid, the gray cells are solids, the red
dashed line is the boundary of the solid geometry, and the cut cells are those close to
the boundaries.
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2. Materials and Methods

The first valve geometry was designed using the SolidWorks Premium software,
version 2017 × 64 Edition SP 1.0, Dassault Systèmes, France. The fluid was defined as
water, the fluid flow region was limited, and the pressures at the inlet and outlet of the
analyzed section were defined.

After an analysis in the spatial discretization, the mesh was defined as having 82,214
cells (Figure 5). This definition resulted from testing with 581,031 cells, which considerably
increased the processing time and caused a difference of less than 10% in the result, which
was negligible for this research.

Water 2023, 15, x FOR PEER REVIEW 6 of 21 
 

 

 
Figure 4. Cell shape in SolidWorks mesh [30]. 

2. Materials and Methods 
The first valve geometry was designed using the SolidWorks Premium software, ver-

sion 2017 x 64 Edition SP 1.0, Dassault Systèmes, France. The fluid was defined as water, 
the fluid flow region was limited, and the pressures at the inlet and outlet of the analyzed 
section were defined. 

After an analysis in the spatial discretization, the mesh was defined as having 82,214 
cells (Figure 5). This definition resulted from testing with 581,031 cells, which considera-
bly increased the processing time and caused a difference of less than 10% in the result, 
which was negligible for this research. 

 
Figure 5. Cell shape in valve geometry. 

For an accurate simulation, the CFD model flow domain included, in addition to the 
valve, a pipe section before and after the valve. The Brazilian Association of Technical 

Figure 5. Cell shape in valve geometry.



Water 2023, 15, 1441 7 of 19

For an accurate simulation, the CFD model flow domain included, in addition to the
valve, a pipe section before and after the valve. The Brazilian Association of Technical
Standards [31] recommends that the head loss should be measured using an inlet section
positioned 20 diameters before the valve and an outlet section positioned 20 diameters after
the valve. The boundary conditions were then applied according to the adopted guidelines.
Thus, in the inlet section, a 130.7 kPa pressure was applied, and in the outlet section, a
101.3 kPa pressure, which is equivalent to the atmospheric pressure, was applied, resulting
in a 29.4 kPa or 3 mca pressure difference between the inlet and the outlet, simulating the
approximate hydraulic head of a one-story house.

The software was used to determine the fluid velocity with these applied pressure
boundary conditions. Thus, the velocities in the inlet and outlet sections were not estab-
lished; these variables were calculated as a pressure function. The other boundary condition
used was zero velocity along the solid walls. The singular head loss coefficient of the valve
was calculated using the velocity value and Equation (7).

Kv =
2∆p
ρv2 (7)

where ∆p is the pressure difference before and after the valve, g is the gravitational acceler-
ation, and v is the average velocity of the fluid in the pipeline.

With these head loss values calculated for the new valve, a comparison was made with
the head loss value of a globe valve, according to information in the scientific literature.

3. Results and Analysis

With CFD bringing economy, versatility, and precision to the understanding of fluid
flow and providing reliable data for model calibration essential to industrial design [32],
the research on the new valve was conducted with an evolutionary process. The process
involved an initial proposal, CFD tests, improvement proposals, and new tests. The opening
and closing processes of the valve are performed by moving the sliding control to the right
or to the left, and the valve is totally open when the sliding control is shifted entirely to the
right and totally closed when the sliding control is fully shifted to the left. Figure 6 shows
the valve components. The first valve geometry was created using the SolidWorks CAD
software and is shown in Figure 7. In all of the figures, the dimensions are in millimeters
and the fluid flows from top to bottom.

For this geometry, analyses were performed using velocity and pressure maps obtained
from the cross-section of the valve. The first analysis was performed for an opening of 10%
of the valve, as is shown in Figure 8a,b.
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The analysis showed no flow for a 10% opening of the valve (Figure 8a). This occurred
because the inlet section is smaller than the outlet section, and therefore, when the valve is
open 10%, even though the outlet section is open, the input section remains closed. The
first proposed geometry was therefore discarded. Some geometric adjustments were then
made, increasing the valve inlet section to create a second valve geometry, as can be seen in
Figure 9a,b.

The same analysis was performed for the second valve geometry. Figures 10a, 11a,
12a, 13a, 14a and 15b show the velocity and pressure maps obtained from the cross-section
of the valve for 10%, 30%, 50%, 70%, 90%, and 100% openings.

For the 10% opening, Figure 10a indicates the beginning of the flow. The highest
velocities are in the plug opening region, and they are close to zero in the opposite region.
As for pressure, Figure 10b shows a slight variation in values due to the small opening of
the plug compared with the pipe diameter. For the 30% opening, a region with velocities
close to zero on the left side of the valve can be seen in Figure 11a, which can be created
as a function of the geometry in the region with a smaller diameter, causing turbulence.
Figure 11b shows that the pressure begins to vary in the section where the fluid passes
through the plug.
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Figure 15. Second valve geometry with 100% opening.

For the 50% opening, the region of velocities close to zero starts forming on the right
side of the valve. It is a function of the increase in the volume of drained fluid and valve
geometry (see Figure 12a). For the 70% opening, areas with near-zero velocities remain
in the valve diameter change region (see Figure 13a). Additionally, a region with higher
pressure appears in the pipe diameter transition region after passing through the valve
opening section (see Figure 13b).

For the 90% opening, despite an increase in velocity along the pipeline, as can be
observed in Figure 14a, areas with values close to zero remained in the section of the
valve with the largest diameter (highlighted in blue). Finally, for the fully open valve
(Figure 15a,b), it can be seen that the flow that developed along the pipe exhibited good
velocity and pressure, with no velocity points close to zero (dead zones).

So far, when analyzing the velocities and pressures for the different valve openings,
the second geometry has presented advantages over the first one. It has solved the problem
of the inexistence of flow with a 10% opening. However, it was expected that improvements
to the flow behavior could be achieved by incorporating subtle changes in the inlet and
outlet sections of the valve in a third geometry that would be suitable for mass production
and offer better performance and reduced size. Figure 16a,b present the design of the third
valve (all measurements in mm).
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The previous analyses were also carried out for the third valve geometry, obtaining
the velocity and pressure maps from the cross-section of the valve for 10%, 30%, 50%, 70%,
90%, and 100% openings, as is shown in Figures 17a, 18a, 19a, 20a, 21a and 22b.
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For the third geometry, the head loss was determined based on the results obtained 
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coefficient of the valve when 100% open (Kv100) was calculated. In comparison, the head 
loss coefficient for a globe valve when 100% open is Kv100 = 9.00 [33]. This indicates that 
the new valve possesses a great advantage over the globe valve when comparing their 
head loss coefficients (Kv100). Thus, the valve developed in this study presents a significant 

Figure 22. Third valve geometry with 100% opening.

For the 10% opening, Figure 17a shows regions with velocity values close to zero
concentrated close to the wall on the opposite side of the opening. Figure 17b indicates the
pressure with slight variations in the valve opening. Variations in the velocity and pressure
values begin to appear during the passage of the fluid through the valve plug.
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For the 30% opening, Figure 18a,b show the flow velocity increasing from left to right,
indicating a better flow development than that of the second geometry. As the speed
increases, there is also an increase in pressure during the fluid flow through the obturator
orifices, indicating an area of turbulence inside the valve.

For the 50% opening, despite some areas with velocity values close to zero (highlighted
in blue in Figure 19a), the flow development is better than in the second geometry. The
velocity and pressure continue to vary only in the section where the fluid passes through
the plug, as can be seen in Figure 19b.

For the 70% and 90% openings, shown in Figure 20a,b and Figure 21a,b, respectively,
better flow development is more evident than in the previous designs, despite a few velocity
points close to zero (highlighted in blue in Figures 20a and 21a). The velocity and pressure
gradients demonstrate the existing variation inside the valve, and the flow developed in
the sequence.

Finally, the analyses of the velocity and pressure maps of the fully open valves show
advantages compared with the second geometry. Flow development is improved when
compared with the second geometry at the same opening percentage, with higher velocities
for a smaller geometry, as is shown in Figures 15a and 22a. Thus, reducing the dimensions
leads to savings in the construction process.

Figure 23a–c show, in the areas circled in red, the changes implemented from the first
geometry to the third geometry.
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For the third geometry, the head loss was determined based on the results obtained
from the flow simulation with the CFD software. Using Equation (7), a 2.90 pressure drop
coefficient of the valve when 100% open (Kv100) was calculated. In comparison, the head
loss coefficient for a globe valve when 100% open is Kv100 = 9.00 [33]. This indicates that
the new valve possesses a great advantage over the globe valve when comparing their
head loss coefficients (Kv100). Thus, the valve developed in this study presents a significant
reduction in the head loss. The loss coefficient is close to one third of the typical globe valve
coefficient indicated the literature.

In hydraulic installations that require pumps to increase the pressure, the reduction
in the head loss provided by the valve should reduce the power required, resulting in
lower energy consumption. In a scenario in which the pump power is used exclusively to
overcome the head loss, replacing a globe valve (Kv = 9.00) with the valve developed in
this study (Kv = 2.9) would lead to an estimated 67% energy saving (calculated using the
classical pump power equation) [34].
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The controllability was also analyzed for each valve geometry. The controllability of
a valve when installed in a hydraulic system varies as a function of the head loss of the
system, i.e., the lower its value compared with the head loss of the system, the lower the
controllability of the valve, and vice versa. Tables 1–3 present flow rate values related to
each opening percentage for each valve. Figure 24 represents the tabulated data graphically.

Table 1. First valve geometry: opening percentage x flow rate.

% Opening Mean Velocity (m/s) Flow Rate (L/s) Flow Rate (%)

0 0.000 0.000 0.000
10 0.000 0.000 0.000
20 0.536 0.168 5.981
30 1.562 0.491 17.433
40 3.481 1.094 38.840
50 4.627 1.454 51.621
60 5.722 1.798 63.847
70 6.812 2.140 76.002
80 7.735 2.430 86.304
90 8.347 2.622 93.130

100 8.963 2.816 100.000

Table 2. Second valve geometry: opening percentage x flow rate.

% Opening Mean Velocity (m/s) Flow Rate (L/s) Flow Rate (%)

0 0.000 0.000 0.000
10 0.699 0.220 14.663
20 1.137 0.357 23.851
30 1.719 0.540 36.060
40 2.414 0.758 50.640
50 2.835 0.891 59.471
60 3.350 1.052 70.275
70 3.736 1.174 78.372
80 4.119 1.294 86.407
90 4.430 1.392 92.931

100 4.767 1.498 100.00

Table 3. Third valve geometry: opening percentage x flow rate.

% Opening Mean Velocity (m/s) Flow Rate (L/s) Flow Rate (%)

0 0.000 0.000 0.000
10 0.679 0.213 15.072
20 1.064 0.334 23.618
30 1.506 0.473 33.430
40 2.206 0.693 48.968
50 2.604 0.818 57.802
60 3.050 0.958 67.703
70 3.525 1.107 78.246
80 3.916 1.230 86.926
90 4.282 1.345 95.050

100 4.505 1.415 100.00
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Figure 24. Controllability: first, second, and third valve geometries.

The results presented in Tables 1–3 and in Figure 24 show that the second and third
geometries exhibit similar controllability figures. The simulation performed with the CFD
software used fixed pressure and atmospheric pressure at the inlet and outlet of the valve.
Thus, the calculated controllability is an inherent characteristic of the valve, i.e., it is isolated
from the system in which it operates.

As a result, when laboratory tested, the valve response tends to be different as it
will be inserted into a specific hydraulic system. In this work, we wanted to compare
the controllability of the three designs. The second and third geometries present good
controllability represented by linearity. The use of the third geometry instead of the second
one is justified, considering the previous analyses.

Globe valves used in shower installations are commonly quick-opening. Figure 25
illustrates the controllability characteristic curve of a quick-opening valve to facilitate this
comparison. The difference in flow rate control for a quick-opening globe valve can be seen
and compared with the valve tested in this research.
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After analyzing the simulations performed using the CFD software, a valve proto-
type was 3D printed (Figure 26a,b) so that it could be subjected to physical tests in the
hydraulics laboratory.
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4. Conclusions

There is still room for advancement in hydraulic valve technologies for building in-
stallations that will bring benefits to users and the environment. Thus, three new valve
geometries were analyzed. The first geometry we developed did not present a flow when
10% open, and as a result it was improved, generating a second geometry, which presented
the desired characteristics of a reduction in the pressure drop coefficient and an improve-
ment in the development of the fluid flow. Using the data from the simulation of the second
geometry, a third geometry was created. This third valve geometry is reduced in size and is
intended to be incorporated into the valve market. In this third geometry, the head loss
coefficient was one third of that typically seen in a conventional globe valve (usually used
in installations for showers), according to the literature. The main objective of the CFD
analysis was to compare the three valve geometries, avoiding the manufacture of a large
number of prototypes and unnecessary testing. The process used to develop the geometry
has intrinsic validity, as the CFD calculations were made using the same methodology for
each of the three geometries studied. Any errors due to methodology or numerical sources
would therefore have affected the three geometries equally.

From the results of the CFD simulations, the valve is also expected to provide precise
control, which reduces consumption since maximum flows are not achieved with small
openings. On a large scale, this avoids wasting natural resources. Other advantages
that directly impact civil construction include the possibility of installation completely
embedded in the masonry, resulting in smaller dimensions than other models; frontal
access to internal components, facilitating maintenance and preventing the breaking of
masonry and coatings; and greater comfort for the user due to the sliding movement used
to open or close the valve (rather than the rotary movement used in conventional valves).

Although the efficiency of CFD in evaluating pressure loss has been confirmed in
the scientific literature, our results will be confirmed experimentally. The substantial
reduction in the pressured drop will encourage the continuation of this project and lead to
the manufacturing of the proposed valve, the gathering of experimental measurements,
and comparisons with existing valves.
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